Wu Chong-shi
a0a1a2a3a4 (
a5) a6 a7 a8 (a9)
§24.1 a10a11a12a13 Bessel a14a12
a15a16a17a18a19a20a21a22a23a24 Bessel
a25a26a27a28a29a26a30
a24 Bessel
a25a26a31
a32a17a18 J
1/2(x)a27
J1/2(x) =
∞summationdisplay
k=0
(?)k
k!Γ(k + 3/2)
parenleftBigx
2
parenrightBig2k+1/2
=
radicalbigg 2
pix
∞summationdisplay
k=0
(?)k
(2k + 1)!x
2k+1 =
radicalbigg 2
pix sinx.
a33a34a35 J
1/2(x)a36a37a38a25a26a31a39a40a41a42a43a44
J?1/2(x) =
radicalbigg 2
pix cosx.
a45a46a47a35a48 J
ν(x)
a24a49a50a51
a43a52a53a54a55a56parenleftbigg
1
x
d
dx
parenrightbigg
xνJν(x) = xν?1Jν?1(x),
parenleftbigg
?1x ddx
parenrightbigg
x?νJν(x) = x?(ν+1)Jν+1(x),
a57a58a34a59a60
x?n+1/2J?n+1/2(x) =
parenleftbigg1
x
d
dx
parenrightbiggn
x1/2J1/2(x) =
parenleftbigg1
x
d
dx
parenrightbiggnradicalbigg2
pi sinx,
x?n?1/2Jn+1/2(x)=
parenleftbigg
?1x ddx
parenrightbiggn
x?1/2J1/2(x)=
parenleftbigg
?1x ddx
parenrightbiggnradicalbigg2
pi
sinx
x .
a61a62a35a63a64a20a50
a28a29a26a30 Bessela25a26a65a36a37a38a25a26
a35
a65a36a66a25a26a67a68a69a25a26
a24a70a71
a25a26a31
a72a73a35 J
n+1/2(x)a74J?(n+1/2)(x)a36a75a76a77a52
a24a35
W[Jn+1/2(x), J?(n+1/2)(x)] = (?)n+1 2pix.
a78N
n+1/2(x)a74J?(n+1/2)(x)a75a76a79a52
a35
Nn+1/2(x) = cos(n + 1/2)pi ·Jn+1/2(x) ?J?(n+1/2)(x)sin(n + 1/2)pi = (?)n+1J?(n+1/2)(x).
Wu Chong-shi
§24.2 a80Bessela81a82 a832a84
§24.2 a85 Bessel a14a12
Helmholtza86a87?2u+k2u=0a88a89a90a91a53a92a93a94a95a96a97
a35a98a99a100a101a59a60a102a103
a93a86a87
1
r2
d
dr
parenleftBig
r2dRdr
parenrightBig
+
parenleftBig
k2 ? λr2
parenrightBig
R = 0.
a88
a20a104a105a106
a92 λl = l(l + 1), l = 0,1,2,···a31
a15a16a57a17a18a107a50
a86a87
a24a108a109a110a111
a31
star k = 0a27
a49a50
a75a76a77a52
a109
a36 rl a67r?l?1 a31 (a112a11320a114)
star k negationslash= 0a27
a58a115
a95a116x = kr a67y(x) = R(r)a35a117a86a87a95a118
1
x2
d
dx
parenleftBig
x2 dydx
parenrightBig
+
bracketleftBig
1? l(l + 1)x2
bracketrightBig
y(x) = 0.
a107a50
a86a87a119a118a89 Bessela86a87
a35a120a24a121a122
a67 Bessela86a87a123
a102
a79a124a31
star a89 Bessel a86a87a41a125
a49a50
a29a126
a35a20a50
a36 x = 0 a35a127a128a29a126
a35a20a50
a36 x = ∞a35a123
a127a128
a29a126
a35
a41a67
Bessela86a87a79a39a31
star a61a62a35a58a34a129a130a117a120a131a118 Bessela86a87a31
a132a133a60a107a50
a86a87a88 x = 0a126
a24a134
a91a86a87
ρ(ρ?1) + 2ρ?l(l + 1) = 0,
a61a78a134
a91a118 ρ1 = l a67ρ2 = ?(l + 1)
a35
a67 Bessela86a87
a24a134
a91 ρ = ±ν a135a39
a35a136a137a138a115
a95a116
y(x) = v(x)√x ,
a107
a40
a35a58a34a139a140a35 v(x)a24a103
a93a86a87a88x = 0a126
a24a134
a91
a57a141
a95a118
ρ = ±
parenleftbigg
l + 12
parenrightbigg
,
a67Bessela86a87
a24a22
a126a142a143
a20
a40a31
a107
a40
a35 v(x)a33a144a145a24a103
a93a86a87
a57
a36
1
x
d
dx
parenleftbigg
xdvdx
parenrightbigg
+
bracketleftbigg
1? (l + 1/2)
2
x2
bracketrightbigg
v = 0.
a127
a36l + 1/2a30
a24 Bessel
a86a87a31
a120a24a49a50
a75a76a77a52
a109a57
a36Jl+1/2(x) a67 Nl+1/2(x) a31a88
a62a146a147a47a35a57
a58a34a117
a89 Bessela86a87(17.84)
a24
a75a76a77a52
a109a148
a118
jl(x) =
radicalbigg pi
2xJl+1/2(x) =
√pi
2
∞summationdisplay
n=0
(?)n
n!Γ(n + l + 3/2)
parenleftBigx
2
parenrightBig2n+l
nl(x) =(?)l+1j?l?1(x) =
radicalbigg pi
2xNl+1/2(x)
=(?)l+1
√pi
2
∞summationdisplay
n=0
(?)n
n!Γ(n?l + 1/2)
parenleftBigx
2
parenrightBig2n?l?1
,
a93a149a119a118la30a89 Bessela25a26a67a89 Neumanna25a26a31
Wu Chong-shi
a150a151a152a153a154 (
a155) a156 a81 a82 (a157) a833a84
a158a159a50
a89 Bessela25a26a67a89 Neumanna25a26(a130a121a112
a130 24.1)a24a160a161a122
a36a27
j0(x) = sinxx , n0(x) = ?cosxx ,
j1(x) = 1x2parenleftbigsinx?xcosxparenrightbig, n1(x) = ? 1x2parenleftbigcosx + xsinxparenrightbig,
j2(x) = 1x3
bracketleftBigparenleftbig
3?x2parenrightbigsinx?3xcosx
bracketrightBig
; n2(x) = ? 1x3
bracketleftBigparenleftbig
3?x2parenrightbigcosx + 3xsinx
bracketrightBig
.
a16224.1
a163Bessela164a165jl(x)a166a163Neumanna164a165nl(x)a167a168a169a170a171a172a173a174a175a176a170 y = ±1/x
a21
a124a177
a35
a41a178
a58a34a179a180
a89 Hankela25a26
h(1)l (x) = jl(x) + inl(x), h(2)l (x) = jl(x)?inl(x).
a181 24.1 a117
a25a26eikr cosθ a182Legendrea183a184
a122a185a186
a31
a187 a188
eikr cosθ =
∞summationdisplay
l=0
cl(kr)Pl(cosθ),
a128a185a186
a53a26
cl(kr) = 2l+12
integraldisplay 1
?1
eikrxPl(x)dx = 2l+12
∞summationdisplay
n=0
(ikr)n
n!
integraldisplay 1
?1
xnPl(x)dx.
a189a190
a113 19a114a113 4
a16a24a191a192a35a57
a125
cl(kr) = 2l + 12
∞summationdisplay
n=0
(ikr)l+2n
(l + 2n)!
integraldisplay 1
?1
xl+2nPl(x)dx
= 2l + 12 il
∞summationdisplay
n=0
(?)n
(l + 2n)!(kr)
l+2n · (l + 2n)!
2l+2n n!
√pi
Γ(n + l + 3/2)
= 2l + 12 il√pi
∞summationdisplay
n=0
(?)n
n!Γ(n + l + 3/2)
parenleftbiggkr
2
parenrightbiggl+2n
=(2l + 1)il jl(kr).
Wu Chong-shi
§24.2 a80Bessela81a82 a834a84
a33a34a35a193a194a57
a125
a185a186a122
eikr cosθ =
∞summationdisplay
l=0
(2l + 1)il jl(kr)Pl(cosθ).
a195a196 a61
a118eikr cosθ = eikz a36Helmholtza86a87
a24a109
parenleftbig?2 + k2parenrightbigeikr cosθ = 0,
a136a137
a125
eikr cosθ =
∞summationdisplay
l=0
Aljl(kr)Pl(cosθ).
a197
a88
a24a110a111
a36a198a199
a179
a44a53a26 Al
a200
Aljl(kr) = 2l + 12
integraldisplay 1
?1
eikrxPl(x)dx
= 2l + 12
bracketleftBigg
1
ikre
ikrxPl(x)
vextendsinglevextendsingle
vextendsinglevextendsingle
1
?1
? 1ikr
integraldisplay 1
?1
eikrxPprimel(x)dx
bracketrightBigg
= 2l + 12 1ikr bracketleftbigeikr ?(?)le?ikrbracketrightbig+ O
parenleftbigg 1
r2
parenrightbigg
.
a19a20
a86a201
a35
jl(kr) = 1kr cos
parenleftbigg
kr ? 12
parenleftbigg
l + 12
parenrightbigg
pi? pi4
parenrightbigg
+ O
parenleftbigg 1
r2
parenrightbigg
= 1kr cos
parenleftbigg
kr ? l + 12 pi
parenrightbigg
+ O
parenleftbigg 1
r2
parenrightbigg
= 12kr bracketleftbig(?i)l+1eikr + il+1e?ikrbracketrightbig+ O
parenleftbigg 1
r2
parenrightbigg
= 12kr(?i)l+1 bracketleftbigeikr ?(?)le?ikrbracketrightbig+ O
parenleftbigg 1
r2
parenrightbigg
,
a61a62a35
Al (?i)
l+1
2 =
2l + 1
2i a202
Al = (2l + 1)il,
a193a194a57a59a60a185a186a122
eikr cosθ =
∞summationdisplay
l=0
(2l + 1)il jl(kr)Pl(cosθ).
a41
a58a34a203a204a107a50a185a186a122a20a50a205a206a109a207
a27a208a209a210a211a212a209a210a213a214a31
a107
a36
a61
a118
a35a215a216a179a179
a79a217
a24
a97
a218a61a219
a118 e?iωt a35a220 r a67θ a118a89a90a91
a35a128a47a122a221a222
a36a223θ = 0(
a202
a127 z
a224)a86a223a225a226
a24a227
a201a228
a35
a228a26
a118k a35a78a229a222a230a20a184a231
a24 j
l(kr)
a128a232
a125a89a201a228
a24
a79a217
a61a219a35
jl(kr) ~ 1kr sin
parenleftbigg
kr ? lpi2
parenrightbigg
.
Wu Chong-shi
a150a151a152a153a154 (
a155) a156 a81 a82 (a157) a835a84
a0a1a2a3a4 (a1)
a233a234a235a236a237a238a239 (a5)
a60a197
a88a118a240
a35a98a99a241a101a242a206a243a159a244a245a246a24a247a103
a93a86a87
a179a109a110a111a35a248a249a243a108a109a107a250a179a109a110a111a24
a20a244
a125a251a86a252
a35
a93a94a95a96a252a31
a107a244
a86a252
a35a253a73
a125
a20a179a24a254a190a255a0a35a1
a198
a35a2a108
a86a87a67
a179a109a255a0
a65a36
a75a76
a24a35a61a62a179a109a110a111a24a109a232
a125a3a4a76a31a88a113 15a114a231
a35a98a99a100a101a191a71a232a5a24a108a109a6
a87
a35
a93a7
a243a107
a244a109
a252a8a9
a179a109a110a111a24a2a108
a31
a22
a149a36
a35a100a101a134
a44 (a11215.1
a16)a107a244
a86a252a36a10a42a11a12a13a177
a137a190
a9
a108a109
a247a103
a93a86a87
a179a109a110a111a35
a88
a206a18a47a35a148a14
a9a92a15
a159a50a110a111
a27
1. a16a17a18a19a20a21a22a23a24a25a26
a35a27a28a29a30a35a31a32a33a34a35a36a35
a16a17a18a19a20a23a24a25a26a37
2. a24a26a19a20a38a26a21a22a23a24a39a40a41a42a43a23a44a16a17a45a46a47a48
a35a27a28a29a30a35a31a32a33a34a35a36a35
a16a17a45
a46a21a49a50a38a37
3. a16a17a45a46a21a22a23a24a51a25a52a53a54a31
a55a107a20
a114
a186a56a35a98a99a57a2a55a206a18a47a57a58a107a159a50a110a111a35a55a78
a118a93a94a95a96a252a59
a179a20a50a60a45a24a206a18a146a147
a31
a253a73a35a61a62a63a64a35a107a65a248a249a24
a41a66a36a67a93
a255a0
a31a88
a20a104a205a206a110a111
a231
a35a107a250a255a0
a36a42a11
a144a145a24
a31
§24.3 a68a69a70a71a72a14a12a70a71
1. a73a74a75a73a74a76a77
a188
a88a26a78 K a47a179a180a243 na79a80a81a76a77V a35a120a24a82a83 (a80a81) a190x, y, ···a160a84a31
a58a34a48
a68a79a85a96
a86a218
a231a85a96
a24a87a88a24a89a90
a43a91
a60 n
a79a85a96
a86a218
a31a118
a62a35a32a179a180 n
a79a85a96
a24
a73a74a31
a8a9
a45n
a79a85a96
a86a218(
a202
K a118
a45
a26a78)a35a88a92
a179a243a20a93a146{e
i, i = 1, 2, ···, n}a94
a194a35a86a218
a231
a24
a63a64a20a50
a85a96xa65
a58a34a190a120
a88
a107a20a93a146a47a24a95a96 (
a90a91) x1, x2, ···, xn a160a84a35
x = x1e1 + x2e2 +···+ xnen =
nsummationdisplay
i=1
xiei.
a8a9
a86a218
a231
a24
a85a96 xa67y a35a193a102a112
a24a97a98a179a180
a118
(x, y) = x1y1 + x2y2 +···+ xnyn =
nsummationdisplay
i=1
xiyi.
a107
a36
a20a50a45
a26a31
a72a73
a125
(x, y) = (y, x) a67 (x, x) ≥ 0,
a99a220a35a253a220a100a253x = 0
a97
a35a101
a125 (x, x) = 0a31a88
a62a146a147a47a35a57a58a34a179a180
a85a96 xa24a102a103bardblxbardbl
bardblxbardbl = (x, x)1/2.
a8a9
a70 n
a79a85a96
a86a218a35
a198
a192a104a105a106a47a107a97a98a179a180a35a108a109a110
a44
a35a107
a97
a24
a85a96
a102a103a57a58
a42a135a36
a45
Wu Chong-shi
§24.3 a111
a112a113a114a115
a81a82
a113a114
a836a84
a26a31a118
a243a105a116
a85a96
a102a103a104
a36
a45
a26
a35
a135a117a88
a105a116a102a103a179a180a24a158a118
a92
a35a48a97a98a179a180a119
a54a118
(x, y) = x?1y1 + x?2y2 +···+ x?nyn =
nsummationdisplay
i=1
x?i yi,
a120
a231x?i a36xi a24a70a121a122a31
a72a73a35
a88
a70
a85a96
a86a218
a231
a35
(x, y) = (y, x)?.
a107
a40
a24a97a98a89a90a72a73
a36a68a79a85a96
a24
a91
a98a24a123a124
a43a91a31a125a178a135a11a12a13a67a126a127
a35a22
a149a36a85a96
a24a97
a98a128a72a129a130
a9
a146a24
a92
a148
a31
a98a99a253a73a131a2a55a97a98a24a132a244a58
a42
a179a180
a231a126a127a44
a120a24a193a15a133a24a2a134
a31
a55a78
a135
a44
a20a50a136a206a131a24a97a98a179a180 (a34a194a57
a119a118
a97a98a136a206)
a31
a137a138 24.1 (a179a180
a88
a45
a26a139
a70
a26a78 K
a47a24)
a85a96
a86a218
a231a85a96xa67y a24a97a98 (x, y)a36
a120a99a24
a91
a96a140a25a26
a35a144a145
a27
1. (x, y) = (y, x)? a37
2. (αx + βy, z) = α?(x, z) + β?(y, z)a35a141a142αa143β a21a46a144K a145a38a146a147a37
3. a148a149a150a151xa35(x, x) ≥ 0a37a152a153a154a152x = 0a155
a35(x, x) = 0
a31
a181 24.1 a215
x =
?
??
??
??
x1
x2
...
xn
?
??
??
?? a67 y =
?
??
??
??
y1
y2
...
yn
?
??
??
??
a36
a45
a26a78
a47a24
a15a85a96
a35P
a118(a135a179a24)a8a69a156a157
a35
a8a69a158Pii
a159
a118
a127a45
a26
a35a128a58a179a180
a85a96xa67y
a24
a97a98
a118
(x, y) =
parenleftBig
x1, x2, ···, xn
parenrightBig
?
??
??
??
P11 0 ··· 0
0 P22 ··· 0
... ...
0 0 ··· Pnn
?
??
??
??
?
??
??
??
y1
y2
...
yn
?
??
??
??.
a181 24.2 a45
a95a96 ta24a33a125
a70
a53a26
a24
a183a184
a122a24a160a71a35
a88a183a184
a122
a4a252
a34a161
a183a184
a122
a67
a70
a26
a24a162
a252
a92a163a56
a20a50a70
a85a96
a86a218
a31a135a117a164
a188 0 ≤ t ≤ 1
a31
a215x(t)
a67y(t)a36
a62
a85a96
a86a218
a231
a24a49a50
a85a96 (
a202
a183a184
a122)a35a128a120a99a24a97a98a58a34a179a180
a118
(x, y) =
integraldisplay 1
0
x?(t)y(t)ρ(t)dt,
a120
a231
a241a165
a25a26 ρ(x) ≥ 0a220negationslash≡ 0a31
Wu Chong-shi
a166a167a168a169a170 (
a171) a172 a173 a174 (a175) a1767a177
a120a24a22a23a105a121
a36 ρ(x) ≡ 1a35
(x, y) =
integraldisplay 1
0
x?(t)y(t)dt.
a178a179a180a181a182a183a142
a38a1841a34a185a186a35a39a40a187a188
a35
a189a190
a21a191a38a192a193a38a194a147a195a196
a35
a23a197a194a147a143a198
a199a200
a38
a180a181a201
a21a191a46
a35a202a203
a1843a34a185a186a142a38
a189a204a205a206
a25a207a208a31
a88
a62a146a147a47a35a57a48
(x, x)1/2 = bardblxbardbl
a119a118a85a96xa24a209(
a202
a85a96x
a24 a210a102a103a211)
a31
a55a47
a201
a97a98a136a206
a231
a24
a113 1a67a1132a255a2a108a35a58a59
(x,αy) = α(x, y).
a61a62
bardblαxbardbl = (αx, αx)1/2 =
bracketleftBig
αα?(x, x)
bracketrightBig1/2
= |α|bardblxbardbl.
a63
a199
a20a50
a123a212a85a96a213
a34a120a24a214a57
a56a118
a210a124
a217
a102a103a211a24
a85a96
a35
a139a119a118 a215a216a217
a24
a85a96
a35
parenleftBig x
bardblxbardbl,
x
bardblxbardbl
parenrightBig
= 1.
star a179a180a243a97a98a24a85a96
a86a218
a119a118
a97a98a86a218
a31
star a232a125
a97a98a24a45
a85a96
a86a218
a119a118a218
a159a65a219a86a218 (Euclidean space)
a37
star a232a125
a97a98a24a70
a85a96
a86a218
a119a118a220
a86a218 (unitary space)
a31
2. a221a222a223
a88a224a225
a243a97a98a179a180a194a35a57a58a34a226a227
a85a96a221a222
a24a89a90
a31
star a253a220a100a253 (x, y) = 0a97
a35a49
a85a96x, y
a127a228
a31
star a212a85a96a67
a63
a199a85a96a65
a127a228
a31
a137a13824.2 a215
a8a9
a33
a125
a24i
a67ja35(xi, xj) = δij a35a128a119a85a96
a93{x
1,x2,···}a36a221a222a215a216
a24
a31
a52a53a229a23a38a194a147a23a24a21a230a54a231a232a38
a35a202
a21a233a234a235a236a237a198a238a230a54a44a239a240a241a194a147
a35
α1x1 + α2x2 + α3x3 +··· = 0,
a242
a23a24a25
αj = 0, j = 1,2,3,···.
a243
a40na244a194a147a195a196
a142
a38a150a151a23a44 na197a52a53a229a23a194a147a245a39a40a246a240a247a195a196a38a248
a35a249
a234a221a222
a215a216a250(a192
a249
a221a222a251a252a250) a31
a253a254
a52a53a229a23a248
a35
a231
a190
a31a183
a190
a145a192a191a255a145
a35
a245a51a25a0a1a38a2
a185
a54a31
Wu Chong-shi
§24.3 a111
a112a113a114a115
a81a82
a113a114
a838a84
3. a3a4a223
a137a138 24.3
a88a125a5a79a85a96
a86a218
a231
a35
a198
a192a20a93a127a228a6a20a24
a85a96(a119a118
a20a50
a221a222a215a216a80a81a7)a35
a99
a135a8a9a88
a19a20a50a10a11a24a127a228a6a20
a85a96
a160
a94a231
a35a128
a119
a138a127a228a6a20
a85a96
a160
a36a3a4
a24
a31
star a88a125a5a79
a24
a85a96
a86a218
a231
a35a20a50
a142a12a13a14
a228a6a15
a85a16
a160a17
a85a16a13a18a19a20a21a22
a86a23
a13a24a19a25a26a27
star a28a29a30a31
a17a32a33a33a34a35a36a37a38a39a40
a16a41
a23
a13a24a19
a32a42a43a36a44a45a46a47a48a15a49a50
a12a13a14a51a52
a15a40
a16(
a15a49a53a54
a13a55a56a57a58a59a60
a40
a16
a49)
a61a62a63a41
a23
a13a24a19
a32a43a64a65a66
a18
a40
a16a41
a23
a13
a15a49a67
a27
star a68
a15
a18a69a70a41
a23 V a17a32a71a15a49
a14a51a52
a15
a13
a40
a16
{xi,i = 1, 2, ···, k},
a44
a62a63a72
a36a73a50
a12
a32a36a15
a18a74a75a76a28a13a30a31a27
a75a77a13a62a78a79
a71a80a81a82
a18a83
1. a84a85a86a84x = 0a87
a32(x
i, x) = 0, i = 1, 2, ···, k a27
2. a88a89a90a91a92x ∈ V a32a93a94x =
ksummationdisplay
i=1
(xi, x)xi a27
3. Bessela95a96a97a98a92a96a99a100a101
a32a102
a88a89a90a91a92 x ∈ V a32a93a94
bardblxbardbl2 =
ksummationdisplay
i=1
|(xi, x)|2.
4. Parsevala103a104a100a101
a32a102
a88a89a90a91a92 x,y ∈ V a32a93a94
(y, x) =
ksummationdisplay
i=1
(y, xi)(xi, x).
a72a105a106
a36
a14a51a52
a15a40
a16
a49a50
a12a13a107a108a20
a44a109a110a32a111a43a112a36a50a113a114a115
a13a27
4. a116a117a118a119
a116a117a118a119
a36a15a120a53a54
a13
a40
a16a41
a23
a83a118a119a121a122a123a124a116a117
a32a125a126a127a128a129a32a36a130a131
a68
a15a130a132a23(
a133
a126a130a134a135a32a136
a133a137
a132a23 a ≤ x ≤ b)
a138a13a139a140a141a19f(x)a32a34a142a70a108
integraldisplay b
a
vextendsinglevextendsinglef(x)vextendsinglevextendsingle2dx
a143a68(a144a116a117f(x)a145
a146a147a148a149)
a27
star a130a131a150a151 f1
a152
f2 a13a153a79f1 + f2
a154
a36a155
a141a19a25a153
a32
(f1 + f2)(x) = f1(x) + f2(x),
star a150a151f
a152
a139a19αa13a19a156αf a36
(αf)(x) = αf(x),
a66a157
a13a158a159a160a70a141a19a13a161a162
a32a163a164
a153a79
a152
a19a156
a36a165
a137a13
a32a111a166
a13
a126a167a168a15
a18
a40
a16a41
a23
a27
a53
a78
a36a32a111
a133 vextendsingle
vextendsinglef1(x) + f2(x)vextendsinglevextendsingle2 +vextendsinglevextendsinglef1(x)?f2(x)vextendsinglevextendsingle2 = 2bracketleftbig|f1(x)|2 +|f2(x)|2bracketrightbig,
Wu Chong-shi
a169a170a171a172a173 (
a174) a175 a176 a177 (a178) a1799a180
a181a182a32a155
a18a158a159a160a70a141a19a183
a152a184
a36
a158a159a160a70a13
a32
vextendsinglevextendsinglef
1(x) + f2(x)
vextendsinglevextendsingle2 ≤ 2bracketleftbig|f
1(x)|2 +|f2(x)|2
bracketrightbig.
5. a116a117a121a185
a148
a186a187 24.4 a136f
1(x)a152
f2(x)a36a141a19a41
a23a17
a13
a155
a18a141a19
a32
a72a105a13a69a70
a36
(f1, f2) =
integraldisplay b
a
f?1(x)f2(x)dx.
a188
a89 vextendsingle
vextendsinglef1(x)vextendsinglevextendsingle2 +vextendsinglevextendsinglef2(x)vextendsinglevextendsingle2 ?2vextendsinglevextendsinglef1(x)vextendsinglevextendsingle·vextendsinglevextendsinglef2(x)vextendsinglevextendsingle = bracketleftbig|f1(x)|?|f2(x)|bracketrightbig2 ≥ 0,
a189a190
vextendsinglevextendsinglef?
1(x)f2(x)
vextendsinglevextendsingle = vextendsinglevextendsinglef
1(x)
vextendsinglevextendsingle·vextendsinglevextendsinglef
2(x)
vextendsinglevextendsingle ≤ 1
2
bracketleftbig|f
1(x)|2 +|f2(x)|2
bracketrightbig,
a191a192a193a194
integraldisplay b
a
vextendsinglevextendsinglef?
1(x)f2(x)
vextendsinglevextendsingledx
a195a196a27a197
a189a198
vextendsinglevextendsingle
vextendsingle
integraldisplay b
a
f?1(x)f2(x)dx
vextendsinglevextendsingle
vextendsingle ≤
integraldisplay b
a
vextendsinglevextendsinglef?
1(x)f2(x)
vextendsinglevextendsingledx,
a191a192a32a199a200f
1(x)a201f2(x)a202a103a203
a193a32a204a205a206a207
a92a208
a193a209a210a211
a195a196a27
a68
a166a67a212
a138
a32
a160
a182a130a131
a141a19 f(x)a13 a144
a213a214a149
bardblfbardbl = (f, f)1/2,
a215
a133a141a19f(x)a13a216a117a27
star a30a31
a36
a83a217a218a219a121a185
a148a186a187a220a32a221a222 (f, f) = 0a32f(x)
a223a224a225a226a217a227a228a229a119a230a231a231a232 0a27a233
a28
a36a32f(x)
a160
a182
a68
a71a234
a18a235a138
a35
a133 0a32a236a66a237a35a133 0a238a141a19a140
a34a35a239a240a241
a70a108a140
a32a181a182
a184
a160
a182a71 (f, f) = 0
a27
star a242
a126a128a129a32a243a244(f, f) = 0a32a245f(x)
a160
a182
a68a246
a214
a133a247a238a235a161a138a248a74a247a140a27
a181a182a249a250a129 (f, f) = 0
a251a252a253f(x)
a254a255a231a231a232 0a27
star a243a244a0a77a1
a131
a238a247a141a19a238a2a3
a32a4a5a6
a254a255a231a231a232 0a121a116a117a7a232a8a116a117
a32a9a10a32a66a11a130a131
a238
a69a70
a112
a154a12
a162a69a70a13a14a15a238a16 3a109a44a17a27
a18a19
a208
a193
a92
a211a20a21
a203
a192a22a210a23a24a25a198
(f1, f2) =
integraldisplay b
a
f?1(x)f2(x)ρ(x)dx,
a26
a98ρ(x) ≥ 0a85negationslash≡ 0a27a27a28
a32a94a29a30
a97a31a32
a200a33a34a35
a92a36a37a27a38a39a40
a32a29
a89
a18a19
a202a103a203
a193
a92
a200a41a209a35a42
a36a37
a198a200a41a193a194
integraldisplay b
a
vextendsinglevextendsinglef(x)vextendsinglevextendsingle2ρ(x)dx
a195a196a27
Wu Chong-shi
§24.3 a43
a44a45a46a47
a176a177
a45a46
a17910a180
6. a116a117a121a48a49a50a51a52
a53
a141a54f(x)
a152
g(x)a55a56
(f, g) ≡
integraldisplay b
a
f?(x)g(x)dx = 0,
a245a215
a72a105
a36 (
a68
a132a23 [a, b]
a138)a48a49a238a27
a53
a141a54 f(x)
a152
a72a57
a58
a238a69a70
(f, f) ≡
integraldisplay b
a
f?(x)f(x)dx = 1, a59a60 bardblfbardbl = 1,
a245a215f(x)a36
a50a51a61a238a27
a43a53a163a164
a141a54a161a162 {fi}a32a62a71
(fi, fj) ≡
integraldisplay b
a
f?i (x)fj(x)dx = δij,
a245a215a166
a141a54a161a162
a36
a48a49a50a51a238a27
a63 24.3
a141a54a161a162
braceleftbigeinx/√2pi, n = 0,±1,±2,···bracerightbig
a68
a132a23 [?pi, pi]
a138
a36a64
a51a52a65a238a27
7. a48a49a50a51a116a117a66a121a67a68a52a69a70
a243a244a163a164 (
a141a54a41
a23
a15a238) a71a72a141a54 f(x) a32a73a160
a182a74a75a168a64
a51a52a65a141a54a161{fi, i = 1,2,···}a238
a57a58
a49
a162
f(x) =
∞summationdisplay
i=1
cifi(x), (maltesecross)
a245a215a64
a51a52a65a141a54a161{fi, i = 1,2,···}a36a50a76a238a27
a64
a51a52a65a141a54a161a238
a50a76
a58a2a3
a73a36
a152
a71a72a141a54
a36a73
a160
a182a77a78
a141a54a161a79a80a25a81a82a238a27
star a16a65
a32
a65a83
a129
a61
a32a66a84
a141a54a161a85
a78a252a71
a59a86a87
a84
a141a54
a32a73a245 (maltesecross)
a88
a35
a160
a250a163
a71a72f(x)a89
a168a65
a27
a66
a65a233a28a90a91a92a105
a32
a141a54a41
a23a36
a59a86a24a238
a40a93
a41
a23
a27
star a16a94
a32(maltesecross)
a88a85
a78a163a132a23[a, b]
a69a238a95a65a235xa106
a168a65a32a96a97a129a32a163a164a132a23[a, b]
a69a238a95a65a235xa32
a98
a54
∞summationtext
i=1
cifi(x)a106a85
a78a99a100a164 f(x)
a27
a66a101a99a100
a58
a215
a133a102a235
a99a100
a27
star a133a103
a152
a1
a131
a247a141a54a238a2a3a25a104a85
a32a112
a160
a182a105(maltesecross)
a88a14a106a133a107a108
a155a109
a25a110a65
a84
a1
a131
a238a247a141a54
a32
a111a112a113a129a32a105a98
a54
∞summationtext
i=1
cifi(x)a14a106a133a158a89a99a100a164 f(x)a32a60
limn→∞
integraldisplay b
a
vextendsinglevextendsingle
vextendsinglef(x)?
nsummationdisplay
i=1
cifi(x)
vextendsinglevextendsingle
vextendsingle
2
dx = 0. (#)
star a16a114
a32a115
a141a54a161{fi, i = 1,2,···}a238
a64
a51a52a65a58
a32
a160
a17a116
ci =
integraldisplay b
a
f?i (x)f(x)dx = (fi, f). (circleasterisk)
Wu Chong-shi
a169a170a171a172a173 (
a174) a175 a176 a177 (a178) a17911a180
star a16a117
a32
integraldisplay b
a
vextendsinglevextendsingle
vextendsinglef(x)?
nsummationdisplay
i=1
cifi(x)
vextendsinglevextendsingle
vextendsingle
2
dx = (f, f)?
nsummationdisplay
i=1
c?i(fi, f)?
nsummationdisplay
i=1
ci(f, fi) +
nsummationdisplay
i=1
vextendsinglevextendsinglec
i
vextendsinglevextendsingle2
= (f, f)?
nsummationdisplay
i=1
vextendsinglevextendsinglec
i
vextendsinglevextendsingle2,
a111a166a32a249a44
a141a54a161{fi, i = 1,2,···}
a36a50a76
a238
a32a9a10a32a118a119 (#)
a88
a32
a154
a71
(f, f) =
∞summationdisplay
i=1
vextendsinglevextendsinglec
n
vextendsinglevextendsingle2 = ∞summationdisplay
i=1
vextendsinglevextendsingle(f
i, f)
vextendsinglevextendsingle2.
a66
a154
a36
a116a117a66{fi, i = 1,2,···}a121a67a68a52a120a121
a32
a59
a215 Parseval a146a122
a27
a105
a141a54a161{fi, i = 1,2,···}a238
a109a110a123a124a32a125a136
a72
a36a64
a51a52a65a238
a32a236a35
a65
a130a50a76a32
a184a126a127a128
a77
a66
a84
a141a54a161a238a57a58
a49
a162
∞summationtext
i=1
aifi(x)a61a129a130f(x)a27a76a68a238a30a31
a36
a83
a243a131a132a133a49
a162a82a54 ai (a134na59a60)a32
a160
a182a116a135
a55a136a129a130
a32a137a138
a110
vextenddoublevextenddouble
vextenddoublef(x)?
nsummationdisplay
i=1
aifi(x)
vextenddoublevextenddouble
vextenddouble
2
≡
integraldisplay b
a
vextendsinglevextendsingle
vextendsinglef(x)?
nsummationdisplay
i=1
aifi(x)
vextendsinglevextendsingle
vextendsingle
2
dx
a248a139a140a141
a142a143 Parseval
a159a144a238a145a146
a32
a160
a182a17a116
integraldisplay b
a
vextendsinglevextendsingle
vextendsinglef(x) ?
nsummationdisplay
i=1
aifi(x)
vextendsinglevextendsingle
vextendsingle
2
dx = (f, f)?
nsummationdisplay
i=1
a?i(fi, f)?
nsummationdisplay
i=1
ai(f, fi) +
nsummationdisplay
i=1
vextendsinglevextendsinglea
i
vextendsinglevextendsingle2
= (f, f)?
nsummationdisplay
i=1
a?ici ?
nsummationdisplay
i=1
aic?i +
nsummationdisplay
i=1
a?iai
= (f, f) +
nsummationdisplay
i=1
vextendsinglevextendsinglea
i ?ci
vextendsinglevextendsingle2 ? nsummationdisplay
i=1
c?ici,
a111a166a32a147a
i = ci ≡ (fi, f)a148
a32a138
a110a65
a130
a248a139a140a140
a32
(f, f)?
nsummationdisplay
i=1
vextendsinglevextendsinglec
i
vextendsinglevextendsingle2 ≥ 0,
a43a142a32a149a253a150
a54 na238a151a153
a32a138
a110a152a61a152a140a27
a236
a59a153
a243a131a32a73a71
(f, f) ≥
∞summationdisplay
i=1
vextendsinglevextendsinglec
i
vextendsinglevextendsingle2.
a66a64a154a36
a116a117a118a119a155a121 Bessel a224a156a157a27
a114a158a163
a85
a164
a141a54a161
a36a50a76
a238a159a160a27
a116a117a118a119a121a67a68a52a69a70a27a161a162
a188a163a164
a208a92
a18a19a165
a100a92 Cauchy a166a167a92a168a169a170a171a172a196
a42
a163a164
a208
a32a173a174a42
a163a164a198a175a176
a92a27
a202a103a203
a193a18a19a177
a100a92
a163a164
a40
a175a176
a92a27
a178a179a32a180a175a176
a92a208
a193a163a164a174a198Hilbert a163a164
a27a27a181a182a183
a32
a196a184a185a186a98
a94a25a187
a92
a35a188
a27
a189a190
a92a191a192
a32a193a194a195a196
a40a196 Hilbert a163a164a92a197a198a208
a22a199
a92a27