Wu Chong-shi
a0a1a2a3a4 Green
a5a6 (a1)
§29.1 a7a8a9a10 Green a11a12a13a14a15a16a17
a18a19a20a21a22a23a24a25 Green
a26a27a28a29a30a31a32a33a34a35a36a37a38
a25a39a40a41a42a43 Green
a26a27a44a45a46a47a48
a25a49a50a51a52 Green
a26a27
a25a53a54a41a55
1. Green a56a57a58a59a60a61a62a63a64a65
a66a67a68a69a70a71a72a73a25a74a75a76a77a78Poisson
a79a80a81
a39a82a83a23a24a25Green
a26a27
a55a84a85a39a86a25a87a88a89
a51a90a91
a32a44a92a93V a94
a25
a45
a72a95
a32
a96a69
a35a44
a82a97a98a85a99a100a39a22a25a101a100 (a98) a72a95a87a102
a32
a84a103a104a82a97a98
a105a50a106a107a98a55a108a82a97a109a110a111
a32
a112a113a114a115a39a116a87a72a95a117a118a119a117a120
a32
a104a114a82a97a98a25a72a121a122a110a123a106(
a124
a50
0)a55a125a126a32a127
a22Green
a26a27
a25a22a128a23a24a112a89a51a106a129 (
a44V a130
a106a129)a110a131a105a132a97
a92a93a94
a25 Poisson
a79
a80
?2G(r;rprime) = ? 1ε
0
bracketleftbigδ(r ?rprime) + σ(Σ)bracketrightbig,
a133
a94σ(Σ)a134
a82a97a98Σ a85a25a101a100a98a72a95a135a136a55a123a137a110
a32(
a22a138
a44V a130
a25)Green
a26a27G(r;rprime)a33
a137a139
a134a140a141
a116a87a72a95a72a121a25a142a143a43a144a107
a45
a72a95 δ(r ?rprime) a25a72a121 G
0(r;rprime) a145
a82a97a98a85a25a101a100a72a95 σ(Σ)
a25a72a121g(r;rprime)
a32
G(r;rprime) = G0(r;rprime)g(r;rprime).
?2G0(r;rprime) = ? 1ε
0
δ(r?rprime),
G0(r;rprime) = 14piε
0
1
|r?rprime|
a146a51
a32G0(r;r
prime)
a44r = rprime a45a134
a66a147a148a25a55
a145
?2g(r;rprime) = ? 1ε
0
σ(Σ).
a125a50a101a100a72a95σ(Σ)
a149
a87a102
a44a150
a98 Σa85
a32
a146
a51
a32g(r;r
prime)a52a133a39a151a152a153
a27a44a150
a98 Σ
a30a154
(a155a156a134a32a44 V a130)a134a157a157
a147a148a25a55
a158
a140a141
a116a87a159a160a161a76
a32a33
a115
G(r;rprime) = 14piε
0
1
|r?rprime| + g(r;r
prime).
a53a162
a81a163a164
a82a97a165a166
a32a167
a115a168a169a25a170a171a55
a149
a66a172 g(r;rprime)a25a173a174a175a176a177a113a114a115a146a66a168a55
a53a162a133a178
a164a179
a25a21a22a23a24
a32a180a181 Helmholtza79a80
a25Green
a26a27a32
?2 ?G(r;rprime) + k2 ?G(r;rprime) = ? 1ε
0
δ(r ?rprime), r,rprime ∈ V,
?G(r;rprime)vextendsinglevextendsingle
Σ = 0.
a167
a89a182a183
a38a184
a25 Green
a26a27
a173a115
a145 Poisson a79a80
a25 Green
a26a27
a168a169a25a147a148a41a42a55a185a20
r = rprime a45a154a32
?G(r;rprime)
a44V a130a134a157a157
a147a148a25a55a186
?g(r;rprime) = ?G(r;rprime)?G(r;rprime),
G(r;rprime)a134
a123a137 Poisson
a79a80
a25 Green
a26a27
a55a187 ?G(r;rprime)
a145G(r;rprime)a146a188a189a25a22a128a23a24a32
Wu Chong-shi
§29.1 a190a191a192a193 Greena194a195a196a197a198a199a200 a2012a202
a89a51a153a203
?2?g(r;rprime) + k2?g(r;rprime) = k2G(r;rprime), r,rprime ∈ V,
?g(r;rprime)vextendsinglevextendsingleΣ = 0.
a187a162
a140a204a79a80a205a206
a25 G(r;rprime)
a44 r = rprime a45a134
a51 1/|r?rprime|a25a207a177a208a209a25
a32
a146a51
a32 ?g(r;rprime)
a44
a139
a45
a39a22a147a148(
a210a211?2?g(r;rprime) a113a203a212δ a26a27) a32a140a33a213
a183 ?G(r;rprime)
a145 G(r;rprime) a39a169a32
a44r = r
prime
a45a214a134
a51 1/|r?rprime|a25a207a177a208a209a25a55a215a216a85
a32
a84a217a39a86a25
a36a37
a89a218
a32a44r = r
prime
a45a47a48a32
a39a22a115
?G(r;rprime) ~ 1
4piε0
cos(k|r?rprime|)
|r?rprime| .
? a163a219a92a93a94Greena26a27a44a45a46a157a25a49a50a32a145a39a219a92a93a94Greena26a27a66a168a55
? a39a219a92a93a94a25 Greena26a27a134a157a157
a147a148a25
a32
a103
a38
a25a39a151a153
a27
a66a147a148a55
? a140a134a220a221a222
a128a25
a32
a125a50 a223
a45a46a224
a25a41a42a225a66a123a168
a32
a39
a219a92a93a94
a25
a45a46
a216a226a85
a134a163a219a92a93a94
a25
a98
a46
a55
? a66a227a228a229a32a230a219a92a93a94
a25 Green
a26a27a167
a137a139a175a212a203a66a168a25a49a50a55
a53a162
a230a219a92a93a94
a25 Poisson
a79a80a81
a39a82a83a23a24
a32a38
a25 Green
a26a27G(x,y;xprime,yprime)a32a134
a22a128a23a24
bracketleftBig ?2
?x2 +
?2
?y2
bracketrightBig
G(x,y;xprime,yprime) = ? 1ε
0
δ(x?xprime)δ(y ?yprime), (x,y),(xprime,yprime) ∈ S,
G(x,y;xprime,yprime)vextendsinglevextendsingleC = 0
a25a128
a32
a133
a94C a134a231
a98a232a233 S a25a82a97a55
a220a221a234
a114
a32
G(x,y;xprime,yprime) = ? 12piε
0
ln
radicalbig
(x?xprime)2 + (y ?yprime)2 + g(x,y;xprime,yprime),
a133
a94a81
a39a235
a134
a144a107
a45
a72a95
a44
a132a97
a92a93a94
a25a72a121 (
a236
a89a51a143a85a39
a204a237a27a32a124a127
a162a72a121a238
a45
a25a239
a124) a32
a44
a223
a45a46a224(a216a226a85a134a163a219a92a93a94
a25a240
a46)δ(x?xprime)δ(y?yprime)a157a134
a53
a27
a208a209a25a241
a81a230
a235g(x,y;xprime,yprime)
a134
a82a97a85a25a101a100a72a95a99a100a25a72a121
a32a44 S a130a157a157
a147a148a55
Wu Chong-shi
a242a243a244a245a246 Green
a194a195(a243) a2013a202
2. Green a56a57a63a247a248a249
a250a251a252a39a217a253a98a114a91a25a128a177
u(r) =
integraldisplayintegraldisplayintegraldisplay
V prime
G(rprime;r)ρ(rprime)drprime ?ε0
integraldisplayintegraldisplay
Σprime
f(Σprime)?primeG(rprime;r)vextendsinglevextendsingleΣprime ·dΣprime.
a140a204
a170a171
a44a254a222a255
a138a85a115a0a128
a30a157
a43
a44a205a206
a25a174a1a87
a94a32 G(rprime;r) a2
a175r
a157
a25a144a107
a45
a72a95
a44rprime a157
a25a72a121
a32a38a3
a85
a44a4a5a45rprime a157
a25a72a95ρ(rprime)drprime
a32
a225a53
a4a5a45
a1a87
a32a6a7
a203r
a157
a25a72a121a8
a53
a140a204
a23a24a25a9a10
a35a11
a52a91 Green
a26a27
a25a53a54a41a55a125a50
a32a181
a171a12a132a97
a92a93
a25 Green
a26a27a13
a169
a32a14a15
a177
G(rprime;r) = G(r;rprime) (#)
a105a19a25a16
a32a13a17a32
a85a177
a33a18a19
a131a105
u(r) =
integraldisplayintegraldisplayintegraldisplay
V prime
G(r;rprime)ρ(rprime)drprime ?ε0
integraldisplayintegraldisplay
Σprime
f(Σprime)?primeG(r;rprime)vextendsinglevextendsingleΣprime ·dΣprime,
a174a1a87a25
a254a222a255
a138
a33
a39a20
a230a21
a20a55
a81a230
a235a25a98a1a87a108a69
a33a134
a76a22a82a97a98a85a25a101a100a98
a72a95a25a23a24a55
a25a26(#)
a27
a55
a145a81a28
a39a29
a94
a25a30a31a39a169
a32a32a33a34 G(r;rprimeprime)a32a38
a188a189a25a22a128a23a24a108a69
a33a134
?2G(r;rprimeprime) = ? 1ε
0
δ(r?rprimeprime), r,rprimeprime ∈ V,
G(r;rprimeprime)vextendsinglevextendsingleΣ = 0.
a35
a141a204a79a80
a87
a156a3
a51 G(r;rprimeprime)
a145 G(r;rprime)a32
a123a36
a32
a69
a31a44
a232a233 V
a130
a1a87
a32a33
a114a91
integraldisplayintegraldisplayintegraldisplay
V
bracketleftbigG(r;rprimeprime)?2G(r;rprime)?G(r;rprime)?2G(r;rprimeprime)bracketrightbigdr
= ? 1ε
0
integraldisplayintegraldisplayintegraldisplay
V
bracketleftbigG(r;rprimeprime)δ(r ?rprime)?G(r;rprime)δ(r ?rprimeprime)bracketrightbigdr
= ? 1ε
0
bracketleftbigG(rprime;rprimeprime)?G(rprimeprime;rprime)bracketrightbig.
a37a38Green
a39
a177
a32
a35a85a177a40
a206
a25a174a1a87a41a50a98a1a87
a32a33
a115
G(rprime;rprimeprime)?G(rprimeprime;rprime) = ?ε0
integraldisplayintegraldisplay
Σ
bracketleftbigG(r;rprimeprime)?G(r;rprime)?G(r;rprime)?G(r;rprimeprime)bracketrightbig·dΣ.
a2
a120a82a97a165a166
a32
a19a42a114a203
a205a206
a25a98a1a87a50 0a55
a140
a169
a33
a182a183a20
G(rprime;rprimeprime) = G(rprimeprime;rprime),
a35rprimeprime
a19
a131a50r
a32a140a33a134(#)a177a55
a181
a171
a134a81a163a164
a82a97a165a166
a32
a85a98a25a170
a37
a68a69a43a44a55
a53a162a133a178
a164a179
a25a21a22a23a24
a32a38a184
a25 Green
a26a27a134a210
a68a69a115a53a54
a14a15 (#)a32a34a35
a173a174
a36a37
a55
Wu Chong-shi
§29.2 a45a46a47a48a49a50 Helmholtza51a52a196Greena194a195 a2014a202
§29.2 a53a54a55a56a57a58 Helmholtz a59a60a13 Green a11a12
a234a163a219
a132a97
a92a93a94Helmholtza79a80
a25Green
a26a27a32
a42
a44a163a219
a132a97
a92a93a94a234
a128
a79a80
?2G(r;rprime) + k2G(r;rprime) = ? 1ε
0
δ(r ?rprime), r,rprime ∈ V.
a14
a162a132a61a62
a157
a25a82a97a165a166
a32a31
a98
a32a36a37
a55
a140a204a79a80a134
a39
a204a63a64a65a79a80a32
a125a126
a32
a89a51a66a67
a234
a128
a63a64a65a79a80
a25a68a69a30a31
a32
? a250a234
a203
a79a80
a25a39
a204a155
a128
a32
a103a35
a79a80a64a65
a41a241
? a35G(r;rprime)a66a123a137a64a65
a23a24a25a70a71
a26a27a72a73
a55
a140a141a74
a30a31
a32a155a156a134a81a230a74
a30a31
a32a75a211
a85a76a115a77
a17a78
a227
a32a140a79
a66a80a173a174a25a81a82a55
? a140
a112
a134
a39
a204a155a83
a25
a63a64a65a79a80
a43
a149a44 r = rprime a45a32a63a64a65
a235a84a66a50 0a55
? a103a85a32
a187a162
a140a134a44
a132a97
a92a93a32
a89a51a86a108a110a87a88a89a68a90
a32
a51a91a87a208a92 Laplace
a93a94
a25a66a95a41
a32
a104a23a24a114a91a91a87a25a96a41a55
a97a250a80a89a68
a231a98a32
ξ = x?xprime, η = y ?yprime, ζ = z ?zprime,
a42a35
a45
a72a95a146
a44a45a124
a50a99a89a68
a15
a25
a75a45
a55a186 G(r;rprime) = g(ξ,η,ζ)
a32
a162
a134a32g(ξ,η,ζ)a188a189a79a80
?2ξ,η,ζg(ξ,η,ζ) + k2g(ξ,η,ζ) = ? 1ε
0
δ(ξ)δ(η)δ(ζ),
a133
a94
?2ξ,η,ζ ≡ ?
2
?ξ2 +
?2
?η2 +
?2
?ζ2
a134
a51a100a101a89a68 ξ,η,ζ a50a22a95a102a25 Laplace
a93a94
a55
a220a221
a90a203
a32
a95a103
a31
a25
a79a80a134a104a105
a66a95a25
a32 g(ξ,η,ζ)
a149a134R = radicalbigξ2 + η2 + ζ2 a25a26a27a32g(ξ,η,ζ) = f(R). a125a126a32a181
a171a35a100a101a89a68
a15 (ξ,η,ζ)a105
a103a50a106a89a68
a15a32a211a79a80
a35a95a50 R negationslash= 0
a45a157
a25
a64a65a79a80
1
R2
d
dR
bracketleftBig
R2df(R)dR
bracketrightBig
+ k2f(R) = 0
(a75
a125
a134a44a44 R = 0 a45a149a107a44
a144a108a153
a27) a51a52 R = 0 a45a157
a25a82a97a165a166 (
a44 R = 0 a45a157
a115a39a144a107
a45
a72
a95)a55a126
a79a80a134
a238a151a106 Bessel
a79a80a32a38
a25a109a128
a134
f(R) = A(k)e
ikR
R + B(k)
e?ikR
R .
a37a38R = 0
a145
a132a61a62
a157
a25a82a97a165a166a22a203
a237a27 A(k)a145B(k)a55
a110a111a112a113a114a115B(k) a251a116a91Helmholtz
a79a80
a25a216a226a117a118
a32a119a181a213a32a38a134
a187a120a121
a79a80a122
a172a87a123
a95a102(a87a123a124a111
a93
a116a87) a114a91a25a55a80a50a39
a204a180a125a32a126a127a35a234
a114a91a25a128
a44
a132a61a62
a157
a50a208a209a120a55
a124
a111
a93
a125
a125
a50e?iωt
a32a211
a128a177
a94
a25
a81
a39a235a50a208a209a120
a32a81a230
a235a50a113a128a120a55a146a51
a32
a137a139a115 B(k) = 0a55
Wu Chong-shi
a242a243a244a245a246 Green
a194a195(a243) a2015a202
a129a217a25
a237a27 A(k)a33
a137a139a187R = 0
a157
a25a82a97a165a166
a127
a22
a32
a42a187R = 0
a157a45a46
a25a130a136
a127
a22a55
R = 0a131a63a132a133
a113a114a115A(k)
a140
a111a225a66
a18
a100a109a35a128a177
a2
a120R = 0
a157
a25a82a97a165a166
a32a75
a125
a134f(R)
a119 g(ξ,η,ζ)
a44 R = 0 a157
a25a153
a27
a225a66
a107a44
a55a134a39
a79
a98
a32a135a184a136a122a137
a22
a32a138a134a11
a52 δ
a26a27
a25a106a177
a214
a137
a139a84a1a87
a255
a138a217a124
a222
a128a55a162
a134a32a139
a22a69a110
a32
a137a108a35
a79a80a44 R = 0a47a48
a25a140a174a1
a130
a1a87
a32integraldisplayintegraldisplayintegraldisplay
?2ξ,η,ζf(R)dξdηdζ + k2
integraldisplayintegraldisplayintegraldisplay
f(R)dξdηdζ = ? 1ε
0
. (maltesecross)
a40
a206a81
a39a235a25a174a1a87a137a108a41a50a98a1a87
integraldisplayintegraldisplayintegraldisplay
?2ξ,η,ζf(R)dξdηdζ =
integraldisplayintegraldisplay bracketleftBig
?ξ,η,ζf(R)
bracketrightBig
·dΣ,
a125a50
a140
a169
a33
a89a51a9a141a142
a44 R = 0a45
a25
a234
a153a23a24a55
a124a140a204
a140a174a1a50a51 R = 0
a45
a50a106a143
a32 ρa50a144a145a25
a106a174
a32a211 integraldisplayintegraldisplayintegraldisplay
?2ξ,η,ζf(R)dξdηdζ =
integraldisplayintegraldisplay bracketleftBig
?ξ,η,ζf(R)
bracketrightBig
·dΣ
=
integraldisplayintegraldisplay df(R)
dR R
2 sinθdθdφ
vextendsinglevextendsingle
vextendsingle
R=ρ
= ?4piA(k)(1 ?ikρ)eikρ.
a81a230
a235a25a174a1a87a89a51a100a109
a93
a203
a32integraldisplayintegraldisplayintegraldisplay
f(R)dξdηdζ = 4piA(k)
integraldisplay ρ
0
eikRRdR
= 4piA(k)k2
bracketleftBig
(eikρ ?1)?ikρeikρ
bracketrightBig
.
a35
a140a146
a170a171
a2
a9a91 (maltesecross)a177
a32a33
a115
?4piA(k) = ? 1ε
0
,
a146a51
a32A(k) = 1/4piε0,
a122 ka132
a14
a55
a140
a169
a32
a147
a31a33a234
a203a20
a163a219
a132a97
a92a93 Helmholtza79a80
a25Green
a26a27
g(ξ,η,ζ) = f(R) = 14piε
0
eikR
R ,
a119
G(r;rprime) = 14piε
0
eik|r?rprime|
|r?rprime| .
a108k = 0a111
a32a140a204
a170a171
a33
a9a91 Poisson
a79a80
a25Green
a26a27
a55
a147
a31a32a34a35a213
a183
a32a140a204
a170a171
a134a44
a132a61a62
a157
a50a208a209a120
a32
a225a85
a124
a111
a93
a125
a125
a50 e?iωt a25a165a166a217a114a91
a25a55a89a51
a127a148a32a181
a171
a35a234
a132a61a62
a157
a50a113a128a120
a32
a225a85a68
a124
a111
a93
a125
a125
a50 e?iωt
a32a211Greena26a27
a137a139
a134
G(r;rprime) = 14piε
0
e?ik|r?rprime|
|r?rprime| .
a181
a171
a134
a133a178a207a177a25a132a61a62a165a166
a32
a108a69
a236
a113a114a91a133a178a207a177a25a128a55
Wu Chong-shi
§29.3 a149a150Poissona51a52
a242
a197a151a152a192a193a196 Greena194a195 a2016a202
§29.3 a153a154 Poisson a59a60a155a14a156a157a9a10a13 Green a11a12
a70a86a25a158a25
a134
a109a172a53a162a159
a130Poissona79a80a81
a39a82a83a23a24Green
a26a27
a25
a36a37a32a32
a81a82a39
a146a234Greena26a27
a25
a237
a70
a79
a31a55
a159
a130Poissona79a80a81
a39a82a83a23a24 Green
a26a27
a25a22a138
a134
?22G(r;rprime) = ? 1ε
0
δ(r ?rprime), |r| < a, |rprime| < a,
G(r;rprime)vextendsinglevextendsingler=a = 0,
a133
a94
r2 = x2 + y2, ?22 = ?
2
?x2 +
?2
?y2.
a250a81a82a39
a74
a68a69a25a30a31
a32
a42a251a116a91
a79a80a134
a39
a204a63a64a65a79a80a32
a146a51a35 Green
a26a27
a66a123a137
a64a65
a23
a24a25a70a71
a26a27a72a73
a55
a160a70
a231
a98a161a89a68
a15a32
a89a68
a75a45a162a44
a159a143
a32
G(r;rprime) = R0(r) +
∞summationdisplay
m=1
bracketleftbigR
m1(r)cosmφ + Rm2(r)sinmφ
bracketrightbig.
a168a169
a32
a35δ
a26a27a167
a66a139a163a70a71
a26a27a72a73a32
δ(r ?rprime) = δ(x?xprime)δ(y ?yprime) = 1rprimeδ(r ?rprime)δ(φ ?φprime)
= 1rprimeδ(r ?rprime)
braceleftbigg 1
2pi+
1
pi
∞summationdisplay
m=1
bracketleftbigcosmφcosmφprime + sinmφsinmφprimebracketrightbigbracerightbigg.
a212
a44
a25a23a24
a33a134a181a164a234
a128 R
0(r), Rm1(r)a145Rm2(r)
a55
? a127
a22R
0(r)
a25
a237a165
a87
a79a80
a22a128a23a24
a134
1
r
d
dr
bracketleftbigg
rdR0(r)dr
bracketrightbigg
= ? 12piε
0
1
rprimeδ(r ?r
prime),
R0(0)a115a97, R0(a) = 0.
a108r negationslash= rprime a111
a32a79a80a134a64a65
a25
a32a44
a251a116a91a82a97a165a166
a31a32
a115a128
R0(r) =
?
?
?
A0, r < rprime,
B0 ln ra, r > rprime.
a32
a37a38R
0(r) a44r = rprime a45
a25a147a148a41
a32
a42 R
0(r)a44r = rprime a45
a147a148
a32
a103 Rprime
0(r)
a66a147a148(
a38
a89a51a187
a79
a80a44r = rprime a45a141
a108a1a87a114a91)
a32
dR0(r)
dr
vextendsinglevextendsingle
vextendsinglevextendsingle
rprime+0
rprime?0
= ? 12piε
0
1
rprime,
Wu Chong-shi
a242a243a244a245a246 Green
a194a195(a243) a2017a202
a33
a89a51a22a203A
0 a145B0 a32
A0 = ? 12piε
0
ln r
prime
a , B0 = ?
1
2piε0.
a162
a134
R0(r) =
??
??
???
? 12piε
0
ln r
prime
a , r < r
prime,
? 12piε
0
ln ra, r > rprime.
? a127a22Rm1(r)a25a237a165
a87
a79a80
a22a128a23a24
a134bracketleftBig
1
r
d
dr
parenleftbigg
r ddr
parenrightbigg
? m
2
r2
bracketrightBig
Rm1(r) = ?δ(r ?r
prime)
piε0rprime cosmφ
prime,
Rm1(0)a115a97, Rm1(a) = 0.
a108r negationslash= rprime a111
a32a79a80a134a64a65
a25
a32a44
a251a116a91a82a97a165a166
a31a32
a115a128
Rm1(r) =
??
?
??
Am1
parenleftBigr
a
parenrightBigm
, r < rprime,
Bm1
bracketleftBigparenleftBigr
a
parenrightBigm
?
parenleftBiga
r
parenrightBigmbracketrightBig
, r > rprime.
a37a38R
m1(r)a44r = rprime a45
a25a147a148a41
a32
a42 R
m1(r)a44r = rprime a45
a147a148
a32
a103Rprime
m1(r)
a66a147a148
a32
dRm1(r)
dr
vextendsinglevextendsingle
vextendsinglevextendsingle
rprime+0
rprime?0
= ? 1piε
0
1
rprime cosmφ
prime,
a22a203A
m1 a145Bm1 a32
Am1 = ? 12piε
0
1
m
bracketleftbiggparenleftBigrprime
a
parenrightBigm
?
parenleftBiga
rprime
parenrightBigmbracketrightbigg
cosmφprime,
Bm1 = ? 12piε
0
1
m
parenleftBigrprime
a
parenrightBigm
cosmφprime.
a162
a134
Rm1(r) =
?
??
??
? 12piε
0
1
m
bracketleftBigparenleftBigrrprime
a2
parenrightBigm
?
parenleftBig r
rprime
parenrightBigmbracketrightBig
cosmφprime, r < rprime,
? 12piε
0
1
m
bracketleftBigparenleftBigrrprime
a2
parenrightBigm
?
parenleftBigrprime
r
parenrightBigmbracketrightBig
cosmφprime, r > rprime.
? a127
a22R
m2(r)
a25
a237a165
a87
a79a80
a22a128a23a24
a134bracketleftBig
1
r
d
dr
parenleftbigg
r ddr
parenrightbigg
? m
2
r2
bracketrightBig
Rm2(r) = ?δ(r ?r
prime)
piε0rprime sinmφ
prime,
Rm2(0)a115a97, Rm2(a) = 0.
a38a145Rm1(r)a188a189a25a237a165
a87
a79a80
a22a128a23a24a25a207a177a166a167a168a169a123a168
a32a149a134
a158
a63a64a65
a235
a94
a25 cosmφprime
a103a105a20sinmφprime
a32
a146a51
a32
Rm2(r) =
?
??
??
? 12piε
0
1
m
bracketleftBigparenleftBigrrprime
a2
parenrightBigm
?
parenleftBig r
rprime
parenrightBigmbracketrightBig
sinmφprime, r < rprime,
? 12piε
0
1
m
bracketleftBigparenleftBigrrprime
a2
parenrightBigm
?
parenleftBigrprime
r
parenrightBigmbracketrightBig
sinmφprime, r > rprime.
Wu Chong-shi
§29.3 a149a150Poissona51a52
a242
a197a151a152a192a193a196 Greena194a195 a2018a202
a140
a169
a32a33a234
a114a20a159
a130Poissona79a80a81
a39a82a83a23a24a25 Green
a26a27a32
a108r < rprime a111
a32
G(r;rprime) = ? 12piε
0
braceleftbigg
ln r
prime
a +
∞summationdisplay
m=1
1
m
bracketleftBigparenleftBigrrprime
a2
parenrightBigm
?
parenleftBig r
rprime
parenrightBigmbracketrightBig
cosm(φ?φprime)
bracerightbigg
,
a108r > rprime a111
a32
G(r;rprime) = ? 12piε
0
braceleftbigg
ln ra +
∞summationdisplay
m=1
1
m
bracketleftBigparenleftBigrrprime
a2
parenrightBigm
?
parenleftBigrprime
r
parenrightBigmbracketrightBig
cosm(φ?φprime)
bracerightbigg
,
a85a98
a140a74a79
a31
a32
a35 Green
a26a27
a66a123a137
a64a65
a23a24a25a70a71
a26a27a72a73a32
a39a40
a213
a76
a32
a114a91a25
a128a177a113
a134
a132a61a170
a27
a55a108a69
a32
a66a171a185
a44a172a146a155a83a173
a207a217a89a51a35a170
a27a234a145
a55
a180a181a32
a212
a44
a114a91
a25a128a177
a33a134a181
a126a55a66a172
a32a140a34a35a119a174a175a176
a170
a27a234a145
a25a177a178a55
a217a98
a32
a81a82a39
a74a79
a31
a32a38
a35a100a109
a7
a203a128a25a115a179a207a177a55
a180a181a218a182
a32
a39a183
a44
a109a110a159
a94a162
a85
a45
a72a95
a31a32a44
a159a184a85a96a69a203a212a101a100a72a95a55a159
a130a185a255
a39
a45
a25a72
a121
a32a33a134a45
a72a95a25a72a121
a145
a101a100a72a95a25a72a121a25a142a143a55a253a186
a44a45
a72a95a146
a44a45a134
a53
a27
a208a209a25
a32
a103
a31
a186
a44
a159
a130a134a157a157
a147a148a25a55
a181
a171
a135a184a18a187a79a188
a110
a234
a203a101a100a72a95
a44
a159
a130
a146a99a100a25a72a121
a32
a108a69
a167a33a234
a203a20a189
a204
a159
a130Poissona79a80a81
a39a82a83a23a24a25 Green
a26a27
a55
a212
a44a35
a81a82a25
a140a74a79
a31 (a54a50a72a12a31)
a32
a133a190a70a191
a148a134
? a192a132a133a193a63a194a195a196a197a198a199a200a201a202a63a59a196a197a203a204
a55
? a103a205a16a213a32a33a206a207a208a209a210a63a59a196a197a63a211a212a201a202a208a213a214a65
a110
a133a215a216a217a63a218a200a59a196a197 (a199a200a219a220a221a63a59a196a197a32a222a199
a200a219a201a202a63
a223a223
a224a196a197) a63a211a212
a55
? a140a204
a223a224
a224
a72a95a25a106a129a41
a32a33
a175a212
a44a38a145
a159
a130
a25a225a216a25
a45
a72a95a39a161
a32a44a209a210a18a7
a203
a145a75
a76a23a24a168a169a25a128a55 a22629.1
a227a228a229
? a149a35
a159
a130
a25a72a95a87a102a66a95
a32a149a35a140a141a204a45
a72a95
a167a18
a99a100a203
a209a230 r = a a207a208 (a196a231a65 0) a25a232
a171
a32
a82a83a23a24a233
a63a234a58a235a199a249a32a33a18a236
a182
a140
a169a114a91a25a128
a145a75
a76a23a24a25a128
a44
a159
a130
a39a22a39a237a55
? a89a51a183a44a110a228a238a91a32a140a204
a106a129a72a95
a181
a171
a107a44
a25a16
a32a38
a39a22a107a162
a209a239a32a210a211
a159
a130
a25a72a95a87a102
a33
a145a75
a76a25a23a24a66a168
a32a33
a66
a18a236
a182a106a129a41a55a119a186a103a39
a74a213
a31
a32
a187a162a101a100a72a95a25a72a121
a44
a159
a130a134a157
a157
a147a148a25
a32a44
a159
a130
a25
a185a164
a106a129 (
a45) a72a95a214
a66a89
a18
a99a100a168a169a25a232a171a55
? a137a70a72a12a31a105a240a25a14a241a32a33a44
a162
a18a210a234
a203
a140a204
a106a129a72a95a25a72a102
a145a38
a25
a92a93
a107a88a55
a140a134a140a204
a106
a129a72a95
a134a210a107a44
a25a242
a94
a174a212a55
? a37a38a53a54a41a25a251a116a32a236
a89a51
a34
a39a243a244a22
a32a181
a171
a140a204
a106a129a72a95
a107a44
a25a16
a32a38a236
a39a22a107a162a225a216a72
a95a146
a157
a25a144a145a25a245a246a240a85a55
Wu Chong-shi
a242a243a244a245a246 Green
a194a195(a243) a2019a202
a127a140a204
a106a129a72a95a25a107a88a50r
1 = (x1, y1)a32
a72a102a50e
a32a38a145
a225a216
a45
a72a95a39a161
a32a44
a159
a130
a25a72a121
a33a134
G(r;rprime) = ? 12piε
0
bracketleftBig
ln|r?rprime|+ eln|r?r1|+ C
bracketrightBig
, (maltesecross)
a133
a94a237a27C
a122a72a121a238
a45
a25a239a247a115
a14
a55a212
a44
a25a23a24
a33a134a35
a84
a35a234
a159a184 r = aa85a25a72a121a50 0
a32
? 12piε
0
bracketleftBig
ln|r?rprime|+ eln|r?r1|+ C
bracketrightBig
r=a
= 0,
a234
a203r
1, ea145C
a55a248
a255a140a204a79a80
a137a139a53a159a184a85a25a39a249
a45a250
a105a19a55
a181
a171a160a70
a231
a98a161a89a68
a32
a42a186
x = rcosφ, xprime = rprime cosφprime, x1 = r1 cosφprime,
y = rsinφ, yprime = rprime sinφprime, y1 = r1 sinφprime,
a211a79a80
a41a50
lnbracketleftbiga2 + rprime2 ?2arprime cos(φ ?φprime)bracketrightbig+ eln
bracketleftBig
a2 + r21 ?2ar1 cos(φ?φprime)
bracketrightBig
+ 2C = 0,
a38
a137a139a53a39a249 φ
a250
a105a19a55a251a70
a72a73
a177
lnbracketleftbig1 + t2 ?2tcosφbracketrightbig = lnbracketleftbig1?teiφbracketrightbig+ lnbracketleftbig1?te?iφbracketrightbig
= ?2
∞summationdisplay
m=1
1
mt
m cosmφ, |t| < 1,
a33
a89a51
a34
a39a243a41a50
2lna + ln
bracketleftBig
1 +
parenleftBigrprime
a
parenrightBig2
?2r
prime
a cos(φ ?φ
prime)
bracketrightBig
+ 2elnr1 + eln
bracketleftBig
1 +
parenleftbigg a
r1
parenrightbigg2
?2 ar
1
cos(φ?φprime)
bracketrightBig
+ 2C
= 2lna + 2elnr1 ?2
∞summationdisplay
m=1
1
m
bracketleftBigparenleftBigrprime
a
parenrightBigm
+ e
parenleftBig a
r1
parenrightBigmbracketrightBig
cosm(φ?φprime) + 2C = 0,
a162
a134a32a33
a114a91
lna + elnr1 + C = 0 (#)
a145 parenleftBig
rprime
a
parenrightBigm
+ e
parenleftBig a
r1
parenrightBigm
= 0, m = 1,2,3,···,
a42
e = ?
parenleftBigr1rprime
a2
parenrightBigm
a119 e = ?
parenleftBigr1rprime
a2
parenrightBig1
= ?
parenleftBigr1rprime
a2
parenrightBig2
= ?
parenleftBigr1rprime
a2
parenrightBig3
= ···, m = 1,2,3,···,
a146a51
a32
e = ?1 a145 r1 = a
2
rprime
a119 r
1 =
parenleftBiga
rprime
parenrightBig2
rprime.
a140
a169
a32a135a184
a25a44
a234
a203a20
a140a204
a106a129a72a95
a32a38
a107a162a225a216a72a95a146
a44
a144a145a25a245a246a240a85
a32
a225a85a188a189
rprimer1 = a2.
a138a134
a188a189
a140a204a14a15
a25
a141a204a45a32a250
a54a50
a14
a162a159r = aa25a252a253a254a255a0a1a2a3a4a5a6a7a8
a9a10a11a12a13a14a10a11a15a16a17a18a19r = a
a20a21a22a23
a17a7a24a25
a20
a10a26a27a8a7a28a29a27
a21
a0
a30ea12r
1 a20
a3a4a31a32(#)
a33
a7a34a35a36a37a38
C = ?lna + lnr1 = ln arprime.
Wu Chong-shi
§29.3 a39a40Poissona41a42a43a44a45a46a47a48a49 Greena50a51 a5210a53
a54a30e, r
1
a12C
a20
a3a4a31a55(maltesecross)
a33
a7a56a57a58a37a38a19a59Poisson
a60a61a62a63a64a65a66a67a20 Greena68a69
G(r;rprime) = ? 12piε
0
bracketleftBig
ln|r?rprime|?ln
vextendsinglevextendsingle
vextendsingler?
parenleftBiga
rprime
parenrightBig2
rprime
vextendsinglevextendsingle
vextendsingle+ ln arprime
bracketrightBig
,
a70a71a72a28a73a74a75a76
a20a77a78a33
a7
G(r;rprime) = ? 14piε
0
braceleftBigg
ln
bracketleftBig
r2 + rprime2 ?2rrprime cos(φ?φprime)
bracketrightBig
?ln
bracketleftBig
r2 +
parenleftBiga2
rprime
parenrightBig2
?2ra
2
rprime cos(φ?φ
prime)
bracketrightBig
+ 2ln arprime
bracerightBigg
.
a30a17
a69a68a69a79a80a81
a7a58a35a36a82a83a7a84a85a86a87
a63a88a60a89
a38a90
a20
a3a4a0
Wu Chong-shi
a43a91a92a93a94 Greena50a51(a91) a5211a53
a72a37a83a95a19a59Poisson
a60a61a62a63a64a65a66a67a20 Greena68a69
a57a7a96a97a58a35a36a98a83
a63a99a20a100a101a66a67
?22u(r) = ? 1ε
0
ρ(r), |r| < a,
u(r)vextendsinglevextendsingler=a = f(φ)
a20a101
a0a102a103a7a30
a60a61
a76
a20a104
a105a26a106a107a16 rprime a7
?prime22u(rprime) = ? 1ε
0
ρ(rprime), |rprime| < a,
u(rprime)vextendsinglevextendsinglerprime=a = f(φprime),
a108
a63a60a109
a7a110a35a36a107a83 G(rprime;r)
a111a112a113a114a115a20a100a101a66a67
a7
?prime22G(rprime;r) = ? 1ε
0
δ(r ?rprime), |r| < a, |rprime| < a,
G(rprime;r)vextendsinglevextendsinglerprime=a = 0,
a54a116a117Green
a68a69a20
a17a118a29(a24a35a36a82a16a8620.2
a119a20a120a121a122a123
a7a124a125a126a1
a109
a37a83
a20 G(r;rprime)a20a127a128
a77a78a33a129a130
a82a83) a7
G(r;rprime) = G(rprime;r),
a131
a63a132
a106a107a16
?prime22G(r;rprime) = ? 1ε
0
δ(r ?rprime), |r| < a, |rprime| < a,
G(r;rprime)vextendsinglevextendsinglerprime=a = 0.
a30a133a134
a60a61a135a136a137
a36 G(r;rprime)a12u(rprime)a7a27a138a7a54a72a19a59a139
a135
a7a58a38a90
integraldisplayintegraldisplay
rprime<a
ρ(rprime)G(r;rprime)drprime ?u(r) = ?ε0
integraldisplayintegraldisplay
rprime<a
bracketleftbigG(r;rprime)?prime
2
2u(rprime)?u(rprime)?prime
2
2G(r;rprime)bracketrightbigdrprime.
a140a1
a109a20a109
a139
a135a141
a102a142a19a143 r = a
a20a144
a139
a135
a7a145a146a31a32
a64a147a148a149
a7a58a150
u(r) =
integraldisplayintegraldisplay
rprime<a
ρ(rprime)G(r;rprime)drprime + ε0
integraldisplay 2pi
0
bracketleftbigG(r;rprime)?primeu(rprime)?u(rprime)?primeG(r;rprime)bracketrightbig
rprime=aadφ
prime
=
integraldisplayintegraldisplay
rprime<a
ρ(rprime)G(r;rprime)drprime ?ε0
integraldisplay 2pi
0
f(φprime)?G(r;r
prime)
?rprime
vextendsinglevextendsingle
vextendsingle
rprime=a
adφprime.
a151a97a7a152a153
a20a62a63a154a77a155
a19a59a10a11
a135a156a20a157a158a159a62a160a154a161
a86a162
a104
a19a143a1
a20a163a164
a10a11a165
a164a20
a10a166a7
a163a164
a10a11
a20a135a156
a96a97a167a168
a100a20a64a147a148a149 (a19a143a1a10a166a65a20a135a156)a150a169a0a102a95a170a171a172a173a82a83a19a143a1a20
a10a11
a135a156
a7a35a36a30
a62a160a154
a76
a20a144
a139
a135
a54a106a107a16
integraldisplay 2pi
0
f(φprime)?G(r;r
prime)
?rprime
vextendsinglevextendsingle
vextendsingle
rprime=a
adφprime = ?
integraldisplay 2pi
0
f(φprime) lim
?r→0
1
?r
bracketleftBig
G(r;rprime)vextendsinglevextendsinglerprime=a??r ?G(r;rprime)vextendsinglevextendsinglerprime=a
bracketrightBig
adφprime
= ?
integraldisplayintegraldisplay
rprime<a
f(φprime) lim
?r→0
G(r;rprime)
?r
bracketleftBig
δ(rprime ?a + ?r)?δ(rprime ?a)
bracketrightBig
rprimedrprimedφprime
= ?
integraldisplayintegraldisplay
rprime<a
f(φprime)G(r;rprime)δprime(rprime ?a)rprimedrprimedφprime,
Wu Chong-shi
§29.3 a39a40Poissona41a42a43a44a45a46a47a48a49 Greena50a51 a5212a53
a84a174a7a58a35a36a140a1
a109a20
a3a4a107a16
u(r) =
integraldisplayintegraldisplay
rprime<a
bracketleftbigρ(rprime) + ε
0f(φprime)δprime(rprime ?a)
bracketrightbigG(r;rprime)drprime.
a84
a77
a6a7a19a143a1
a20a163a164
a10a11a175a176a58a86 ε
0f(φprime)δprime(rprime ?a)
a0
a68a69δ
prime(rprime ?a)
a20
a83a177a7a5a6a72a19a143a1
a20a163
a164
a10a11a102a178a28a179a0
a84a180a110a35a36a181a182a83
a63
a134a183a184a185a186a0a187a188a150a108a189
a63
a134
a100a101a66a67
?22u(r) = ? 1ε
0
bracketleftBig
ρ(r) + ε0f(φ)δprime(r ?a)
bracketrightBig
, |r| < a,
u(r)vextendsinglevextendsingler=a = 0,
a151a97a7a24a124a30a190a150a191a174
a20a101
a0
? a84a5a6a7a72a181a131δ a68a69a192a193
a98
a69a20
a87a194a195a7a196a197a198
a64a147a148a149a20a100a101a66a67
a7a124a35a36a106a107a102a197a198
a20a64a147a148a149
a7a199a200a201a72
a60a61
a76a202a27
a112
a173a203a204
a63a154a120a121a20
a196a197a198
a154
a7a72a205a206a59a207a208a208a102 0
a209
a199
a72
a64a147
a1a200a102 0 (a14a210
a69a65
a102a211a212)
a20
a196a197a198
a154
a0a1a2
a135a213
a58a194a214a95a84
a88
a196a197a198
a154a20
a107
a89
a0
? a96a97a7a196a197a198a64a147a148a149
a35a36a215
a141
a102
a60a61a20a120a121a123a33a20
a196a197a198
a154
a7a216a217a145a200a218a219a220a35a36a221a222a196
a197a198
a64a147a148a149 (a223
a107
a64a147a109
a1
a20a224a20a135a156) a167a60a61a196a197a198a154 (a205a206a59a207a20a224a20a135a156) a20
a205
a136
a0
a225a226a140a196a197a198
a64a147a148a149
a106a107a16
a60a61a20
a196a197a198
a154
a7a24
a223
a107
a20a227
a97a86a228a72a18
a64a147a109a20a224
a0
a36a1a229a230a95 Green
a68a69a20
a133
a88a101a89
a0
a62a63a88a101a89
a86a231a27
a112
a197a198
a66a67a20a232a233a68a69a80a81
a0a84
a88a101a89a234
a117a235a236a237a7a238
a23
a86a38a90
a20a101
a239a239a86a211a212a240
a69
a0
a62a160a88a101a89
a86a10a241
a89
a7
a193
a76a242a243a188a86a140
a64a147
a1
a20a163a164
a10a11a117
a63
a134a8a9
a20a23
a10a11 (a118a102a241
a10a11)a31a244a0a84a199a150a72a245a246a196a247
a120a121a20a248a249a123a250(a251a252a253a123
a7a254a211
a147a255a0
a7a8a8)a195a1a125a14
a177a0a225a226a2a3a90a191a4a226a117
a248
a134 (
a209
a200a86
a63
a134) a241a10a11a162a8a5a173a31a244
a64a147
a1
a20a163a164
a10a11a7
a17
a255a0a20a248a249a123a250a227
a97a150a27a96a6a7
a20a8a9
a0
a111
a36a5a7a10a241
a89a20a10a23
a86a35a36a168a83a150
a8a123a33
a20a101
a7a238
a23
a86
a234
a117a235a236a150
a8
a0