Wu Chong-shi
a0a1a2 a3a4a5a6a7a8a9a10a11a12a13a14a15a16a17(a3)
a181a19
a20a21a22 a23a24a25a26a27a28a29a30a31a32a33a34a35a36a37 (a23)
§9.1 a38a39a40a41a42a43a44a45a46a47a48
a49a50a51a52a53a54a55a56a53a57
a58a59a55a56a53a60a61a62a63a64a65a66a55a56a53a57a67a68a60a61a65a66a55a52a53a69a70a54a56a53a71a72a60a61a65a66a55a73a53a57
a74a75a76a58a59a77a78a56a53a79a80a81a82a66a55a83a84a71a85a86a67a87a88a89a90a91a92a93a94a95a96a97a98
a99a1009.1
a101a102z0a65a58a59
d2w
dz2 + p(z)
dw
dz + q(z)w = 0
a55a56a53a71a78a76p(z)
a103q(z)a104
a66a105a55a106a107a108a800 < |z ?z
0| < R
a81a71a58a59a55a109a95a110a54a111a112a66a65
w1(z) =(z ?z0)ρ1
∞summationdisplay
k=?∞
ck(z ?z0)k,
w2(z) =gw1(z)ln(z ?z0) + (z ?z0)ρ2
∞summationdisplay
k=?∞
dk(z ?z0)k,
a113a114ρ
1, ρ2a103ga104
a65a115a116a57
star a101a102ρ1a69ρ2a65a117a116a71a118g = 0a71a78z0a53a75a58a59a55a66a55a52a53a69a70a54a56a53a57
star a101a102ρ1a69ρ2a67a65a117a116a71a69g negationslash= 0a71a78a58a59a55a66a75a119a120a121a116a71z0a53a75a113a73a53a57
a122a123a124a125a126a127a128a129a130a131a132a133a134a135a136a137a71a138a139a140a141a142a143a144a145a146a147a148a131a149a150a151a145a71a152a153a154
a155a156a157a145a146a131a158a159a160a161a133a57a162a163a164a165a131a166a146a132a167a71
a168a169a170a171
a71a172a173a154a174a175a176a177a178a179a180a181
a178a179a71a182a183a184a185a149a150a151a145a186a187a188a154a189a190a57
a101a102a191
a116a66a114a49a192a192a193a95a194a195a196a71a197a63a198a60a199a200a117a201a202a55ρa120a71a203a204
a191
a116a66a114a205a192a194a195a196a71
w1(z) = (z ?z0)ρ1
∞summationdisplay
k=0
ck(z ?z0)k,
w2(z) = gw1(z)ln(z ?z0) + (z ?z0)ρ2
∞summationdisplay
k=0
dk(z ?z0)k.
a206a65a71a207a208a209a210a211a212a112a213a214a60a199a82a204a213a116a55a215a216a217a218a219a57a220a221a71a72a222a223a224a96a225ρa120a57
a164a226a227a133a131a132a228a163
a40a41a48
a57a229g negationslash= 0a165a71w
2(z)
a131a227a133a180 w
1(z)a230a231(a232
a173a233a146a179)a71
a162a234a235a236a237a156a132a57a229g = 0a165a71w
2(z)
a131a160a161a133a167
a230a232
a233a146a179a71a238a176a132a131a227a133a239
a231
a57
a58a59a56a53a79a80a81a109a95a110a54a111a112a66
a104
a65a77a78a66a55a240a241a222a224a242a243a71a244a245a246a55a96a97(a67a88)a98
Wu Chong-shi
§9.1 a10a11a247a248a249a250a251a252a253a12a16 a182a19
a99a1009.2 a58a59
d2w
dz2 + p(z)
dw
dz + q(z)w = 0,
a76a254a55a56a53z
0
a55a79a800 < |z ?z
0| < R
a192a109a95a77a78a66
w1(z) =(z ?z0)ρ1
∞summationdisplay
k=0
ck(z ?z0)k, c0 negationslash= 0, (9.1)
w2(z) =gw1(z)ln(z ?z0) + (z ?z0)ρ2
∞summationdisplay
k=0
dk(z ?z0)k, ga69d0 negationslash= 0 (9.2)
a55a240a224a242a243a65z
0
a53a65
p(z)a55a67a255a0a94a1a55a52a53a71 a2 (z ?z0)p(z)a76z0a53a66a105a3
q(z)a55a67a255a0a4a1a55a52a53a71 a2 (z ?z0)2q(z)a76z0a53a66a105a57
a2z
0
a75a58a59a55a77a78a56a53a57
ρ1a103ρ2
a5
a75a77a78a66a55a6a7a57
a8 9.1
a9
a221a71z = 0
a103z = 1a104
a65a255a10a11a58a59
z(1?z)d
2w
dz2 + [γ ?(1 + α + β)z]
dw
dz ?αβw = 0
a55a77a78a56a53a3 x = ±1a64
a104
a65Legendrea58a59
parenleftbig1?x2parenrightbig d2y
dx2 ?2x
dy
dx + l(l + 1)y = 0
a55a77a78a56a53a57
a75a12a13a14a111a15a16a53a65a17a75a77a78a56a53a71a62a18a224a74a19a20 z = 1/ta71
a101a102t = 0a65a19a20a21a55a58a59a55a77
a78a56a53a71a2t = 0a53a65a19a20a21a55a58a59a55a56a53a71a118
t
bracketleftbigg2
t ?
1
t2p
parenleftbigg1
t
parenrightbiggbracketrightbigg
= 2? 1tp
parenleftbigg1
t
parenrightbigg
a103
t2 · 1t4q
parenleftbigg1
t
parenrightbigg
= 1t2q
parenleftbigg1
t
parenrightbigg
a76t = 0a53a66a105a71a22a2 z = ∞a53a65a19a20a23a58a59a55a56a53a71a118zp(z)
a103z2q(z)a76z = ∞a53a66a105a71a78
a5
z = ∞a53a65a19a20a23a55a58a59a55a77a78a56a53a57a24a199a71a111a15a16a53z = ∞a64a104
a65a255a10a11a58a59
a103Legendre
a58a59
a55a77a78a56a53a57
Wu Chong-shi
a0a1a2 a3a4a5a6a7a8a9a10a11a12a13a14a15a16a17(a3)
a183a19
a25
a38a39a40a41a42a43a44a45a46a26a48a27a28
a98
? a29
a77a78a66w
1(z)
a69w
2(z)a30a31
a58a59
? a32
a0a33a34a213a116a71a82a225a35a36
a103
a211a212a112a213
? a37a38
a82a225a213a116a55a215a216a217a218a219
a39a40a55a82a66a0a59a71a198a65a41
a29 w1(z)
a107a219a55a66
a30a31
a58a59a71
star a101a102
a61a42a62a63a82a204a109a95a110a54a111a112a66a71a220a221a43a44a45a46a47a48a71a205a192a222a224a85
a29 w2(z)a107a219a55
a66
a30a31
a58a59a57
star a101a102
a197a63a49a61a82a204a94a95a66(
a49a101ρ1 = ρ2a63)a71a50a51a71a214a72a222a223a85a29 w2(z)a107a219a55a66(a197
a63a55ga94a96a67a750)
a30a31
a58a59a82a66a57
a52a84a115a53a241a58a59a55a215a216a97a51a71a54a206a94a95a4a1a110a54a115a53a241a58a59
d2w
dz2 + p(z)
dw
dz + q(z)w = 0,
a101a102a55a56
a82a225a12a94a95a66w
1(z)
a71a50a51a71a198a60a199
a32
a0a57a241
w2(z) = Aw1(z)
integraldisplay z braceleftbigg 1
[w1(z)]2 exp
bracketleftbigg
?
integraldisplay z
p(ζ)dζ
bracketrightbiggbracerightbigg
dz
a58a82a225a59a4a66a57a197a65a60a75a197a109a95a66
a104a61a62
a58a59
d2w1
dz2 + p(z)
dw1
dz + q(z)w1 =0,
d2w2
dz2 + p(z)
dw2
dz + q(z)w2 =0.
a210w
2(z)a103w1(z)
a241a63a64a197a109a95a58a59a71a85a201a65a71a45a60a204a66
w1d
2w2
dz2 ?w2
d2w1
dz2 + p(z)
parenleftbigg
w1dw2dz ?w2dw1dz
parenrightbigg
= 0,
a2
d
dz
parenleftbigg
w1dw2dz ?w2dw1dz
parenrightbigg
+ p(z)
parenleftbigg
w1dw2dz ?w2dw1dz
parenrightbigg
= 0.
a57a241a71a60a204
w1dw2dz ?w2dw1dz = Aexp
bracketleftbigg
?
integraldisplay z
p(ζ)dζ
bracketrightbigg
.
a109a67a68a199w2
1
a71a69a60a199a204a66
d
dz
parenleftbiggw
2
w1
parenrightbigg
= Aw2
1
exp
bracketleftbigg
?
integraldisplay z
p(ζ)dζ
bracketrightbigg
. (9.3)
a85a57a241a94a86a71a214a204a66a70a246a55a71
a102
a57
Wu Chong-shi
§9.1 a10a11a247a248a249a250a251a252a253a12a16 a184a19
a8 9.2 a82Legendrea58a59
parenleftbig1?x2parenrightbig d2y
dx2 ?2x
dy
dx + l(l + 1)y = 0
a76x = 1a79a80a81a55a192a72a66a57
a48
a60x = 1a65Legendrea58a59a55a77a78a56a53a71a73a202a74
y(x) = (x?1)ρ
∞summationdisplay
n=0
cn(x?1)n.
a30a31
a58a59a71a214a192
∞summationdisplay
n=0
cnbracketleftbig(n + ρ)(n + ρ + 1)?l(l + 1)bracketrightbig(x?1)n+1 + 2
∞summationdisplay
n=0
cn(n + ρ)2(x?1)n = 0.
a75a76a60a199a204a66a35a36a58a59
ρ(ρ?1) + ρ = 0
a103
a211a212a112a213
cn = ?n(n?1)?l(l + 1)2n2 cn?1.
a35a36a58a59a55a66a65
ρ1 = ρ2 = 0.
a164
a170a77Legendre
a136a137a123x = 1
a78a79a80a81
a131a82
a168
a132a83a84a129a85a123a86
a80|x?1| < 2 a81
a132a87a131a71
a229a141a123x = 1
a78
a173a88a3a234a82a89a132a90
a168a91
a232
a173a233a146a179a71a92x = 1(a180x = ?1)a163a93
a78
a71a162a234
a123x = 1(a180x = ?1)
a78a94a95
a57a96a97a235a156a82
a168
a132a57
a75a211a212a112a213a71a60a199a82a225Legendrea58a59a76x = 1a53a79a80a81a59a94a66a55a213a116a55
a32
a196a98a219
cn = (l + n)(l + 1?n)2n2 cn?1
= (l + n)(l + 1?n)2n2 (l + n?1)(l + 2?n)2(n?1)2 cn?2
= ······
= (l + n)(l + 1?n)2n2 (l + n?1)(l + 2?n)2(n?1)2 ··· (l + 1)l2·12 c0
= 1(n!)2 Γ(l + n + 1)Γ(l ?n + 1)
parenleftbigg1
2
parenrightbiggn
c0.
a99c
0 = 1
a71a214a82a225a12Legendrea58a59a55a59a94a66
Pl(x) =
∞summationdisplay
n=0
1
(n!)2
Γ(l + n + 1)
Γ(l ?n + 1)
parenleftbiggx?1
2
parenrightbiggn
,
a5
a75la86a59a94a100 Legendrea121a116a57
a101a102
a224a101a102a82a59a4a66a71a78a202a74
y2(x) = gPl(x)ln(x?1) +
∞summationdisplay
n=0
dn(x?1)n
Wu Chong-shi
a0a1a2 a3a4a5a6a7a8a9a10a11a12a13a14a15a16a17(a3)
a185a19
= g
∞summationdisplay
n=0
1
(n!)2
Γ(l + n + 1)
Γ(l ?n + 1)
parenleftbiggx?1
2
parenrightbiggn
ln(x?1) +
∞summationdisplay
n=0
dn(x?1)n.
a103a104a115a53a241a58a59
a191
a116a66a105a55a36a106a107a108a71a96a225a213a116g(a94a96a67a750)
a103dn a2a60a57
a109a39a210a55a110a105a65a52a84a59a4a66a111a59a94a66a112a113a55a112a213a71a114a225
y2(x) = gPl(x)
integraldisplay xbraceleftBigg 1
[Pl(ξ)]2 exp
bracketleftBiggintegraldisplay ξ
2ζ
1?ζ2dζ
bracketrightBiggbracerightBigg
dξ
= gPl(x)
integraldisplay x 1
[Pl(ξ)]2
dξ
1?ξ2
= gPl(x)
integraldisplay x dξ
1?ξ2 + gPl(x)
integraldisplay xbraceleftbigg 1
[Pl(ξ)]2 ?1
bracerightbigg dξ
1?ξ2,
a115a116a13a14a117a67a59a4a196a76|x?1| < 2 a81a66a105a71a60a76a60a199
a29
a59a4a66a74a75
y2(x) = g2Pl(x)ln x + 1x?1 +
∞summationdisplay
n=0
dn(x?1)n.
a99g = 1a71a118a96a225d
n
a71a119a21a214a60a199a82a225Legendrea58a59a55a59a4a66
Ql(x) = 12Pl(x)
bracketleftbigg
ln x + 1x?1 ?2γ ?2ψ(l + 1)
bracketrightbigg
+
∞summationdisplay
n=0
1
(n!)2
Γ(l + n + 1)
Γ(l ?n + 1)
parenleftbigg
1 + 12 +···+ 1n
parenrightbiggparenleftbiggx?1
2
parenrightbiggn
,
a5
a75la86a59a4a100Legendrea121a116a71a113a114γa65Eulera116a71ψ(z)a65Γa121a116a55a54a116a53a120a57a75a206a121a116P
l(x)(a121
a122a66a123a124a246a21a71a254a65a199x = ?1
a103x = ∞a75a73a53a55a119a120a121a116) a103Ql(x)a55a119a120a54a55
a192a125a96a54a55a126
a96a71a203a210a63a127a224a128a63a129a130a57
Wu Chong-shi
§9.1 a10a11a247a248a249a250a251a252a253a12a16 a186a19
a245a246a198a71a94a245a82a115a53a241a58a59
d2w
dz2 + p(z)
dw
dz + q(z)w = 0
a76a77a78a56a53a79a80a81a55a66a55a94a131a107a108a71a62a63a132a133a98a76a134a51a135a136a245a71a58a59a55a59a4a66a67a137a54a116a196a3a76a134
a51a135a136a245a71a58a59a55a59a4a66a60a61a137a54a116a196a3a76a134a51a135a136a245a71a58a59a55a59a4a66a94a96a137a54a116a196a57
a138 a139
a140a126a96a58a59a76a77a78a56a53a141a55a109a95a35a36 Reρ
1 ≥ Reρ2
a71a78
a220ρ
1 ?ρ2 negationslash=
a117a116a63a71 a59a4a66a94a96a67a137a54a116a196a3
a220ρ
1 = ρ2
a63a71 a59a4a66a94a96a137a54a116a196a3
a220ρ
1 ?ρ2 =
a77a117a116a63a71 a59a4a66a60a61a137a54a116a196a57
a75a12a142a143a144a244a71a67a145a146a74 z = 0a53a65a254a55a77a78a56a53a57a206a65a71a76z = 0a53a55a79a80a81a71a60
a29
a58a59a55
a213a116a74Laurent
a147a148
p(z) =
∞summationdisplay
l=0
alzl?1, q(z) =
∞summationdisplay
l=0
blzl?2.
a74a66a75
w(z) = zρ
∞summationdisplay
k=0
ckzk.
a30a31
a58a59a71a214a192
∞summationdisplay
k=0
ck(k + ρ)(k + ρ?1)zk+ρ?2 +
∞summationdisplay
l=0
alzl?1
∞summationdisplay
k=0
ck(k + ρ)zk+ρ?1 +
∞summationdisplay
l=0
blzl?2
∞summationdisplay
k=0
ckzk+ρ = 0,
a2
∞summationdisplay
k=0
ck(k + ρ)(k + ρ?1)zk+ρ?2 +
∞summationdisplay
k=0
ksummationdisplay
l=0
bracketleftbiga
l(k + ρ?l) + bl
bracketrightbigc
k?lzk = 0.
a33a34a149a219a109a67a119a150a86a195a71a2 z0a55a213a116a71a60a204
c0 [ρ(ρ?1) + a0ρ + b0] = 0.
a75a206c
0 negationslash= 0
a71a24a199
ρ(ρ?1) + a0ρ + b0 = 0.
a197a214a65a35a36a58a59a71a129a130a113a114a55a
0a103b0
a75
a0 = limz→0zp(z), b0 = limz→0z2q(z).
a52a84a35a36a58a59a60a199a82a225a109a95a35a36a71ρ
1a103ρ2
a57
a151
a91Reρ1 ≥ Reρ2
a57
Wu Chong-shi
a0a1a2 a3a4a5a6a7a8a9a10a11a12a13a14a15a16a17(a3)
a187a19
a85a33a34zna55a213a116a71a204
(n + ρ)(n + ρ?1)cn +
nsummationdisplay
l=0
bracketleftbiga
l(n + ρ?l) + bl
bracketrightbigc
n?l = 0,
a2
bracketleftbig(n + ρ)(n + ρ?1) + a
0(n + ρ) + b0
bracketrightbigc
n +
nsummationdisplay
l=1
bracketleftbiga
l(n + ρ?l) + bl
bracketrightbigc
n?l = 0.
a197a18a45a204a225a12a213a116a112a113a55a211a212a112a213a57
a182a183a184a185a149a150a151a145a71a152a153a92a143a144a145a146 c
n
a131a158a159a160a161a133a57a229a141a71a123 c
n
a131a160a161a133a167
a168a91
a232
a173ρa57a185ρ = ρ
1
a134a135a71a154a153a143a144a132w
1(z)
a57a155a185ρ = ρ
2
a134a135a71a156a153a143a144a132w
2(z)
a57a229
ρ1 ?ρ2 negationslash= a157
a146a165a71a152a156a157a158a136a137a131(a238a176a159a160a154a151a131)
a161
a132a57
a220ρ
1 = ρ2
a63a71
a9
a221a197a18a49a61a204a66a62a94a95a66a57a24a199a71a197a63a59a4a66a94a96a137a54a116a196a57
a220ρ
1 ?ρ2 =
a77a117a116ma63a71a54a206a59a4a66a55a213a116 c(2)
m
a71a192
bracketleftbig(m + ρ
2)(m + ρ2 ?1) + a0(m + ρ2) + b0
bracketrightbigc(2)
m +
msummationdisplay
l=1
bracketleftbiga
l(m + ρ2 ?l) + bl
bracketrightbigc(2)
m?l = 0.
a129a130m + ρ
2 = ρ1
a71a24a199a192
0·c(2)m +
msummationdisplay
l=1
bracketleftBig
al(ρ1 ?l) + bl
bracketrightBig
c(2)m?l = 0.
a60a76
a220
msummationdisplay
l=1
bracketleftBig
al(ρ1 ?l) + bl
bracketrightBig
c(2)m?l negationslash= 0a63a71 c(2)m a111a66a3
a220
msummationdisplay
l=1
bracketleftBig
al(ρ1 ?l) + bl
bracketrightBig
c(2)m?l = 0a63a71 c(2)m a43a130a57
star a54a206a59a94a162a135a107a71a58a59a55a59a4a66a64a94a96a137a54a116a196a57
star a54a206a59a4a162a135a107a71a58a59a55a59a4a66a94a96a67a137a54a116a196a71a220a221a72a61a101a102a82a66a57a49a65a197a63a199a21a55a163a196
a213a116c(2)
n (n > m)a164
a62a63a83a165a206c
0(2)a103c
(2)m a57a59a4a66w
2(z)
a45a192a109a196a71a94a196a77a33a206 c(2)
0
a71a94
a196a77a33a206c(2)
m
a57a85a166a167a241a105a94a245a71a214
a164a168a169
a71c(2)
m+na103c
(2)
m
a112a113a55a112a213a111c(1)
n a103c
(1)
0
a112a113a55
a112a213a47a123a94a18a71a60a76a71a111c(2)
m
a48a77a33a55a196a77a170a214a65a59a94a66(a119a119a60a61a171a94a95a115a116a172a116)a71a60
a38
a67a145a99c(2)
m = 0
a57
Wu Chong-shi
§9.2 Bessela10a11a12a16 a188a19
§9.2 Bessel a173a174a175a176
Bessela58a59
d2w
dz2 +
1
z
dw
dz +
parenleftbigg
1? ν
2
z2
parenrightbigg
w = 0
a65a115a244a55a115a53a241a58a59a112a94a71a113a114νa65a115a116a71Reν ≥ 0a57a115a116a13a14a71z = 0a65a58a59a55a77a78a56a53a71z = ∞
a65a58a59a55a177a77a78a56a53a57
a70a178a50a51Bessela58a59a76z = 0a53a55a79a80|z| > 0 a81a55a66a57a74
w(z) = zρ
∞summationdisplay
k=0
ckzk, c0 negationslash= 0,
a30a31Bessela58a59a71a204
∞summationdisplay
k=0
ck(k+ρ)(k+ρ?1)zk+ρ?2+
∞summationdisplay
k=0
ck(k+ρ)zk+ρ?2+
∞summationdisplay
k=0
ckzk+ρ?ν2
∞summationdisplay
k=0
ckzk+ρ?2=0,
a125a179zρ?2a71a2a204
∞summationdisplay
k=0
ck bracketleftbig(k + ρ)2 ?ν2bracketrightbigzk +
∞summationdisplay
k=0
ckzk+2 = 0.
a52a84
a191
a116
a147a148
a55a180a94a54a71a2a60a33a34a213a116a57
a75a119a150a86a195z0a196a55a213a116a71a118a60a75c
0 negationslash= 0
a71a214a204a66a6a7
a38a39
a71
ρ2 ?ν2 = 0.
a60
a38
a82a204
ρ1 = ν, ρ2 = ?ν.
a60a75Reν ≥ 0a71a24a199Reρ
1 ≥ Reρ2
a57
a75z1a55a213a116a71a204
c1 bracketleftbig(ρ + 1)2 ?ν2bracketrightbig = 0 a2 c1(2ρ + 1) = 0.
a60a76
c1 = 0, a220ρ negationslash= ?1/2; (9.4a)
c1a43a130, a220ρ = ?1/2. (9.4b)
a199a21
a29a181
a66a71a2a203ρ = ?1/2a71a182a60a199a99c
1 = 0
a57
a75zna55a213a116a71a204
cn bracketleftbig(ρ + n)2 ?ν2bracketrightbig+ cn?2 = 0 a2 cnn(2ρ + n) + cn?2 = 0,
a60a76a71a204a66a183a184a185a186
cn = ? 1n(n + 2ρ)cn?2.
Wu Chong-shi
a0a1a2 a3a4a5a6a7a8a9a10a11a12a13a14a15a16a17(a3)
a189a19
a207a208a209a210a211a212a112a213a71a214a60a199a82a204
c2n = ? 1n(n + ρ) 122c2n?2
= (?)2 1n(n?1)(n + ρ)(n + ρ?1) 124c2n?4
= ···
= (?)
n
n!
1
(ρ + 1)n
1
22nc0, (9.5)
c2n+1 = ? 1(n + 1/2)(n + ρ + 1/2) 122c2n?1
= (?)
2
(n + 1/2)(n?1/2)(n + ρ + 1/2)(n+ ρ?1/2)
1
24c2n?3
= ···
= (?)n 1(3/2)
n
1
(ρ + 3/2)n
1
22nc1
= 0. (9.6)
a210ρ
1 = ν a30a31
a71a2a204
w1(z) = c0zν
∞summationdisplay
k=0
(?)k
k!(ν + 1)k
parenleftBigz
2
parenrightBig2k
.
a99c
0 =
1
2νΓ(ν + 1)
a71a214a192a66
Jν(z) =
∞summationdisplay
k=0
(?)k
k!Γ(k + ν + 1)
parenleftBigz
2
parenrightBig2k+ν
. (9.7)
a210ρ
2 = ?ν a30a31
a71a192
w2(z) = c0z?ν
∞summationdisplay
k=0
(?)k
k!(?ν + 1)k
parenleftBigz
2
parenrightBig2k
,
a220ν negationslash=(a77)a117a116a63a71a64a60a99 c
0 = 2ν/Γ(?ν + 1)
a71a69a204
J?ν(z) =
∞summationdisplay
k=0
(?)k
k!Γ(k ?ν + 1)
parenleftBigz
2
parenrightBig2k?ν
. (9.8)
a187a240a50a51a94a245ρ = ?1/2a55a135a107a57a23a246a188
a56a189
a66a71a197a63a182a221a60a199a99 c
1 = 0
a57a60a75
a101a102c1 negationslash= 0a71
a78
c2n+1 = (?)
n
(3/2)n(1)n
1
22nc1,
a129a130a66(1)
n = n!
a71a197a18a76w
2(z)
a114a49a67a0a65a85a190a87a94a196
z?1/2
∞summationdisplay
n=0
c2n+1z2n+1 = c1
∞summationdisplay
n=0
(?)n
n!Γ(n + 3/2)
parenleftBigz
2
parenrightBig2n+1/2
·
radicalbiggpi
2 = c1
radicalbiggpi
2J1/2(z).
a2a76w
2(z)
a114a49a67a0a65a85a191a87a70a59a94a66a57
Wu Chong-shi
§9.2 Bessela10a11a12a16 a1810a19
a169
a76a65a17
a55a56
a47a48a12a82a66Bessela58a59a55a43a44a192
? a70a246a55a193a82a225a12a109a95a35a36a71
? a54a202a206a194a94a95a35a36a71a64a104
a82a225a12a201a202a55a66a57
star a220ν negationslash=a117a116a63a55a193a101
a76a71a60a75a197a63a82a225a55a109a95a66J
ν(x)a103 J?ν(x)
a110a54a111a112a57
star a220ν = 0a63a71a70a246a55a82a66a0a59a49a65a195a225a12a62a94a95a66
J0(x) =
∞summationdisplay
k=0
(?)k
k!k!
parenleftBigx
2
parenrightBig2k
.
a197a217a89a71a197a63a55a59a4a66a202a196a137a192a54a116a196a71a2
y2(x) = gJ0(x)lnx+
∞summationdisplay
k=0
dkxk, g negationslash= 0.
star a220ν = n, n = 1,2,3,···a63a71a23a246a182a221a49a65a82a225a12a94a95a66a57
? a82a168a71a229ν = n, n = 1,2,3,···a165a71a166a146a132
J?n(x) =
∞summationdisplay
k=0
(?)k
k!Γ(k ?n + 1)
parenleftBigx
2
parenrightBig2k?n
a167a197k = 0,1,···,n?1
a198
a179a131a145a146a199a1630a71a164a85a162a163z = 0,?1,?2,···a172a85
Γa200
a146a131
a168a201a202
a78
a57a203a92
J?n(x) =
∞summationdisplay
k=n
(?)k
k!Γ(k ?n + 1)
parenleftBigx
2
parenrightBig2k?n
.
a204k ?n = la71a152a173
J?n(x) =
∞summationdisplay
l=0
(?)n+l
(n + l)!Γ(l + 1)
parenleftBigx
2
parenrightBig2(n+l)?n
= (?)n
∞summationdisplay
l=0
(?)l
l!Γ(n + l + 1)
parenleftBigx
2
parenrightBig2l+n
= (?)nJn(x),
a180a82
a168
a132J
n(x)
a159a160a239a151a57
? a82a89a71a123a166a146a132a155a167a71a205a171a206a85a207a141a208a209a91a166a146a132a131a210a179a145a146a230a1630a71a152a122a123a153a123a154a211a167a212
a182a158a164a176a209
a91
a98a123a213a157J
?ν(x) (ν = 1,2,3,···)
a165a71a214c
0 = 2ν/Γ(1?ν)
a71a215a215a151
a91
a158c
0 = 0
a57
? a82a216a71a126a127a229a141a153a92a217a218a219a164a176a230a220a221
a131a151
a91
a71a222a143y
2(x)
a131a166a146a167a197a130k = 0,1,···,n?1
a223a179a131a145a146
a230
a1630a71a152a164a224a225a213a226a227 k = na179a228a229a145a146a199a230a163a154a174a57a164a231a153a92a227a149a150a151a145
c2k = ? 1k(k ?ν) 122c2k?2
a232a157a57a229ν = na165a71a233a141c
2n
a154a211a234a71a162a234a92a235
a198
a179a145a146a231a172a236a237a211a234a57
Wu Chong-shi
a0a1a2 a3a4a5a6a7a8a9a10a11a12a13a14a15a16a17(a3)
a1811a19
a199a70a55a241a105a238a89a71a220ν = n, n = 1,2,3,···a63a71Bessela58a59
d2y
dx2 +
1
x
dy
dx +
parenleftbigg
1? n
2
x2
parenrightbigg
y = 0
a55a59a4a66a64a94a96a137a192a54a116a196a71a2
y2(x) = gJn(x)lnx+
∞summationdisplay
k=0
dkxk?n, g negationslash= 0.
a239a78a70
a29y2(x)a30a31Bessela58a59a71a2a60a96a225a213a116a57
a245a246a91a92a82Bessela58a59a59a4a66a55a93a94a162a58a105a57a75a76a71a41a240a241 J
ν(z)a103 J?ν(z)
a55Wronski
a242a243
a219a199a241a105a254a244a55a110a54a201a112a54a57a245a246a66 Bessela58a59a55a213a116p(z) = 1/za71a247(9.3)a219a214a60a199a204a66
W [Jν(z), J?ν(z)] ≡
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
Jν(z) J?ν(z)
Jprimeν(z) Jprime?ν(z)
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle = Aexp
bracketleftbigg
?
integraldisplay z dζ
ζ
bracketrightbigg
= Az .
a75a12a96a225a57a241a115a116Aa71a49a127
a29Jν(z)a103J?ν(z)a55a191
a116a66(9.7)
a103(9.8)a30a31
a71a248a225
W [Jν(z), J?ν(z)] ≡ Jν(z)Jprime?ν(z)?J?ν(z)Jprimeν(z)
a114z?1a196a55a213a116a2a60a57a197a49a58a249a163
a191
a116a114a55a59a94a196a57a60a76a71
A = 1Γ(1 + ν) 12ν 1Γ(1?ν) ?ν2?ν ? 1Γ(1?ν) 12ν 1Γ(1 + ν) ν2ν
= ? 2νΓ(1 + ν)Γ(1?ν) = ? 2Γ(ν)Γ(1?ν) = ?2pisinpiν.
a197a18a214a204a66
W [Jν(z), J?ν(z)] = ? 2piz sinpiν. (9.9)
a70a246a55a240a241a114a210a66a12 Γa121a116a55a54a250
Γ(ν)Γ(1?ν) = pisinpiν.
(9.9)a219a85a86a217a89a71a220ν = n, n = 0,1,2,···a63Jν(z)a103J?ν(z)a110a54a201a112a57a68a65a101a102a29Bessela58
a59a55a59a4a66a99a75 J
ν(z)a103J?ν(z)
a55a110a54a251a252a71
w2(z) = c1Jν(z) + c2J?ν(z),
a49a224a253a254a255a220a55a251a252a213a116a71a203a204W [J
ν(z), w2(z)]
a54a43a11ν
a0
a67a750a71a197a18a55w
2(z)
a214a94a96(a54a43a11
ν a0)a111 Jν(z)a110a54a111a112a57a75a76a71a1a244a214a99a59a4a66a75
w2(z) = cJν(z)?J?ν(z)sinpiν ,
a197a18a45a192
W [Jν(z), w2(z)] = 2piz.
a75a12a2a88a197a18a96a3a55w
2(z)
a192a130a3(sinnpi = 0a71a241a4a750)a71a118a129a130a66 J
?n(z) = (?)nJn(z)
a71a1a244
a45a202a220
a37
a94a107a253a99a213a116ca71a203a204w
2(z)
a114a55a241a5a76ν = na63a64a750a71
a49a101
a99c = cospiν a2a60a57a197a18
Wu Chong-shi
§9.2 Bessela6a7a8a9 a1012a11
a204a66Bessela58a59a55a59a4a66a45a65
Nν(z) = cospiνJν(z)?J?ν(z)sinpiν , (9.10)
a5
a75ν a1Neumanna121a116a57a220ν = n, n = 0,1,2,···a63a71(9.10)a219a75a67a96a219a71a60a103l’Hospitala105a78a82a52
a193a71
Nn(z) = limν→nNν(z) = limν→n cosνpiJν(z)?J?ν(z)sinνpi = 1pi
bracketleftbigg?J
ν(z)
?ν ?(?)
n?J?ν(z)
?ν
bracketrightbigg
ν=n
= 2piJn(z)ln z2 ? 1pi
n?1summationdisplay
k=0
(n?k ?1)!
k!
parenleftBigz
2
parenrightBig2k?n
? 1pi
∞summationdisplay
k=0
(?)k
k!(n + k)!
bracketleftbigψ(n + k + 1) +ψ(k + 1)bracketrightbigparenleftBigz
2
parenrightBig2k+n
, |argz| < pi, (9.11)
a113a114ψ(ζ)a65Γa121a116a55a54a116a53a120a71
ψ(ζ) ≡ dlnΓ(ζ)dζ = Γ
prime(ζ)
Γ(ζ).
a118a118a125a96a71a220n = 0a63a202a220a179a12(9.11)a219a117a67a59a4a196a55a192a193
a103
a57
Wu Chong-shi
a13a14a15 a16a17a18a19a20a21a22
a6a7a8a23a24a25a9a26 (
a16)
a1013a11
?§9.3 ν = n, n = 0,1,2,3,···
a27a28 Bessel a29a30a31a32a33a34
a35ν = n, n = 0,1,2,3,···
a36a37Bessela38a39
d2y
dx2 +
1
x
dy
dx +
parenleftbigg
1? n
2
x2
parenrightbigg
y = 0
a40a41a42a43a44a45a46a47a48a49a50
a37a51
y2(x) = gJn(x)lnx+
∞summationdisplay
k=0
dkxk?n, g negationslash= 0.
a35ν = 0
a36a37
y2(x) = gJ0(x)lnx+
∞summationdisplay
k=0
dkxk, g negationslash= 0.
a52a53a54
a37a55
dy2(x)
dx = g
dJ0(x)
dx lnx + gJ0(x)·
1
x +
∞summationdisplay
k=0
dkkxk?1,
d2y2(x)
dx2 = g
d2J0(x)
dx2 lnx + 2g
dJ0(x)
dx ·
1
x ?gJ0(x)·
1
x2 +
∞summationdisplay
k=0
dkk(k ?1)xk?2.
a56a57a58a59Bessel
a38a39
d2y
dx2 +
1
x
dy
dx + y = 0,
a51a55
g
bracketleftbiggd2J
0(x)
dx2 +
1
x
dJ0(x)
dx + J0(x)
bracketrightbigg
lnx + g
∞summationdisplay
k=0
(?)kk
k!k!
parenleftBigx
2
parenrightBig2k?2
+
∞summationdisplay
k=0
dkk(k ?1)xk?2 +
∞summationdisplay
k=0
dkkxk?2 +
∞summationdisplay
k=0
dkxk = 0.
a60a61J
0(x)a62a63
a58a59Bessel
a38a39
a40a43
a37a64a65
a41a44a66a67lnx
a68a38a69a70a71a72
a50a73a74a75a76 0
a37a77a78
g
∞summationdisplay
k=0
(?)k
k!k!
k
22k?2x
2k +
∞summationdisplay
k=0
dkk2xk +
∞summationdisplay
k=0
dkxk+2 = 0.
a79a80a81a82a56a57a83J
0(x)
a40a84a49a85a86
a65a87
a88a89a90a91a92a50a40a93a49
a87
a48a94x0 a50
a37
a47g ·0 + d
0 ·0 = 0a37a77a78
ga95
a61, d
0a95
a61.
a96a90a91x1 a50a40a93a49
a37a55
d1 = 0.
a97x2 a50a40a93a49
a37a98a78
a52
a55?g + 4d2 + d0 = 0a37a77a78
d2 = ?14d0 + 14g.
Wu Chong-shi
?§9.3 ν = n, n = 0,1,2,3, · · ·
a99a100Bessela101a102a103a104
a16a105 a10614
a107
a108a109a110a111
a37a112a98a78a113a114a55a115a116a117a118
a50a74a119
a117a118
a50a40a93a49
a87
a90a91 x2k a50a40a93a49
a37a55
g · (?)
k
k!k!
2k
22k?1 + d2k(2k)
2 + d2k?2 = 0,
a94
a63a55a115
d2k = ? 1(2k)2d2k?2 ? (?)
k
k!k!
1
22k
1
kg
= ? 1(2k)2
bracketleftbigg
? 1(2k ?2)2d2k?4 ? (?)
k?1
(k ?1)!(k ?1)!
1
22k?2
1
k ?1g
bracketrightbigg
? (?)
k
k!k!
1
22k
1
kg
= (?)
2
k2(k ?1)2
1
24d2k?4 ?
(?)k
k!k!
g
22k
bracketleftbigg1
k +
1
k ?1
bracketrightbigg
= ···
= (?)
k
k!k!
1
22kd0 ?
(?)k
k!k!
g
22k
bracketleftbigg1
k +
1
k ?1 +···+ 1
bracketrightbigg
.
a90a91x2k+1 a50a40a93a49
a37a120a55a115
(2k + 1)2d2k+1 + d2k?1 = 0,
a97a94d
1 = 0a37a121
a109
a37
d2k+1 = 0.
a122a123
a37a112
a52a124a83ν = 0
a36
a40a41a42a43
y2(x) = gJ0(x)lnx + d0
∞summationdisplay
k=0
(?)k
k!k!
parenleftBigx
2
parenrightBig2k
?g
∞summationdisplay
k=1
(?)k
k!k!
parenleftbigg1
k +
1
k ?1 +···+ 1
parenrightbiggparenleftBigx
2
parenrightBig2k
.
a125a66a40a126a127
a63a128
g = 2pi, d0 = ?2pibracketleftbigln2 +ψ(1)bracketrightbig,
a129a67a40ψ
a130
a49
a112a63Γa130
a49a40a48a49a53a54
a87
a97Γ
a130
a49a40a131a132 Γ(z + 1) = zΓ(z)
a37a133a134a135a136
ψ(z + n) =ψ(z) + 1z + 1z + 1 +···+ 1z + n?1,
a79a137
a55a115
a40a43(
a138
a76N
0(x))a112a98a78a139a140
N0(x) = 2piJ0(x)ln x2 ? 2pi
∞summationdisplay
k=0
(?)k
k!k!ψ(k + 1)
parenleftBigx
2
parenrightBig2k
.
a96a141a142n = 1,2,3,···a40a143a144
a87a145y2(x)a56a57na59Bessela38a39a37a51a55
g
bracketleftbiggd2J
n(x)
dx2 +
1
x
dJn(x)
dx +
parenleftbigg
1? n
2
x2
parenrightbigg
Jn(x)
bracketrightbigg
lnx + g2
∞summationdisplay
k=0
(?)k(2k + n)
k!(k + n)!
parenleftBigx
2
parenrightBig2k+n?2
+
∞summationdisplay
k=0
dk(k ?n)(k ?n?1)xk?n?2 +
∞summationdisplay
k=0
dk(k ?n)xk?n?2 +
parenleftbigg
1? n
2
x2
parenrightbigg ∞summationdisplay
k=0
dkxk?n = 0.
a60a61J
n(x)a62a63n
a59Bessel
a38a39
a40a43
a37a64a65
a41a44a66a67lnx
a68a38a69a70a71a72
a50a73a74a75a76 0
a37a77a78
g
∞summationdisplay
k=0
(?)k
k!(k + n)!
2k + n
22k+n?1x
2k+n?2 +
∞summationdisplay
k=0
dk[(k ?n)2 ?n2]xk?n?2 +
∞summationdisplay
k=0
dkxk?n = 0,
Wu Chong-shi
a104a146a147
a16a17a18a19a20a21a22
a101a102a103a23a24a25
a105
a26 (a16) a10615a107
a148a149
a139a140
g
∞summationdisplay
k=0
(?)k
k!(k + n)!
2k + n
22k+n?1x
2k+2n +
∞summationdisplay
k=0
dkk(k ?2n)xk +
∞summationdisplay
k=0
dkxk+2 = 0.
a88a89a150a90a91a151
a65a152a153
a92a50a40a93a49
a87
a97x0 a50a40a93a49
a37a55d0 ·0 = 0a37a77a78
d0a95
a61.
a97x1 a50a40a93a49
a37d1(1 ?2n) = 0a37a77a78
d1 = 0.
a97x2k+1 a50a40a93a49
a37
a47
d2k+1(2k + 1)(2k ?2n + 1) + d2k?1 = 0,
a77a78
d2k+1 = ? 1(2k + 1)(2k?2n + 1)d2k?1 = ··· = 0.
a48a94x2k a40a93a49
a37a154a155a156a114k < n, k = n, k > na157a158
a143a144
a87
star a35k < na36a37
d2k2k(2k?2n) + d2k?2 = 0.
a77a78
d2k = 1k(n?k) 122d2k?2
= 1k(k ?1)(n?k)(n?k + 1) 124d2k?4
= ···
= (n?k ?1)!k!(n?1)! 122kd0.
a159
a114a63
d2n?2 = 1[(n?1)!]2 122(n?1)d0.
star a35k = na36a37
1
2n?1(n?1)!g + d2n ·0 + d2n?2 = 0.
a77a78
d2na95
a61,
g = ?2n?1(n?1)!d2n?2 = ? 12n?1(n?1)!d0.
star a35k > na36a37
(?)k?n
(k ?n)!k!
2k ?n
22k?n?1g + d2k2k(2k ?2n) + d2k?2 = 0.
Wu Chong-shi
?§9.3 ν = n, n = 0,1,2,3, · · ·
a99a100Bessela101a102a103a104
a16a105 a10616
a107
a77a78
d2k = ? 1k(k ?n) 122d2k?2 ? (?)
k?n
k!(k ?n)!
2k ?n
22k?n?1
1
4k(k ?n)g
= ? 1k(k ?n) 122d2k?2 ? (?)
k?n
k! (k ?n)!
parenleftbigg1
k +
1
k ?n
parenrightbigg 1
22k?n+1g
= (?)
2
k(k ?1)(k ?n)(k ?n?1)
1
24d2k?4 ?
(?)k?n
k!(k ?n)!
parenleftbigg1
k +
1
k ?1 +
1
k ?n +
1
k ?n?1
parenrightbigg 1
22k?n+1g
= ···
= (?)
k?nn!
k!(k ?n)!
1
22k?2nd2n
? (?)
k?n
k!(k ?n)!
parenleftBig1
k +
1
k ?1 +···+
1
n + 1 +
1
k ?n +
1
k ?n?1 +···+
1
1
parenrightBig 1
22k?n+1g.
a121
a109
y2(x) =gJn(x)lnx +
∞summationdisplay
k=0
d2kx2k?n
=gJn(x)lnx? g2
n?1summationdisplay
k=0
(n?k ?1)!
k!
parenleftBigx
2
parenrightBig2k?n
+ d2n
∞summationdisplay
k=n
(?)k?n2nn!
k!(k ?n)!
parenleftBigx
2
parenrightBig2k?n
? g2
∞summationdisplay
k=n+1
(?)k?n
k!(k ?n)!
parenleftBig1
k +
1
k ?1 +···+
1
n + 1 +
1
k ?n +
1
k ?n?1 +···+ 1
parenrightBigparenleftBigx
2
parenrightBig2k?n
=gJn(x)lnx? g2
n?1summationdisplay
k=0
(n?k ?1)!
k!
parenleftBigx
2
parenrightBig2k?n
+ d2n2nn!
∞summationdisplay
k=0
(?)k
k!(k + n)!
parenleftBigx
2
parenrightBig2k+n
? g2
∞summationdisplay
k=1
(?)k
k!(k + n)!
parenleftBig 1
k + n +
1
k + n?1 +···+
1
n + 1 +
1
k +
1
k ?1 +···+ 1
parenrightBigparenleftBigx
2
parenrightBig2k+n
.
a160a161
a128
g = 2pi, d2n = ? 12npin!bracketleftbig2ln2 +ψ(n + 1) +ψ(1)bracketrightbig.
a79a137a162a47
Nn(x) =2piJn(x)ln x2?1pi
n?1summationdisplay
k=0
(n?k ?1)!
k!
parenleftBigx
2
parenrightBig2k?n
?1pi
∞summationdisplay
k=0
(?)k
k!(k + n)!
bracketleftbigψ(n+k+1)+ψ(k+1)bracketrightbigparenleftBigx
2
parenrightBig2k+n
,
a129a67n = 1,2,3,···
a87
a90a91a44a163
a68a164a55a115
a40 N
0(x)
a40a85a86
a65a37a98a78a165
a124
a37
a79a80a40 N
n(x) a62a166a167
a94
n = 0a37a168a155a169
a43a76a79
a36a170a171a172
a41a42a50a40a47a173a74
a87