Wu Chong-shi
a0a1a2a3 Green
a4a5 (a1)
§30.1 a6a7 Green a8a9
a10a11a12a13a14a15a16a17
a15a18a19a20a21a22a23a24a25a26a27a28a29a11a12a30a31a17
a32a33a34a29a20a35a30a31a36a37
?2u(x,t)
?t2 ?a
2?
2u(x,t)
?x2 = f(x,t), 0 <x<l, t> 0,
u(x,t)vextendsinglevextendsinglex=0 = μ(t), u(x,t)vextendsinglevextendsinglex=l = ν(t), t> 0,
u(x,t)vextendsinglevextendsinglet=0 = φ(x), ?u(x,t)?t
vextendsinglevextendsingle
vextendsingle
t=0
= ψ(x), 0 <x<l.
a38a10a39a40a23a41a42a29Green
a43a44G(x,t;xprime,tprime)a42a45a37a46a47(a48a49a50a51a52
a33a47a53)
a54(a48a49a50a51a55a56a52a54)
a57a30a31
bracketleftBig ?2
?t2 ?a
2 ?2
?x2
bracketrightBig
G(x,t; xprime,tprime) = δ(x?xprime)δ(t?tprime), 0 <x,xprime <l, t,tprime > 0
a50a58a59
a20a35a60a61
G(x,t;xprime,tprime)vextendsinglevextendsinglex=0 = 0, G(x,t;xprime,tprime)vextendsinglevextendsinglex=l = 0, t,tprime > 0,
G(x,t;xprime,tprime)vextendsinglevextendsinglet<tprime = 0, ?G(x,t;x
prime,tprime)
?t
vextendsinglevextendsingle
vextendsingle
t<tprime
= 0, 0 <x,xprime <l
a62a29a35a17a63a64a65a66a60a61a29a67a68a69a70a37a71a72a73a29a74a75a15a76a12a77a37
a50t = tprime a47a53a78a79a29a23a80a10a23a50a81
a10
a82a23a28a83a84a33a20a85a86a87a88a17
a89a33a34a29a30a31a33a90a23a79
a50a91a92
a24a25a93a94a30a31a74
a33 Green
a43a44G(x,t;xprime,tprime)a29a95a96a97
a98 a99a100a101Green
a43a44a102a103
a104a60a61f(x,t), μ(t), ν(t)a89φ(x), ψ(x)
a105
a20a35a30a31a29a35u(x,t)
a106a107
a78a108
a93 a99a100a109a78 Green
a43a44
Wu Chong-shi
§30.1 a110a111 Greena112a113 a1142a115
Green a116a117a118a119a120a121
(Greena43a44a50a122a123a124a125a126a127a128a129a130a123a124a125a131a132a128)
a15
a81
a23a133a134a78a135
a51 Greena43a44G(x,?t;x
primeprime,?tprimeprime)a29a20a35a30a31
bracketleftbigg ?2
?t2 ?a
2 ?2
?x2
bracketrightbigg
G(x,?t;xprimeprime,?tprimeprime) = δ(x?xprimeprime)δ(t?tprimeprime), 0 <x,xprimeprime <l, t,tprimeprime > 0,
G(x,?t;xprimeprime,?tprimeprime)vextendsinglevextendsinglex=0 = 0, G(x,?t;xprimeprime,?tprimeprime)vextendsinglevextendsinglex=l = 0, t,tprimeprime > 0,
G(x,?t;xprimeprime,?tprimeprime)vextendsinglevextendsingle?t<?tprimeprime = 0, ?G(x,?t;x
primeprime,?tprimeprime)
?t
vextendsinglevextendsingle
vextendsingle
?t<?tprimeprime
= 0, 0 <x,xprimeprime <l.
a105a136
a94a13a14a137a138a139a10Green
a43a44G(x,?t;xprimeprime,?tprimeprime) a89 G(x,t;xprime,tprime) a23a41a140a23a133a50a141a56[0, l]a89 [0, ∞)
a142a95xa89t
a143
a137a23a144a145
G(xprime,?tprime;xprimeprime,?tprimeprime)?G(xprimeprime,tprimeprime;xprime,tprime)
=
integraldisplay l
0
dx
integraldisplay ∞
0
bracketleftbigg
G(x,?t;xprimeprime,?tprimeprime)?
2G(x,t;xprime,tprime)
?t2 ?G(x,t;x
prime,tprime)?2G(x,?t;xprimeprime,?tprimeprime)
?t2
bracketrightbigg
dt
?
integraldisplay ∞
0
dt
integraldisplay l
0
bracketleftbigg
G(x,?t;xprimeprime,?tprimeprime)?
2G(x,t;xprime,tprime)
?x2 ?G(x,t;x
prime,tprime)?2G(x,?t;xprimeprime,?tprimeprime)
?x2
bracketrightbigg
dx
=
integraldisplay l
0
bracketleftbigg
G(x,?t;xprimeprime,?tprimeprime)?G(x,t;x
prime,tprime)
?t ?G(x,t;x
prime,tprime)?G(x,?t;xprimeprime,?tprimeprime)
?t
bracketrightbigg∞
0
dx
?
integraldisplay ∞
0
bracketleftbigg
G(x,?t;xprimeprime,?tprimeprime)?G(x,t;x
prime,tprime)
?x ?G(x,t;x
prime,tprime)?G(x,?t;xprimeprime,?tprimeprime)
?x
bracketrightbiggl
0
dt,
a146a147a26a135a29a148a27a60a61a89a65a66a60a61a23a38a10a149a78a23a150a151a29
a143
a137a150 a23a80a10a36a152a78a18 Green
a43a44a50a55a56
a142a29a95a96a97a153a47
a56
a142a29a154a155a97a23
G(xprimeprime,tprimeprime;xprime,tprime) = G(xprime,?tprime;xprimeprime,?tprimeprime),
a156a157
a105xprimeprime a89tprimeprime a158a159a160xa89ta23
G(x,t;xprime,tprime) = G(xprime,?tprime;x,?t).
a50
a63a94a135a161a162a163a23
a105ta89tprime a95a164a165a166a47a78a79a29a167a168a23a169a170a85a171a18a47a56
a29a172a173
a59a174a175a176
a23a177a178a36a179
a26a180
a51
a75a181a182a29
a92
a109a17
Wu Chong-shi
a183a184a185a186 Green
a112a113(a184) a1143a115
a187 Green
a116a117a188a189a190a191a192 f(x,t), μ(t), ν(t) a193φ(x), ψ(x)
a194a195a196a197a198
a118
a196 u(x,t)
a199a200a201a202
a15
a81
a23
a105
a20a35a30a31a163a29a203
a176a204
a158a159a160xprime a89tprime a23
?2u(xprime,tprime)
?tprime2 ?a
2?
2u(xprime,tprime)
?xprime2 = f(x
prime,tprime), 0 <xprime <l, tprime > 0,
u(xprime,tprime)vextendsinglevextendsinglexprime=0 = μ(tprime), u(xprime,tprime)vextendsinglevextendsinglexprime=l = ν(tprime), tprime > 0,
u(xprime,tprime)vextendsinglevextendsingletprime=0 = φ(xprime), ?u(x
prime,tprime)
?tprime
vextendsinglevextendsingle
vextendsingle
tprime=0
= ψ(xprime), 0 <xprime <l.
a133
a159
a78 Green
a43a44
a29a20a35a30a31
bracketleftBigg
?2
?(?tprime)2 ?a
2 ?2
?xprime2
bracketrightBigg
G(xprime,?tprime;x,?t) = δ(x?xprime)δ(t?tprime), 0 <x,xprime <l, t,tprime > 0,
G(xprime,?tprime;x,?t)vextendsinglevextendsinglexprime=0 = 0, G(xprime,?tprime;x,?t)vextendsinglevextendsinglexprime=l = 0, t,tprime > 0,
G(xprime,?tprime;x,?t)vextendsinglevextendsingle?tprime<?t = 0, ?G(x
prime,?tprime;x,?t)
?t
vextendsinglevextendsingle
vextendsingle
?tprime<?t
= 0, 0 <x,xprime <l.
a205
a101Green
a43a44
a29a95a96a97a153a154a155a97a135a161a23a206a38a10
a158a159a160bracketleftbigg
?2
?tprime2 ?a
2 ?2
?xprime2
bracketrightbigg
G(x,t;xprime,tprime) = δ(x?xprime)δ(t?tprime), 0 <x,xprime <l, t,tprime > 0,
G(x,t;xprime,tprime)vextendsinglevextendsinglexprime=0 = 0, G(x,t;xprime,tprime)vextendsinglevextendsinglexprime=l = 0, t,tprime > 0,
G(x,t;xprime,tprime)vextendsinglevextendsingletprime>t = 0, ?G(x,t;x
prime,tprime)
?t
vextendsinglevextendsingle
vextendsingle
tprime>t
= 0, 0 <x,xprime <l.
a105a136
a94a13a14a137a138a139a10G(x,t;xprime,tprime)a89u(xprime,tprime)a23a41a140a23a133
a143
a137a23
integraldisplay l
0
dxprime
integraldisplay ∞
0
G(x,t;xprime,tprime)f(xprime,tprime)dtprime ?u(x,t)
=
integraldisplay l
0
dxprime
integraldisplay ∞
0
bracketleftbigg
G(x,t;xprime,tprime)?
2u(xprime,tprime)
?tprime2 ?u(x
prime,tprime)?2G(x,t;xprime,tprime)
?tprime2
bracketrightbigg
dtprime
?a2
integraldisplay ∞
0
dtprime
integraldisplay l
0
bracketleftbigg
G(x,t;xprime,tprime)?
2u(xprime,tprime)
?xprime2 ?u(x
prime,tprime)?2G(x,t;xprime,tprime)
?xprime2
bracketrightbigg
dxprime.
a146a147a148a27a60a61a89a65a66a60a61a23a36a38a10a207a208a15
u(x,t) =
integraldisplay l
0
dxprime
integraldisplay ∞
0
G(x,t;xprime,tprime)f(xprime,tprime)dtprime ?
integraldisplay l
0
bracketleftbigg
G(x,t;xprime,tprime)?u(x
prime,tprime)
?tprime ?u(x
prime,tprime)?G(x,t;xprime,tprime)
?tprime
bracketrightbigg∞
0
dxprime
+ a2
integraldisplay ∞
0
bracketleftbigg
G(x,t;xprime,tprime)?u(x
prime,tprime)
?xprime ?u(x
prime,tprime)?G(x,t;xprime,tprime)
?xprime
bracketrightbiggl
0
dtprime
=
integraldisplay l
0
dxprime
integraldisplay t
0
G(x,t;xprime,tprime)f(xprime,tprime)dtprime ?
integraldisplay l
0
bracketleftbigg
G(x,t;xprime,0)ψ(xprime)?φ(xprime) ?G(x,t;x
prime,tprime)
?tprime
vextendsinglevextendsingle
vextendsinglevextendsingle
tprime=0
bracketrightbigg
dxprime
? a2
integraldisplay t
0
bracketleftbigg
ν(tprime) ?G(x,t;x
prime,tprime)
?xprime
vextendsinglevextendsingle
vextendsinglevextendsingle
xprime=l
?μ(tprime) ?G(x,t;x
prime,tprime)
?xprime
vextendsinglevextendsingle
vextendsinglevextendsingle
xprime=0
bracketrightbigg
dtprime.
Wu Chong-shi
§30.1 a110a111 Greena112a113 a1144a115
a209
a201Green a116a117a118a210a211a212a213
bracketleftBig ?2
?t2 ?a
2 ?2
?x2
bracketrightBig
G(x,t; xprime,tprime) = δ(x?xprime)δ(t?tprime), 0 <x,xprime <l, t,tprime > 0,
G(x,t;xprime,tprime)vextendsinglevextendsinglex=0 = 0, G(x,t;xprime,tprime)vextendsinglevextendsinglex=l = 0, t,tprime > 0,
G(x,t;xprime,tprime)vextendsinglevextendsinglet<tprime = 0, ?G(x,t;x
prime,tprime)
?t
vextendsinglevextendsingle
vextendsingle
t<tprime
= 0, 0 <x,xprime <l
a214a41a42
a58a59
a30a31a29a215a216
a43a44a217a218
a23
G(x,t;xprime,tprime) =
∞summationdisplay
n=1
Tn(t)sin npil x,
a219a47a23
a105δa43a44
a206a214a45a220a215a216
a43a44a217a218
a23
δ(x?xprime) = 2l
∞summationdisplay
n=1
sin npil xprime sin npil x,
a51
a37a23T
n(t)
a36a221a222a223a224a137a13a14a29a65a225a30a31
Tprimeprime(t) +
parenleftBignpia
l
parenrightBig2
Tn(t) = 2l sin npil xprimeδ(t?tprime),
Tn(t<tprime) = 0, Tprimen(t<tprime) = 0.
a35a226a144a145
Tn(t) = 2npia sin npil xprime sin npil a(t?tprime)η(t?tprime).
a80a10a23 Green
a43a44G(x,t;xprime,tprime)a36a37
G(x,t;xprime,tprime) = 2pia
∞summationdisplay
n=1
1
n sin
npi
l x
prime sin npi
l x sin
npi
l a(t?t
prime)η(t?tprime).
Wu Chong-shi
a183a184a185a186 Green
a112a113(a184) a1145a115
a133a24a25a33a94a93a227
a55a56
a29a16a228a17a63a47a29 Green
a43a44G(r,t;rprime,tprime)a221a222a20a35a30a31bracketleftBig
?2
?t2 ?a
2?2
bracketrightBig
G(r,t;rprime,tprime) = δ(r ?rprime)δ(t?tprime), t,tprime > 0,
G(r,t;rprime,tprime)vextendsinglevextendsinglet<tprime = 0, ?G(r,t;r
prime,tprime)
?t
vextendsinglevextendsingle
vextendsinglevextendsingle
t<tprime
= 0.
a229Fourier
a176
a164
g(r,ω;rprime,tprime) = 1√2pi
integraldisplay ∞
?∞
G(r,t;rprime,tprime)eiωt dt,
a51
a37a36
a105
a20a35a30a31a207a15
bracketleftBig
(?iω)2 ?a2?2
bracketrightBig
g(r,ω;rprime,tprime) = 1√2pi eiωtprime δ(r ?rprime)
a144
bracketleftBig
?2 +
parenleftBigω
a
parenrightBig2 bracketrightBig
g(r,ω;rprime,tprime) = ? 1√2pia2 eiωtprime δ(r ?rprime),
a230a23127.2
a232
a29a233a181a23a38a10a145a234
g(r,ω;rprime,tprime) = 1√2pia2 eiωtprime 14pi|r ?rprime|ei(ω/a)|r?rprime|.
a229a235
a176
a164a23a36a26
G(r,t;rprime,tprime) = 1√2pi
integraldisplay ∞
?∞
g(r,ω;rprime,tprime)e?iωtdω
= 14pia2 1|r ?rprime| 12pi
integraldisplay ∞
?∞
e?iω(t?tprime) · ei(ω/a)|r?rprime|dω
= 14pia2 1|r ?rprime|δ
parenleftbigg|r ?rprime|
a ?(t?t
prime)
parenrightbigg
= 14pia 1|r ?rprime|δ(|r ?rprime|?a(t?tprime)).
a67a68a69a70a71a236a19a74 tprime a47a53
a50rprime a237a238a239a29a240a168a23ta47a53a33a20a234a241a242 rprime a54
a15a(t?tprime)a29a243a244a142a17
a230a231a63a94 Green
a43a44
a23a83a84a36a38a10a145a234a93a227a245a27
a55a56
a163a11a12a13a14a29a65a225a30a31
?2u(r,t)
?t2 ?a
2?2u(r,t) = f(r,t), t> 0,
u(r,t)vextendsinglevextendsinglet=0 = φ(r), ?u(r,t)?t
vextendsinglevextendsingle
vextendsingle
t=0
= ψ(r)
a29a35a23
u(r,t) = 14pia2
integraldisplayintegraldisplayintegraldisplay
|rprime?r|<at
f(rprime,t?|rprime ?r|/a)
|rprime ?r| dr
prime
+ 14pia
bracketleftBiggintegraldisplayintegraldisplay
Σprime
ψ(rprime)
|rprime ?r|dΣ
prime + ?
?t
integraldisplayintegraldisplay
Σprime
φ(rprime)
|rprime ?r|dΣ
prime
bracketrightBigg
,
a246a163Σprime a37a10r
a54
a15a243a247a248ata15a249a250a29a243a244 |rprime ?r| = ata17