Wu Chong-shi
a0a1a2a3a4 a5a6a7a8a9 (
a10) a111a12
a13a14a15a16a17 a18a19a20a21a22 (
a23)
§32.1 a24a25a26a27a28a29a30
a31a32a33a34a35a36a37a38a39a40a41a42a43a44a45
? a46a47a48
a37a38a39 f(x, y)
a49a50a51
a41a42a40a52a53a54a55a56
df = ?f?xdx + ?f?ydy = 0.
a57a58dx, dy
a59a60a49a61a62a48
a37a38a39 f(x, y)
a51
a41a42a40a52a53a54a55a63a64
a62a65a66
?f
?x = 0,
?f
?y = 0.
? a67a47a68
a34a69
a48
a37a38a39a40a41a42a43a44
a49a48
a37a38a39a40a54a55a41a42a43a44
a49a70a71a72a73
a54a55
g(x, y) = C
a35a74f(x, y)a40a41a42a45a75a76
a49a71a77a78a79a49
a64
a62a80a72a73
a54a55a81a82y = h(x)
a49a83a84a85a86f(x, y) a87
a40y a45a75a88
a49a79a89
a54a55a41a42a43a44a90a91a92a58a34a37a38a39 f(x, h(x))a40a93a94a41a42a43a44
a49a50a51
a41a42a40
a52a53a54a55a90a56
?f
?x +
?f
?yh
prime(x) = 0.
? a95a96
a75a97a98a99
a67a47a68
a34a100a101a81a45a57a58
a79a102a103a104a105
a53a106a107a108a109 y = h(x)a40a110a111a112
a49
a113a114
a105
a53a108
a109
dy
dx ≡ h
prime(x).
a75a88
a49a115a116a104
a52 (
a71a117
a36a39a118a119a35a120
a104
a64a121) a74a82y = h(x)
a49
a90a64
a62a122a123a95a72a73
a54a55a124a125
?g
?xdx +
?g
?ydy = 0,
a126a113a74a82
dy
dx = ?
?g/?x
?g/?y,
a96
a56
a70
a64a127
a79a89a48
a37a38a39
a51
a41a42a40a52a53a54a55
a65a66
?f
?x ?
?f
?y
?g/?x
?g/?y = 0.
a128a129a130a131a132
a49a133a134a135a136a137a138a139a140a141a142a143a144
a145a146a130
a142a147a148a149
a130a150a151
a45
a152a153
a49
a154a155
a144
a145
a146
a149a156
a130a157
a142a49a158a159a160a161a162a163a162a164a165
a45
Wu Chong-shi
§32.1 a166a167a168a169a170a171a172 a112a12
? a71a173a174a87a49a175a176a174 Lagrange a177a178a179a180a181
a101a36a37a38a39a40a54a55a41a42a43a44a45
a182a183
a49a95a96a79a102
a40
a71a72a73
a54a55
g(x, y) = C
a35a74a38a39f(x, y)a40a41a42a43a44
a49
a90a64
a62a184a185 Lagrangea186a187λa49
a113a188a189a34a97a190a40
a48
a37a38a39a191
h(x, y) = f(x, y)?λg(x, y).
a192a127 x
a193 y a194a66
a56a195a97a196a197a198a199
a49
a75a88
a49
a75a97
a48
a37a38a39
a51
a41a42a40a52a53a54a55a90a56 (
a200a201a194
a82
a49a85a86
λa49
a75a90a121a92a58
a79a102a202
a82a40a52a53a54a55)
?(f ?λg)
?x = 0,
?(f ?λg)
?y = 0.
a80a203
a64
a62
a74a82
x = x(λ), y = y(λ),
a204a32a205
a72a73
a54a55
a87a49
a188a82 Lagrange
a186a187λa40a39a42a49a90a64a62a74a82a64a121a40a41a42a206 (x, y)a45
a207a208a153
a141a142a143a144
a145a146a130
a142a147a148a149a49a160a209a210a211a212a213a214a215
a45
a207a208a216a217
a142a143a218a219a220a221a49a160a161a222
a223a224a225
a142a143Lagrangea226a227a228a209
a45
a229
a71
a32a205a230a38a40a54a55a41a42a43a44a45
a183a99a53a74a230a38
J[y] =
integraldisplay x1
x0
F(x, y, yprime)dx
a71a231a232
a54a55
y(x0) = a, y(x1) = b
a62a233a72a73
a54a55
J1[y] ≡
integraldisplay x1
x0
G(x, y, yprime)dx = C
a35a40a41a42
a49a78
a64a188a189
J0[y] = J[y]?λJ1[y],
a192a127δy
a194a66
a56a196a197a40
a49a78
a230a38 J
0[y]a71a231a232
a54a55a35
a51
a41a42a40a52a53a54a55a90a56
parenleftBig ?
?y ?
d
dx
?
?yprime
parenrightBig
(F ?λG) = 0.
a80a203
a124a125a234a235a236
a231a232
a54a55
a62a233a72a73
a54a55
a49
a52a53a76a237a238a239a240
a49
a90a64
a62
a74a82Lagrange
a186a187
a40a42λ = λ
0
a236
a41a42a38a39y = y(x, λ
0)a49a62a233a241a242
a40a230a38 J
0[y]
a40a54a55a41a42a45
a243 32.1 a74a230a38
I[y] =
integraldisplay 1
0
xyprime2 dx
a191 a244a245a246a247a248a249a250a251a252a253a248 Lagrange
a254a255a0a1a2
a245a3a4a5a6a7
Wu Chong-shi
a0a1a2a3a4 a5a6a7a8a9 (
a10) a113a12
a71a231a232
a54a55
y(0)a47a232, y(1) = 0
a193a72a73
a54a55
integraldisplay 1
0
xy2 dx = 1
a35a40a41a42a8a9a45
a10 a11
a174a79a102a12a89
a40 Lagrange
a186a187a13a49
a64
a62a14
a205a52a53a54a55
parenleftBig ?
?y ?
d
dx
?
?yprime
parenrightBigparenleftbig
xyprime2 ?λxy2parenrightbig = 0,
a70
d
dx
parenleftbigg
xdydx
parenrightbigg
+ λxy = 0. (#)
a203
a234a235
a233a15a16
a40
a231a232
a54a55
a70a17a66
a34a97a18a19a42a43a44
a49a50
a40a18a19a42
λi = μ2i, μi a56a20a21a22a23a24a38a39 J0(x)a40a25ia97a107a20a206a49i = 1,2,3,···
a107a26a90a56Lagrange
a186a187a49
a113a41a42a38a39a90a56
a241a242
a40a18a19a38a39
yi(x) = C J0 (μix).
a176
a199C a64
a62a80a72a73
a54a55a188a82a45a57a58
C2
integraldisplay 1
0
xJ20(μix)dx = C
2
2 J
2
1(μi) = 1,
a61a62
C =
√2
J1(μi).
a75a88
a49
a90a74a82a27a41a42a38a39
yi(x) =
√2
J1(μi)J0(μix).
a80a96Lagrangea186a187
a40
a184a185a49a71 Euler–Lagrangea234a235a82a229a27a28a188a29a199a49a193a15a16a231a232
a54a55a30a31
a71
a34a32
a49
a90
a17a66
a18a19a42a43a44a45a113a33a58a18a19a42a43a44
a49a50
a40a81
a49
a18a19a42
a193
a18a19a38a39
a49a47a34a35
a36a97a45a75a36
a47
a195a97a43a44
a105
a53a37a38a45
star a25a34a97a43a44a49
a75
a34a35
a36a97a18a19a38a39a39a56a41a42a38a39a45
a75a64
a62
a126a35
a102
a40a198a125a40a41
a194
a82a45
a80a231a232
a54a55
a62a233a80a203a42a14
a40
δy
vextendsinglevextendsingle
vextendsingle
x=0
a47a232, δy
vextendsinglevextendsingle
vextendsingle
x=1
= 0.
a64
a62
a74a82I[y]a40a34a43a198a125
δI[y] = 2
integraldisplay 1
0
xyprime (δy)prime dx,
a185
a113a64
a62
a74a82 I[y]a40
a48
a43a198a125
δ2I[y] = 2
integraldisplay 1
0
xparenleftbigδyprimeparenrightbig2 dx > 0.
Wu Chong-shi
§32.1 a166a167a168a169a170a171a172 a114a12
a57a58a230a38I[y]a40
a48
a43a198a125a44
a51
a107a42
a49a61a62
a75a45a41a42a38a39a46a47a230a38
a51
a41a48a45
star a25a48a97a43a44a56a49a75a34a35a97a18a19a42a107a26a120a90a56a230a38a40a41a42a45a75a56a57a58a49a127a234a235 (#)a186a62
a41
a42a38a39y(x)
a49a49a50
a125
a49
a90
a47
λ
integraldisplay 1
0
xy2 dx = ?
integraldisplay 1
0
yparenleftbigxyprimeparenrightbigprime dx = ?y·xyprime
vextendsinglevextendsingle
vextendsingle
1
0
+
integraldisplay 1
0
xyprime2 dx
=
integraldisplay 1
0
xyprime2 dx,
a51a52
a72a73
a54a55
a49
a90a121
a14
a205
λ =
integraldisplay 1
0
xyprime2 dx.
a53a54
a49
a55a56a57
a140a49
a58a59a60a61
a148
a130
a220a221a62a63a64
a65a130a66a67
a49a209a210
a68a69
a140a70
a71a72a73a74a75a76a59a77a78
a129a79a80
a62a81a82
a130a66a83a84a85
a64
a65a45a86a87
a49
a61
a148
a130
a220a221a62a63a64
a65
a49
a88a89a90a91a75
a64
a65(Isoperimetric
problem)a45
Wu Chong-shi
a0a1a2a3a4 a5a6a7a8a9 (
a10) a115a12
§32.2 a92a93a94a95a96a97a98a99a100a101a102a30a98a99a26a103a93a104a105
a61
a148
a80
a62a63
a130a106a56
a220a221
a130a107a108a151
a159(Euler–Lagrangea109a110)a153a88a107a108a109a110a111a112
a107a108
a109a110a49
a113a114a145a146
a148a149
a130a77a115
a220a221a116
a72a117
a163a49a161a118a119
a88
a107a108
a109a110a111a112
a107a108
a109a110
a130a77a115
a64
a65a120
a121a122a61
a148
a130
a220a221a62a63a64
a65
a49a123
a106a56
a220a221a124a125a126a127
a77a128a146 (Lagrange
a226a227) a49
a113a114a129a130a131
a132
a220a221a116
a72a117
a163a49a161a118a119
a107a108
a109a110a133a134a63a64
a65a45
a58a59a135a136a137a138a113a130a139
a64
a65a140a207a85a136a107a108
a109a110
a130a77a115
a64
a65
a111a133a134a63a64
a65a141a142a90a61
a148
a130
a62
a63a111a220a221a62a63a64
a65
a49a111a143a144a49
a207a85a136a107a108
a109a110
a130a77a115
a64
a65
a111a133a134a63a64
a65a145a145a108a146a147a148
a149a45
a243 32.2
a65
a82
a176
a124a125a234a235
a231
a42a43a44
d
dx
bracketleftbigg
p(x)dydx
bracketrightbigg
+ q(x)y(x) = f(x), x0 < x < x1, (#)
y(x0) = y0, y(x1) = y1 (maltesecross)
a40a230a38a119a112
a49a70a150
a82
a241a242
a40a230a38
a49a50a71a231a232
a54a55 (maltesecross)a35
a51
a41a42a40a52a53a54a55
a70
a58 (#)a45
a10 a151
a83
a230a38a41a42a52a53a54a55a40a124a125a119a112a90a56a234a235 (#)
a49a152a153a49
a75a97a234a235a34a188
a180a154integraldisplay
x1
x0
braceleftbigg d
dx
bracketleftbigg
p(x)dydx
bracketrightbigg
+ q(x)y(x)?f(x)
bracerightbigg
δy(x)dx = 0.
a229
a71
a40a43a44a90a56a53a155
a79
a112a156a157a92
a66a158
a34
a50
a125a40a198a125
a49
a75
a95a96a159a50
a125a160
a50
a38a39a40a25
a48
a236a161a162a56a163
a200
a201a173
a229a40
a49 integraldisplay
x1
x0
q(x)y(x)δy(x)dx =12δ
integraldisplay x1
x0
q(x)y2(x)dx,
integraldisplay x1
x0
f(x)δy(x)dx =δ
integraldisplay x1
x0
f(x)y(x)dx.
a164a165
a148a149q(x)a114f(x)a153a166y(x)a130a145a108a167a168a130a49
a86a87
a49
a169a145
a108a170a171
a124a49
a113a172a173a153a88a146a45
a95a96
a160
a50
a38a39
a87
a40a25a34a162
a49
a64
a62
a125a174
a50
a125
a49integraldisplay
x1
x0
d
dx
bracketleftbigg
p(x)dydx
bracketrightbigg
δy(x)dx = p(x)dydxδy(x)
vextendsinglevextendsingle
vextendsinglevextendsingle
x1
x0
?
integraldisplay x1
x0
p(x)dydx d(δy)dx dx
=?
integraldisplay x1
x0
p(x)dydxδ
parenleftbiggdy
dx
parenrightbigg
dx
=? 12δ
integraldisplay x1
x0
p(x)
parenleftbiggdy
dx
parenrightbigg2
dx,
a175
a87a174
a205a27 δy(x)vextendsinglevextendsingle
x0 = δy(x)
vextendsinglevextendsingle
x1 = 0
a45a155
a79a102
a40a98a99a176a31a32
a180a49
a90
a14
a205
integraldisplay x1
x0
braceleftbigg d
dx
bracketleftbigg
p(x)dydx
bracketrightbigg
+ q(x)y(x) ?f(x)
bracerightbigg
δy(x)dx
= ?δ
integraldisplay x1
x0
braceleftBigg
1
2
bracketleftBigg
p(x)
parenleftbiggdy
dx
parenrightbigg2
?q(x)y2(x)
bracketrightBigg
+ f(x)y(x)
bracerightBigg
dx
Wu Chong-shi
§32.2 a177
a6a178a179a180a181a182a183a184a185a186
a172
a182a183
a168
a5a6a187a188
a116a12
= 0.
a75a90a189a190
a49
a234a235 (#)a34a188a90a56a230a38
J[y] =
integraldisplay x1
x0
braceleftBigg
1
2
bracketleftBigg
p(x)
parenleftbiggdy
dx
parenrightbigg2
?q(x)y2(x)
bracketrightBigg
+ f(x)y(x)
bracerightBigg
dx
a51
a41a42a40a52a53a54a55a45
a243 32.3
a65
a82a191a124a125a234a235a188a81a43a44
?2u(r) + k2u(r) = ?ρ(r), r ∈ V,
u(r)vextendsinglevextendsingleΣ = f(Σ)
a40a198a125a119a112a45
a10 a64
a62a192a193a194a195
a182 32.2a40a196
a13a49a197a198a50
a125
integraldisplayintegraldisplayintegraldisplay
V
bracketleftbig?2u + k2u + ρ(r)bracketrightbigδudr,
a95a96
a160
a50
a38a39
a87
a40
a84
a195a162
a49a47 integraldisplayintegraldisplayintegraldisplay
V
k2uδudr = 12δ
integraldisplayintegraldisplayintegraldisplay
V
k2u2dr,
integraldisplayintegraldisplayintegraldisplay
V
ρ(r)δudr =δ
integraldisplayintegraldisplayintegraldisplay
V
ρ(r)udr.
a95a96
a160
a50
a38a39
a87
a40a25a34a162
a49a78a105
a53
a242a174 Greena25a34a199a112a62a233a231a232
a54a55 δu(r)vextendsinglevextendsingle
Σ = 0a49integraldisplayintegraldisplayintegraldisplay
V
?2uδudr =
integraldisplayintegraldisplay
Σ
δu?u·dΣ ?
integraldisplayintegraldisplayintegraldisplay
V
?u·?parenleftbigδuparenrightbigdr
= ?12δ
integraldisplayintegraldisplayintegraldisplay
V
parenleftbig?uparenrightbig2dr.
a57
a203a49a77
a234a235a90a91a92a58
δ
integraldisplayintegraldisplayintegraldisplay
V
braceleftbigg1
2
bracketleftbigparenleftbig?uparenrightbig2 ?k2u2bracketrightbig?ρubracerightbiggdr = 0.
a75a189a190
a49a77a180
a40a188a81a43a44a90a200a201
a96a71a231a232
a54a55
u(r)vextendsinglevextendsingleΣ = f(Σ)
a35a74a230a38
integraldisplayintegraldisplayintegraldisplay
V
braceleftbigg1
2
bracketleftbigparenleftbig?uparenrightbig2 ?k2u2bracketrightbig?ρubracerightbiggdr
a40a41a42a43a44a45
a243 32.4
a65
a82a191a124a125a234a235a40a18a19a42a43a44
?2u(r) + λu(r) = 0, r ∈ V
Wu Chong-shi
a0a1a2a3a4 a5a6a7a8a9 (
a10) a117a12
u(r)vextendsinglevextendsingleΣ = 0
a40a198a125a119a112a45
a10 a202a31
a49
a64
a62
a127a18a43a44
a194a66
a56a182 32.3a40a203a204a118a119a45a57
a203a49a203
a18a19a42a43a44a90a200a201
a96
a230a38
J[u] =
integraldisplayintegraldisplayintegraldisplay
V
braceleftBigbracketleftbig
?u(r)bracketrightbig2 ?λbracketleftbigu(r)bracketrightbig2
bracerightBig
dr
a71a15a16a231a232
a54a55
u(r)vextendsinglevextendsingleΣ = 0
a35a40a41a42a43a44a45
a175a185
a34a205
a49
a155a18a19a42 λ
a194a66
a56Lagrange
a186a187a49a152a153a49
a75a97a230a38a41a42a43a44a63a200a201
a96
a230a38
J[u] =
integraldisplayintegraldisplayintegraldisplay
V
bracketleftbig?u(r)bracketrightbig2 dr
a71a79a89a15a16a231a232
a54a55
a193a72a73
a54a55 (a18a19a38a39a40a206a34a92a54a55)
J1[u] ≡
integraldisplayintegraldisplayintegraldisplay
V
bracketleftbigu(r)bracketrightbig2 dr = 1
a35a40a54a55a41a42a43a44a45
a104a207
a101a81
a49
a75a45a18a19a38a39a107a26a90a56a230a38a40a41a42a38a39
a49
a113a18a19a42a107a26a56a230a38a40a41a42a45
a80a96
a230a38
J[u]a40a48
a43a198a125
δ2J[u] = 2
integraldisplayintegraldisplayintegraldisplay
V
bracketleftbig?parenleftbigδu(r)parenrightbigbracketrightbig2 dr
a44a58a107
a49a61a62a49
a230a38a40a41a42a56a41a48a42a45a75a45a41a48a42
a87
a40a208a48a209
a49a210a83
a90a56a18a19a42a43a44a40a208a48a18a19
a42a45
Wu Chong-shi
§32.3 Rayleigh–Ritza178a7 a118a12
§32.3 Rayleigh–Ritz a94a211
? a198a125a13a71a212a101a213a87a40a242a174a49a64a62a125a58a195a97a214a53a40a234a102a45
? a34a100a242a174
a56a33a58a215a18
a212
a101a216a217a40a110
a89a218a219
a45
– a64a62a174Hamiltona77
a101a220a175a221a69a222a40
a218a219a12a89a223
a213a224a225 (
a226
a206a236
a226
a206a30 ······)a40a227a228
a49
– a64a62a174Fermata77
a101
a12a89a229
a9
a71a230a226a87
a40a231a232
a49a233a234a71a232a102a79
a40a235a236
a193a237
a236
a49
– a120a64a62a174a198a125a40a218a219a12a89a238a239a240a241a116a124a242a243a187a40a227a228a49a200a200a45
a71a212
a101a213a40a75a45a125a244
a87a49
a244a245
a212a226
a227a228a40a246a100a203a188a119a112a40a215a18a216a217
a49a34
a34a182a247a248a39a64
a62
a110
a89
a58a246
a154
a40a230a38a41a42a43a44a45
a198a125
a13
a40a75a100
a242a174a49
a249
a47a250
a53a40a101a38
a60
a189a45
a50
a64
a62
a47a251a252
a175
a225a34a248a27a81
a212a226a253a232
a40a227a228
a49
a64
a62
a47a251a252
a175
a234a254a248a126a255a108a40
a212
a101a0a1a2a190a40a0a1a3a4a45
? a198a125a13a40a25a48a100a242a174a78a56a5a229a82a50a40a173a174a201a42a140a50a58a74a81a249a5a40a212a101a43a44a6a7a27a34a100a190a40a8
a9a10a11a45
a12a13a251a252a14a76a192
a83
a56a15a16
a96
a47
a174
a124a125a234a235
a86a12a65
a75a45
a212
a101a43a44
a49
a17a18a19a114
a47a20
a39a40a43a44a21a121
a22a23a24a25a26a27a28a29a30a31a32a33a34a35a36a36a37a38a39a40a41a42a25a43a27a44a45a46a30a47a48a49a26a50a51a52a53a54a31a55
a30a41a42a25a46a43
a56a57a58a59a60a59a61a30a62a63a64a33a34
LX = λρX,
α1X(a) + β1Xprime(a) = 0,
α2X(b) + β2Xprime(b) = 0.
a24a25a30a65a66a67a68a69a70a71 (
a72
a58a73a74a75a29a30)
a76a77
a45a78a79a30a80a25a26a81a82a83a84a85a86a87a88a26a74a71a62a63a64a89
a62a63a90a29a43a58a91a92a93a38a94a59a92a93a38a68
a76a77
a45a78a79a54a95a96a24a25a97a98a59a92a93a38a68a99a100a101a55
a76a77
a45a78a79
a102a29a25a46a26a103a38a24a71
a76a77
a45a78a79a30a25a43a59a61a104a105a26a106a53a107a29a108a109a110a111a30a90a29a112a26a54a113a114a115a38a39a40
a62a63a64a30a116a23a117a118a119a43a120a121a122
Xprimeprime(x) + λX(x) = 0
a123a124a125a126a127a30a78a79a26a58a110a128a30a91a60a129a130a131a132a25 sin√λxa89cos√λxa26a27a59a61a30a133a134a135a85a86a87a88a136a26
a137a131a46a70a71a62a63a64a30a138a139a117a118a119a43a140a141a26a142a143a59a61a30a62a63a64a33a34a26a123a144a30a145a113a50a93a146a147a128a53a43a44
a45a46a50a148a149a150a151a152a53a24a25a62a63a64a30a41a42a78a46a43
? a55Rayleigh–Ritza78a46a41a42a24a25a62a63a64a33a34a30a47a62a153a154a68a94
Wu Chong-shi
a155a156a157a158a159 a160a161a162a163a164 (
a165) a1669a167
– a168
a69a169a62a63a64a33a34a170a171a148a172a90a30a87a88a173a64a33a34a26
– a81a82a27a59a74a30a90a29a174a175a35a24a25a26a176a147a169a33a34a177a170a171a90a29a30a87a88a173a64a33a34a43
? a37a101a178a179a30a90a29a174a175(a142a143a180a62a63a64a33a34)a68a181a182a30a26a183a184a49a67a93a185a186a187a188a23a189a190a41a62a63a64a30
a188a23a64a43
? a191
a31a55a30a192a193a194a26a50a68a101a178a179a59a60 a195a196a197a30a90a29a174a175 (a31a32a49a68a59a60a90a29a198a199) a26a59a78a200a201a143
a202a203a26a59a78a200a177a38a187a186a187a204a189a205a186a187a188a23a189a24a39a62a63a64a30a41a42a64a43
? a123a50a101a24a90a29a198a199a206a58a62a63a90a29a207a101a24a30a208a101a47a62a209a63a26a101a24a149a150a210a69a191a211a212
a49a89a29a213a49a142
a143a62a63a90a29a30a130a214a215a71a116a23a30a216a217a43
a218 32.5 a24a62a63a64a33a34
1
x
d
dx
parenleftbigg
xdydx
parenrightbigg
+ λy(x) = 0,
y(0)a58a86, y(1) = 0
a30a125a219a62a63a64a43
a220 a123a60a62a63a64a33a34a27 32.1
a221
a30a22232.1 a35a108a109a223a224a225a43a226a227a223a224a30a68a172a90
I[y] =
integraldisplay 1
0
xyprime2 dx
a27a85a86a87a88
y(0)a58a86, y(1) = 0
a89a228a229a87a88
I1[y] ≡
integraldisplay 1
0
xy2 dx = 1
a136a30a87a88a173a64a33a34a26a230a30 Euler–Lagrangea78a79a50a68
1
x
d
dx
parenleftbigg
xdydx
parenrightbigg
+ λy(x) = 0.
a231a27a55Rayleigh–Ritza78a46a105a41a42a24a25a123a60a172a90a30a87a88a173a64a33a34a43
a210a69a26a149a150a142a143a62a63a90a29a30a53a25a68a26a230a106a53a232a233a234a186a85a86a87a88a235a112a26a99a236a237a206a58a238a239a130(a148a240
a141a241)a43a176a180a26a93a55a28a242a119a198a199
yn(x) =α1parenleftbig1?x2parenrightbig+ α2parenleftbig1?x2parenrightbig2 + α3parenleftbig1?x2parenrightbig3
+ ···+ αnparenleftbig1?x2parenrightbign, n = 1,2,3,···
a243a190a41a62a63a90a29a43
a168
a69a244a41a42a30a62a63a90a29y
2(x)
a26a120a27a49a119a35a244a245a91a242a26a83a84a172a90a246a228a229a87a88a26a39
I[y2] =
integraldisplay 1
0
xyprime22 dx=α21 + 43α1α2 + 23α22,
Wu Chong-shi
§32.3 Rayleigh–Ritza247
a162
a16610a167
I1[y2] =
integraldisplay 1
0
xy22 dx = 16α21 + 14α1α2 + 110α22 = 1.
a123a93a185a194a248a68 α
1
a89α
2
a30a249a250a90a29a30a87a88a173a64a33a34a26a232a101a87a88a68
?(I ?λI1)
?α1 = 2α1 +
4
3α2 ?λ
parenleftBig1
3α1 +
1
4α2
parenrightBig
=0,
?(I ?λI1)
?α2 =
4
3α2 +
4
3α1 ?λ
parenleftBig1
5α2 +
1
4α1
parenrightBig
=0.
a123a177a68a132a143 α
1
a89α
2
a30a83a29a78a79a251a26a58a252a253a25a30a254a45a232a101a87a88a68
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle
2? λ3 43 ? λ4
4
3 ?
λ
4
4
3 ?
λ
5
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle
= 0,
a120
3λ2 ?128λ+ 640 = 0.
a25a235a39
λ = 643 ± 83√34.
a123a91a60a255a71a30a0a68 λa30a173a219a64a43
a1 32.1
a2 32.2 a3a4a5
a6a7a8a9
a26a10a11a12a13a11a14a15a16a17a18a10a11a12a19a20a14a43
a123a144a39a40a30a226a81a37a68a62a63a64a33a34a30a125a219a62a63a64a30a41a42a64
ˉλ1 = 5.7841···,
a230a89a188a21a64
λ1 = (2.4048···)2 = 5.7831···
a30a22a142a23a24a25a40 2×10?4 a43a22a236a189a26a62a63a90a29a30a41a42a25a68
ˉy1(x) =α1parenleftbig1?x2parenrightbig+ α2parenleftbig1?x2parenrightbig2,
α1 =2
radicalBig
12?33
radicalbig
2/17 = 1.6505676···,
α2 =
radicalBig
80?230
radicalbig
2/17 = 1.0538742···.
a148a53a26a188a21a25
y1(x) =
√2
J1(μ1)J0 (μ1x)
a215a27a28a26a25a29a202a203
? =
integraldisplay 1
0
bracketleftbigy
1(x)? ˉy1(x)
bracketrightbig2xdx = 2?2integraldisplay 1
0
y1(x) ˉy1(x)xdx
=2
braceleftBigg
1?
bracketleftBig4√2α1
μ31 +
8√2α2
μ31
parenleftBig 8
μ21 ?1
parenrightBigbracketrightBigbracerightBigg
= 1.66×10?5.
Wu Chong-shi
a155a156a157a158a159 a160a161a162a163a164 (
a165) a16611a167
a30 32.1
a31a32a33a34a35a36a33a37a38
a39
a30 32.2
a31a32a33a34a35a36a33a37a40
a41a143a27a28a242a119a190a41a35a103a37a244a53a91a242a26a62a63a64a89a62a63a90a29a50a38a118a40a123a60a188a193a26a123a68a30a21a42a43a44a45a30a43
a41a180a93a185a194a71a26Rayleigh–Ritza78a46a30a21a25a46a148a59a92a196a30a41a42a78a46a43a93a185a146a122a26a47a48a244a30a242a29a49a28a26
a39a40a30a188a193a50a49a51a43
? a191
a49a200a30a202a203a93a185a194a71a26a27a236a55 Rayleigh–Ritz a78a46a227a26a37a38a24a39a125a52a30a53a60a62a63a64a30a41a42
a64a26a62a63a64a30a60a29a89a121a55a30a190a41a90a29a35a30a75a29a29a54a22a55a43
? a123a68a236a55Rayleigh–Ritza78a46a24a25a62a63a64a33a34a30a59a60a209a56a43a27a31a32a236a55a35a26a57a25a50a176a148Rayleigh–
Ritza78a46a37a38a24a39a58a58a60a62a63a64a147a59a52a230a30a31a55a60a64a26a176a148a58a25a107a33a34a37a100a101a24a71a125a219a30a61
a62a60a62a63a64a43
Wu Chong-shi
§32.3 Rayleigh–Ritza247
a162
a16612a167
a63a194a59a136a49a200a39a40a30a133a249a60a62a63a64
ˉλ2 = 36.883···,
a230a89a188a21a64
λ2 = 30.471···,
a235a175a30a23a24a64a65a225 20%
a66
a148a53a101a24a39a186a187a188a21a30a133a249a60a62a63a64a26a226a81a232a233a67a68a190a41a90a29a35a30a75
a29a26a123a226a81a232a233a185a181a248a69a70a67a71a30a202a203a72a148a83a60a43a27a31a55a35a26a49a196a30a73a46a68a24a25a59a60a74a30a172a90a87
a88a173a64a33a34a26a230a89a183a105a30a172a90a87a88a173a64a33a34a30a24a75a37a27a143a76a106a77a133a59a60a62a63a64a43a123a37a101a27a183a105a30
a172a90a87a88a173a64a33a34a35a63a78a68a49a59a60a79a80a87a88
integraldisplay 1
0
y(x) ˉy1(x)xdx = 0
a120a93a43a123a124a26a27a123a60a74a30a172a90a87a88a173a64a33a34a35a26a125a219a30a62a63a64a226a81a50a68a183a105a30a133a249a60a62a63a64a53a43