Wu Chong-shi
a0a1a2a3a4 a5a6a7a8
a9a10a11a12a13a14a15a16a17a18a12a19a20a21a22a23a24a25a26a27a28a29a30a15a31a32a33a34a35a36a11a12a13a14a15a16
a17a18a12a19a20a37
a38a34a21a30a15a31a32a39 Laplacea31a32a40 Fouriera31a32a41a24a37
§27.1 a42a43 Laplace a44a45a46a47a48a49a50a51a52a53a47a54a55
Laplace a31a32a56a34a35a11a12a57a58a59a21a13a14a15a16a17a18a12a19a20a37a31a32a60a27a61a31a62a21a63a64a65a66a67a68a69
a23a63a37a70a71a27a66a67a72xa40ta41a63a61a31a62a21a13a14a15a16a17a18a12a19a20a27a31a32a60a73a74a75a11a12a38a14a15a16a17 (a61
a31a62a76x)a21a18a12a19a20a37a23a77a78a67a27a60a79a80a65a81a82a83a11a12a37a84a85a11a86a21a72a66a87a21a18a12a19a20a21a12a21a88
a89a64a27a90a91a92a93a94a27a95a96a86a97a66a87a19a20a21a12a37
a98 27.1 a11a99a100a101a21a102a103a104a19a20
?u
?t ?κ
?2u
?x2 = f(x,t), ?∞<x<∞, t> 0;
uvextendsinglevextendsinglet=0 = 0, ?∞<x<∞
a21a12a37
a105 a106a107a108a109a110a111a112a113a114a115a116a117a118a27a119a119a120a121a122a123a124a125a126a110a127a128a37a129a130a131a27a109a110a111a112a27a132a133
a134a135a136a137
a131a113a138a139a27a140a132a133a141a122a106a142a143a144a113a145a146 (
a147
a112a27a148a146a27···)
a149
a27a150a151a113a152a153a154a155a156a157a37a158
a159
a27a160a161a162a163a164a165a124a125a114a115a116a117a113a166a27a167a168a169a170a171a126a110a127a128
uvextendsinglevextendsinglex→±∞ → 0.
a172Laplacea31a32a37a173
u(x,t) equaldotleftrightU(x,p) =
integraldisplay ∞
0
u(x,t)e?ptdt,
a174a34a175a87a176a177a27a39
?u
?t equaldotleftrightpU(x,p).
a178a31a32a60a21a88a89a64a74a179a180a72xa21a89a64a27pa72a181a64a27a182a183
?2u
?x2 equaldotleftright
d2U(x,p)
dx2 ,
a14a184a185a186a73a72a23a187a89a64a21a14a184a37a188a189a23a190a173
f(x,t) equaldotleftrightF(x,p),
a84a85a27a36a191a192 Laplacea31a32a60a27a18a12a19a20a73a31a180
pU(x,p)?κd
2U(x,p)
dx2 = F(x,p).
a36Uvextendsinglevextendsingle
x→±∞ → 0
a21a176a177a193a56a183a86a97
U(x,p) = 12 1√κp
integraldisplay ∞
?∞
F(xprime,p)exp
braceleftbigg
?
radicalbiggp
κ|x?x
prime|
bracerightbigg
dxprime.
Wu Chong-shi
§27.1 a194a195 Laplacea196a197a198a199a200a201a202a203a204a205a199a206a207 a2082a209
a188a210a211 Laplacea31a32a21a93a94a212a213
1√
pe
?α√p equaldotrightleft 1√
pit exp
braceleftbigg
?α
2
4t
bracerightbigg
a183a214a215a30a18a216a27a73a96a217a218a60a86a97
u(x,t) = 12√κpi
integraldisplay ∞
?∞
dxprime
integraldisplay t
0
exp
braceleftbigg
?(x?x
prime)2
4κ(t?τ)
bracerightbiggf(xprime,τ)
√t?τ dτ.
a34Laplacea31a32a11a12a13a14a15a16a17a18a12a19a20a27a219a220a56a183a68a69a61a31a62a21a64a221a183a222a27a223a224a225
a226a89a64a21a88a89a64 (a70a71a16a17a21a227a228a229a230a27a231a21a232a213a56a96a233a234a235)
a236a237a238a239
a91a240a241a11a242a27
a36a11a93a94a58a74a75a33a34a215a30a18a216a28a56a37
a98 27.2 a34Laplacea31a32a11a12a99a100a243a21a244a245a19a20
?2u
?t2 ?a
2?
2u
?x2 = 0, ?∞<x<∞, t> 0;
uvextendsinglevextendsinglet=0 = φ(x), ?u?t
vextendsinglevextendsingle
vextendsingle
t=0
= ψ(x), ?∞<x<∞.
a105 a246a36Laplacea31a32a247a193a27
u(x,t) equaldotleftrightU(x,p),
a35a72a27a66a67a21a18a12a19a20a73a248a76
p2U(x,p)?a2d
2U(x,p)
dx2 = pφ(x) +ψ(x).
a56a183a11a86a249a16a17a21a12 (
a250a251a252
a90a253a254a220U(x,p)a36x→ ±∞a21a255a76)
U(x,p) = 12ap
integraldisplay ∞
?∞
bracketleftBig
pφ(xprime) +ψ(xprime)
bracketrightBig
exp
braceleftBig
?pa
vextendsinglevextendsingle
vextendsinglex?xprime
vextendsinglevextendsingle
vextendsingle
bracerightBig
dxprime
= 12a
integraldisplay ∞
?∞
bracketleftBig
φ(xprime) + ψ(x
prime)
p
bracketrightBig
exp
braceleftBig
?pa
vextendsinglevextendsingle
vextendsinglex?xprime
vextendsinglevextendsingle
vextendsingle
bracerightBig
dxprime.
a0a76
e?αp equaldotrightleftδ(t?α), 1pe?αp equaldotrightleftη(t?α),
a182a183
u(x,t) = 12a
integraldisplay ∞
?∞
φ(xprime)δ
parenleftBig
t? |x?x
prime|
a
parenrightBig
dxprime + 12a
integraldisplay ∞
?∞
ψ(xprime)η
parenleftBig
t? |x?x
prime|
a
parenrightBig
dxprime
= 12
integraldisplay ∞
?∞
φ(xprime)δ(at?|x?xprime|)dxprime + 12a
integraldisplay ∞
?∞
ψ(xprime)η(at?|x?xprime|)dxprime,
a1a2a97
δ(at?|x?xprime|) =
braceleftBigg
0, |x?xprime| negationslash= at,
∞, |x?xprime| = at, η(at?|x?x
prime|) =
braceleftBigg
0, |x?xprime|>at,
1, |x?xprime|<at,
a73a56a183a11a242
u(x,t) = 12
integraldisplay ∞
?∞
φ(xprime)δ
parenleftBig
t? |x?x
prime|
a
parenrightBig
dxprime + 12a
integraldisplay x+at
x?at
ψ(xprime)dxprime
Wu Chong-shi
a3a4a5a6a7 a8
a202a196a197 a2083a209
= 12
bracketleftBig
φ(x?at) +φ(x+at)
bracketrightBig
+ 12a
integraldisplay x+at
x?at
ψ(xprime)dxprime.
a34 Laplace a31a32a11a12a13a14a15a16a17a18a12a19a20a90a39a23a63a9a10a27a84a73a72
a239
a91a29a227a228a229a21a11
a100a176a177a228a229a248a27a0a76a84a58a66a39a21a13a14a15a16a17a18a12a19a20a21a227a228a229a11a100a176a177a29a12a248a76a38a14
a15a16a17a21a227a228a229a11a100a176a177a27a84a13
a239a14a15
a67a66a16a21a17a18a37
Wu Chong-shi
§27.2 Fouriera196a197 a2084a209
§27.2 Fourier a44a45
Fouriera31a32a56a19a20a59a31a62a189a255a37a210a211a20a59a31a62a21a31a248a21a59a27a56a183a22a34
? Fouriera31a32 a19a35a23a24a25a26(?∞, ∞)a252
a21a89a64f(x)a27a71a27a36a28a2a39a29a21a59
a252
a74a39a39a29a63a30
a31a30a32a40a39a29a63a33a23a34a59a35a10a27a36
a30a15
integraldisplay ∞
?∞
f(x)dxa37
a19a38a39a27a16a231a21 Fouriera31a32a40a36a27
F(k) = a41[f(x)] ≡ 1√2pi
integraldisplay ∞
?∞
f(x)e?ikxdx,
a42a43a31a32 (a93a94) a72
f(x) = a41
?1[F(k)] ≡ 1√
2pi
integraldisplay ∞
?∞
F(k)eikxdk.
a84a44a21 Fourier a31a32a40a43a31a32a21a232a213a56a96a40a45a79a46a47a21a232a213a48a39
a239a49
a37a232a213a50a51a19
a52a27a50a53a54a76a55a216a56a57a182a58a34a37
? a59
a243a31a32a40a60a243a31a32 a71a27f(x)a72a18a61a36a62a23a24a25a26[0, ∞)
a252
a27a16a56a210a211x = 0
a63
a11a100a176a177
a21
a239a49
a34a64a27a22a34
a59
a243a31a32
F(k) =
radicalbigg2
pi
integraldisplay ∞
0
f(x)sinkxdx,
f(x) =
radicalbigg2
pi
integraldisplay ∞
0
F(k)sinkxdk,
a65a60a243a31a32
F(k) =
radicalbigg2
pi
integraldisplay ∞
0
f(x)coskxdx,
f(x) =
radicalbigg2
pi
integraldisplay ∞
0
F(k)coskxdk..
? a39a29a59
a243a66a60a243a31a32 a71a27f(x)a72a18a61a36a39a100a21a59
a252
a27a16a33a58a34a39a29
a59
a243a65a60a243a31a32a37
a67a68a9a10a99a100a20a59
a252
a21 Fouriera31a32a37
a34Fouriera31a32a67a11a12
a252
a23a68a21a70 27.1a40a7027.2a37
Wu Chong-shi
a3a4a5a6a7 a8
a202a196a197 a2085a209
star a19a35a70 27.1a27a28a99a100a101a21a102a103a104a19a20
?u
?t ?κ
?2u
?x2 = f(x,t), ?∞<x<∞, t> 0;
uvextendsinglevextendsinglet=0 = 0, ?∞<x<∞.
a69a246u(x,t)a21Fouriera31a32a40a36a27
U(k,t) = 1√2pi
integraldisplay ∞
?∞
u(x,t)e?ikxdx, a13a246 F(k,t) = 1√2pi
integraldisplay ∞
?∞
f(x,t)e?ikxdx,
a84a85a27a36a172 Fouriera31a32a60a27a18a12a19a20a73a31a76
dU(k,t)
dt +κk
2U(k,t) = F(k,t),
U(k,t)vextendsinglevextendsinglet=0 = 0,
a34a38a64a31a83a26a11a12a84a63a23a70a38a14a15a16a17a21a175a71a19a20a27a73a86a97
U(k,t) = e?κk2t
integraldisplay t
0
F(k,τ)eκk2τdτ.
a188a11a93a94a27
u(x,t) = 1√2pi
integraldisplay ∞
?∞
U(k,t)eikxdk =
integraldisplay t
0
bracketleftbigg 1
√2pi
integraldisplay ∞
?∞
F(k,τ)e?κk2(t?τ)eikxdk
bracketrightbigg
dτ.
a174a34
integraldisplay ∞
0
e?t2 cos2xtdt = 12√pie?x2,
a56a183a186a242
1√
2pi
integraldisplay ∞
?∞
e?κk2(t?τ)eikxdk = 1√2pi
integraldisplay ∞
?∞
e?κk2(t?τ) coskxdk = 1radicalbig2κ(t?τ) exp
bracketleftbigg
? x
2
4κ(t?τ)
bracketrightbigg
,
a188a174a34
f(x,t) = 1√2pi
integraldisplay ∞
?∞
F(k,t)eikxdk,
a210a211Fouriera31a32a21a215a30a212a213a27
a41[f1(x)]a41[f2(x)] = a41
bracketleftbigg 1
√2pi
integraldisplay ∞
?∞
f1(ξ)f2(x?ξ)dξ
bracketrightbigg
,
a73a96a218a60a86a97
u(x,t) =
integraldisplay t
0
braceleftBigg
1√
2pi
integraldisplay ∞
?∞
f(ξ,τ)radicalbig
2κ(t?τ) exp
bracketleftbigg
? (x?ξ)
2
4κ(t?τ)
bracketrightbigg
dξ
bracerightBigg
dτ
= 12√κpi
integraldisplay t
0
braceleftbiggintegraldisplay ∞
?∞
f(ξ,τ)exp
bracketleftbigg
? (x?ξ)
2
4κ(t?τ)
bracketrightbigg
dξ
bracerightbigg dτ
√t?τ.
a40
a252
a23a68a72a86a97a21a12a213a73a74a23a85a37
a75a12a26
a252
a179a27 Fouriera31a32a21a93a94a19a20a76a77a78a65Laplacea31a32a79a80a23a224a27a81a81
a239
a75a78
a34a82a64a18a216a67a83a186a93a94a72a242a84a21a18a30a15a37a73a67a70a42a85a27a41a24a16a26
a238
a78a34a97a215a30a212a213a37
Wu Chong-shi
§27.2 Fouriera196a197 a2086a209
star a188a67a12a70 27.2a27a99a100a243a252
a21a61a86a87a245a19a20a27
?2u
?t2 ?a
2?
2u
?x2 = 0, ?∞<x<∞, t> 0;
uvextendsinglevextendsinglet=0 = φ(x), ?u?t
vextendsinglevextendsingle
vextendsingle
t=0
= ψ(x), ?∞<x<∞.
a88a246u(x,t)a21Fouriera31a32a40a36a27
U(k,t) = 1√2pi
integraldisplay ∞
?∞
u(x,t)e?ikxdx,
a13a246
Φ(k) = 1√2pi
integraldisplay ∞
?∞
φ(x)e?ikxdx, Ψ(k) = 1√2pi
integraldisplay ∞
?∞
ψ(x)e?ikxdx,
a35a72a27a36a172 Fouriera31a32a60a27a18a12a19a20a73a31a76
d2U(k,t)
dt2 +k
2a2U(k,t) = 0,
U(k,t)vextendsinglevextendsinglet=0 = Φ(k), U(k,t)vextendsinglevextendsinglet=0 = Ψ(k).
a84a72a23a63a89a70a38a14a15a16a17a21a175a71a19a20a27a12a247a28a86
U(k,t) = Φ(k)coskat+Ψ(k)sinkatka .
a210a211Fouriera31a32a21a93a94a212a213a27a73a56a183a11a242
u(x,t) = 1√2pi
integraldisplay ∞
?∞
bracketleftbigg
Φ(k)coskat+Ψ(k)sinkatka
bracketrightbigg
eikxdk.
a1a2
1√
2pi
integraldisplay ∞
?∞
Φ(k)coskateikxdk = 1√2pi 12
integraldisplay ∞
?∞
Φ(k)
bracketleftBig
eik(x+at) + eik(x?at)
bracketrightBig
dk
= 12bracketleftbigφ(x+at) +φ(x?at)bracketrightbig,
a34a76a54a27a90a39
1√
2pi
integraldisplay ∞
?∞
Ψ(k)sinkatka eikxdk = 1√2pi
integraldisplay ∞
?∞
Ψ(k)
bracketleftbiggintegraldisplay t
0
coskaτ dτ
bracketrightbigg
eikxdk
=
integraldisplay t
0
bracketleftbigg 1
√2pi
integraldisplay ∞
?∞
Ψ(k)coskaτ eikxdk
bracketrightbigg
dτ
= 12
integraldisplay t
0
bracketleftBig
ψ(x+aτ) +ψ(x?aτ)
bracketrightBig
dτ
= 12a
integraldisplay x+at
x?at
ψ(ξ)dξ,
a90a91
a252a92
a21a93a27a27a218a60a73a86a97
u(x,t) = 12
bracketleftBig
φ(x+at) +φ(x?at)
bracketrightBig
+ 12a
integraldisplay x+at
x?at
ψ(ξ)dξ.
a84a94a95a40a34 Laplacea31a32a86a97a21a232a213a73a74a23a85a37
Wu Chong-shi
a3a4a5a6a7 a8
a202a196a197 a2087a209
a98 27.3 a11a12a96a97a99a100a20a59a244a245a16a17a21a18a12a19a20a27
?2u
?t2 ?c
2?2u = f(r,t),t> 0,
uvextendsinglevextendsinglet=0 = φ(r), ?u?t
vextendsinglevextendsingle
vextendsingle
t=0
= ψ(r).
a105 a98a99a172 Fouriera31a32a37a173
U(k,t) = 1(2pi)3/2
integraldisplayintegraldisplayintegraldisplay
u(r,t)exp{?ik·r}dr, Φ(k) = 1(2pi)3/2
integraldisplayintegraldisplayintegraldisplay
φ(r)exp{?ik·r}dr,
F(k,t) = 1(2pi)3/2
integraldisplayintegraldisplayintegraldisplay
f(r,t)exp{?ik·r}dr, Ψ(k) = 1(2pi)3/2
integraldisplayintegraldisplayintegraldisplay
ψ(r)exp{?ik·r}dr,
a16a18a12a19a20a248a76a38a14a15a16a17a175a71a19a20
d2U
dt2 +k
2c2U(k,t) = F(k,t),
Uvextendsinglevextendsinglet=0 = Φ(k), dUdt
vextendsinglevextendsingle
vextendsingle
t=0
= Ψ(k).
a188a172Laplacea31a32
U(k,t) equaldotleftrightU(k,p), F(k,t) equaldotleftrightF(k,p).
a35a72a27a18a12a19a20a189a23a190a31a180a90a64a16a17
p2U(k,p)?pΦ(k)?Ψ(k) +k2c2U(k,p) = F(k,p).
a12a247a28a86
U(k,p) = 1p2 +k2c2bracketleftbigF(k,p) +pΦ(k) +Ψ(k)bracketrightbig.
a11a93a94a37a99a172 Laplacea31a32a21a93a94a27a39
U(k,t) = 1kcΨ(k)sinkct+ Φ(k)coskct+ 1kc
integraldisplay t
0
sinkcτF(k,t?τ)dτ.
a188a172Fouriera31a32a21a93a94a27
u(r,t) = 1(2pi)3/2
integraldisplayintegraldisplayintegraldisplay
U(k,t) exp{ik·r}dk
= 1(2pi)3/2
integraldisplayintegraldisplayintegraldisplay
Ψ(k) sinkctkc exp{ik·r}dk + 1(2pi)3/2
integraldisplayintegraldisplayintegraldisplay
Φ(k) coskctexp{ik·r}dk
+ 1(2pi)3/2
integraldisplayintegraldisplayintegraldisplay bracketleftbigg 1
kc
integraldisplay t
0
sinkcτF(k,t?τ)dτ
bracketrightbigg
exp{ik·r}dk.
a174a34Fouriera31a32a21a100a30a212a213a27a73a56a183a11a242
a252a101a102
a230a21a93a94a27a75a42a73a218a103a11a242a18a12a19a20a21a12a37
a58a34ka20a59a21a104a105a106a27a56a183a186a242a107
star a33a23a230
1
(2pi)3/2
integraldisplayintegraldisplayintegraldisplay sinkct
kc exp{ik·r}dk =
1
(2pi)3/2
integraldisplayintegraldisplayintegraldisplay sinkct
kc e
ikrcosθk2 sinθdkdθdφ
= 1√2pic
integraldisplay ∞
0
k sinkctdk
integraldisplay pi
0
eikrcosθ sinθdθ
= 1√2pic
integraldisplay ∞
0
sinkct 1?ir eikrcosθ
vextendsinglevextendsingle
vextendsingle
pi
0
dk
Wu Chong-shi
§27.2 Fouriera196a197 a2088a209
= 1√2pic2r
integraldisplay ∞
0
sinkct sinkrdk =
radicalbiggpi
2
1
crδ(r?ct).
a182a183a27a210a211 Fouriera31a32a21a100a30a212a213a27a73a39
1
(2pi)3/2
integraldisplayintegraldisplayintegraldisplay
Ψ(k) sinkctkc exp{ik·r}dk = 1(2pi)3/2
radicalbiggpi
2
1
c
integraldisplayintegraldisplayintegraldisplay 1
|r ?rprime|δ(|r ?r
prime|?ct)ψ(rprime)drprime
= 14pic
integraldisplayintegraldisplay
Σprime
1
|r ?rprime|ψ(r
prime)dΣprime,
a108a72Σprime a72a183r a76a104a109a66cta76a110a111a21a104
a92 |r ?rprime| = cta37
star a33a89a230
1
(2pi)3/2
integraldisplayintegraldisplayintegraldisplay
Φ(k) coskct exp{ik·r}dk = 1(2pi)3/2 ??t
integraldisplayintegraldisplayintegraldisplay
Φ(k) sinkctkc exp{ik·r}dk
= 14pic ??t
integraldisplayintegraldisplay
Σprime
1
|r ?rprime|φ(r
prime)dΣprime.
star a33a96a230
1
(2pi)3/2
integraldisplayintegraldisplayintegraldisplay bracketleftbigg 1
kc
integraldisplay t
0
sinkcτF(k,t?τ)dτ
bracketrightbigg
exp{ik·r}dk
=
integraldisplay t
0
braceleftbigg 1
(2pi)3/2
integraldisplayintegraldisplayintegraldisplay bracketleftbiggsinkcτ
kc F(k,t?τ)
bracketrightbigg
exp{ik·r}dk
bracerightbigg
dτ
=
integraldisplay t
0
braceleftbigg 1
4pic
integraldisplayintegraldisplayintegraldisplay 1
|r ?rprime|δ(|r ?r
prime|?cτ)f(rprime,t?τ)drprime
bracerightbigg
dτ
= 14pic
integraldisplayintegraldisplayintegraldisplay 1
|r ?rprime|
bracketleftbiggintegraldisplay t
0
δ(|r ?rprime|?cτ)f(rprime,t?τ)dτ
bracketrightbigg
drprime,
a112a95a27
integraldisplay t
0
δ(|r ?rprime|?cτ)f(rprime,t?τ)dτ =
??
?
1
cf(r
prime,t?|r ?rprime|/c), |r ?rprime|<ct;
0, |r ?rprime|>ct.
a182a183a27
1
(2pi)3/2
integraldisplayintegraldisplayintegraldisplay bracketleftbigg 1
kc
integraldisplay t
0
sinkcτF(k,t?τ)dτ
bracketrightbigg
exp{ik·r}dk
= 14pic2
integraldisplayintegraldisplayintegraldisplay
|r?rprime|<ct
1
|r ?rprime|f(r
prime,t?|r ?rprime|/c)drprime.
a178
a252a92
a21a93a27a113a72a114a67a27a73a218a60a11a86
u(r,t) = 14pic
?
?
integraldisplayintegraldisplay
Σprime
1
|r ?rprime|ψ(r
prime)dΣprime + ?
?t
integraldisplayintegraldisplay
Σprime
1
|r ?rprime|φ(r
prime)dΣprime
?
?
+ 14pic2
integraldisplayintegraldisplayintegraldisplay
|r?rprime|<ct
1
|r ?rprime|f(r
prime,t?|r ?rprime|/c)drprime.