a0 a1
star a2a3a4a5a6a7a8a9a10 2
star §4.5(a11a12a13a14a15a16a17a18a19a20a21) a22a6a7
a0a1a2 a3 a4 a5 a6 a71
a8
a9a10a11 a12 a13 a14 a15
a16a17a18a19a20a21a22a23a24a18a19a20a23a25a26a27a19a28a29a30a31a28a32a33a34a35a36a37a38
a39a40a41a42a27a19a43a21a44a27a19a45a23a46a24a18a19a47a48a28a38
a49a50a27a19a18a19a51a52a43a53a50a27a19a28a54a55a56a57a58a43a59a60a28a61a62a38
§4.1 a63 a64 a65 a64
a66a67 a68a69a70a69
u0 + u1 + u2 +···+ un +··· =
∞summationdisplay
n=0
un.
a71u
n a72a73a74a75a76a74a77a78a79
αn
a80
βn,a81
∞summationdisplay
n=0
un =
∞summationdisplay
n=0
αn + i
∞summationdisplay
n=0
βn.
a82a83
a68a69a70a69summationtextu
n a84a85a86a87a88a89
a83
a73
a69a70a69 summationtextα
n a75
summationtextβ
n
a20a90a91a92a93a38
a94a95a96a95a97a98a99a100a101a102 a103a104a70a69
a72a74a77a75
Sn = u0 + u1 + u2 +···+ un
a105a106a107
a72a108a109
{Sn}a110a111
a20
a81a112
a70a69summationtextu
n a110a111
a20
a108a109
{Sn}
a72a113a114
S = limn→∞Sn a20a112
a79
a70a69summationtextu
n
a72a75
∞summationdisplay
n=0
un = limn→∞Sn.
a115
a81
a20a70a69summationtextu
n a116a117a118a72
a38
a70a69
a72
a110a111a119
a20
a116a120a121a72a74a77a75a108a109a72
a110a111a119a122a123
a72
a38a124a125a20a126a127
a108a109
a110a111
a72a128a129a130a131
a20a132
a133a134a135a70a69
a110a111
a72a128a129a130a131
Cauchy
a128a129a130a131
a56a136a137a138a47ε > 0a20a139a140a141a142a19na20a143a144a145a136a137
a141a142a19pa20a146
|un+1 + un+2 +···+ un+p| < ε.
a147
a78a116
a20a71 p = 1a20a148a149a150a70a69
a110a111
a72a151a129a130a131
limn→∞un = 0.
star a152a153a154a155a156
a75a157a108a72a158a159a160
a20a132a133a161
a110a111
a70a69a162a163a38
u1 + u2 + u3 + u4 +··· = (u1 + u2) + (u3 + u4) +···.
§4.1 a164 a165 a166 a165 a1672a168
star a103a104a70a69
∞summationtext
n=0
|un|a110a111a20a81a112a70a69
∞summationtext
n=0
un
a169a170
a110a111
a38
a169a170
a110a111
a72
a70a69
a82
a122
a116
a110a111
a72
a38
|un+1 + un+2 +···un+p| ≤ |un+1|+|un+2|+··· +|un+p|.
a90a91a20
a82a83
a110a111
a72
a70a69a20a171
a153
a82
a122
a116a169a170
a110a111
a72
a38
star
a169a170
a110a111
a70a69
a72a172a78a173
a38
stara174a175a176a177a178 a179|un|<vn a20a180
∞summationtext
n=0
vn a110a111
a20
a81
∞summationtext
n=0
|un|a110a111
parenleftbiga181
∞summationtext
n=0
un
a169a170
a110a111
parenrightbiga38
a179|un| > vn,a180
∞summationtext
n=0
vn
a117a118
a20
a81
∞summationtext
n=0
|un|
a117a118
a38
stara174a182a176a177a178 a179a183a152
a80
na184a185
a72a186
a69 ρa20
a81
a187
vextendsinglevextendsingle
vextendsingleun+1u
n
vextendsinglevextendsingle
vextendsingle < ρ < 1a188a20a70a69
∞summationtext
n=0
un
a169a170
a110a111a189
a187
vextendsinglevextendsingle
vextendsingleun+1u
n
vextendsinglevextendsingle
vextendsingle > ρ > 1a188a20a70a69
∞summationtext
n=0
|un|
a117a118
a38
? a54a190a191a22a60a28a192a193a56a144a145a39a40a194a46a18a19a20a195a35|un+1/un|a28a34a35a196a196a31a54un a28a34a35a197
a198a199a40a20a200a201a202a46a54a190a191a22a60a203a204a205a206a207a191a208 summationtext|u
n|
a28a209a210a211a38
? ρa28a139a140a211a212
? a213
a59a214a28a215a216a23a143a46a217a28a218a219a34a35a20a220d’Alemberta191a22a60a38
star d’Alembert a176a177a178
a103a104 lim
n→∞|un+1/un| = l < 1,a81
∞summationtext
n=0
un
a169a170
a110a111a189
a103a104 lim
n→∞
|un+1/un| = l > 1,a81
∞summationtext
n=0
|un|
a117a118
a38
? d’Alemberta191a22a60a28a192a193a56a37a221a222a223a20a224a225a226a218a219a227a31a54a224a54a190a191a22a60a228a28 ρa223a199a197
a198a38
? d’Alemberta191a22a60a28a229a193a56a230a46a231a62a28a232a233a191a22a18a19a28a209a210a43a234a235a20a220a46 limn→∞|un+1/un|
a191a208a18a19
∞summationtext
n=0
|un| a28a209a210a20a236a46 lim
n→∞
|un+1/un| a191a208a18a19a28a234a235a38a200a201a144a145
limn→∞|un+1/un| ≥ 1a237 lim
n→∞
|un+1/un| ≤ 1a28a238a34a239a231a240a241a242a191a208a20a243a244
limn→∞|un+1/un| = lim
n→∞
|un+1/un| = limn→∞|un+1/un|.
? Cauchya191a22a60a28a192a193a239a23a245a246a62a37a191a246 limn→∞|un|1/n a223a191a208a18a19a23a247a248a144a209a210a38
star Cauchy a176a177a178
a103a104 lim
n→∞|un|
1/n < 1,
a81
a70a69
∞summationtext
n=0
|un|a110a111a189
a103a104 lim
n→∞|un|
1/n > 1,
a81
a70a69
∞summationtext
n=0
un
a117a118
a38
a0a1a2 a3 a4 a5 a6 a73
a8
star Gauss a176a177a178
a249a250a98a99a96a95a97a251a252a56
1. a154a253
a157a108
a38
u0 + u1+u2 + u3 + u4 +···
=u0 + u1 + u2 + u4 + u3 + u6 + u8 + u5 +···.
2. a132a133a254a82a83
a169a170
a110a111
a70a69a255a107a0
a83a1
a70a69a20a2
a83a1
a70a69a3
a169a170
a110a111
a38
∞summationdisplay
n=0
un =
∞summationdisplay
n=0
u2n +
∞summationdisplay
n=0
u2n+1.
3.
a89
a83
a169a170
a110a111
a70a69a91a4a3a93
a169a170
a110a111
a20
summationdisplay
k
uk ·
summationdisplay
l
vl =
summationdisplay
k,l
ukvl.
a5a6
a72a7
a4
a116
a82a83a8a9
a70a69
u0v0 + u0v1 + u0v2 + u0v3 + ···
+ u1v0 + u1v1 + u1v2 + u1v3 + ···
+ u2v0 + u2v1 + u2v2 + u2v3 + ···
+ u3v0 + u3v1 + u3v2 + u3v3 + ···
+ ···.
a10
a169a170
a110a111a119a11a12a13
a132a133a14a15a16
a11a17
a108
a156
a75
a20a10a18
a153a155
a38a19a103a132a14 k + l = n
a72a20a21
a17
a108a22a109
a20
∞summationdisplay
k=0
uk ·
∞summationdisplay
l=0
vl =
∞summationdisplay
n=0
wn, wn =
nsummationdisplay
k=0
ukvn?k.
a103a104
a114a88
a5a23
a156
a75a157a108
(a5a23a156
a75a157a108a24a25
a147a26
a72
a9
a129
a119) a20a81
a7a173a72a130a131a27
a132a133a28a29a107a56 summationtextu
k,summationtext
vl
a30
a110a111
a20a31a10a32a91
a82
a169a170
a110a111a189a33
summationtextu
k,
summationtextv
l a75
summationtextw
n a30
a110a111
a38
§4.2 a34
a6 a5 a6 a74
a8
§4.2 a35 a64 a65 a64
a36a95a96a95a97a98a99a251 a37u
k(z) (k = 1,2,···)a152a38a39 G
a32
a25
a122a123
a38a103a104
a170a88
G a32a82a40z0 a20a70
a69
∞summationtext
k=1
uk(z0)a110a111a20a81a112a70a69
∞summationtext
k=1
uk(z)a152z0 a40a110a111a38
a90a91a20a103a104
∞summationtext
k=1
vk(z0)
a117a118
a20
a81a112
a70a69
∞summationtext
k=1
vk(z)a152z0 a40
a117a118
a38
a103a104a70a69
∞summationtext
k=1
uk(z)a152a38a39G a41a2a82a40
a30
a110a111
a20
a81a112
a70a69
a152 G a41a110a111
a38a10
a75a42
a69S(z)
a116
G a41
a72a43
a18
a42
a69a38
a36a95a96a95a97a44a45a98a99a251 a103a104
a170a88
a16
a11a46a122
a72
ε > 0,a183a152
a82a83
a80
za184a185
a72
N(ε),a47
a187n > N(ε)
a188
a20
vextendsinglevextendsingle
vextendsingleS(z)?
nsummationtext
k=1
uk(z)
vextendsinglevextendsingle
vextendsingle < εa20a81a112a70a69
∞summationtext
k=1
uk(z)a152G a41
a82a48
a110a111
a38
a36a95a96a95a44a45a98a99a97
a176a177a178 (1)a49a50a51
a120
a122a123
a20 (2) Weierstrass
a72
M
a172a78a173
a38
Weierstrass
a72
M
a172a78a173
a56
a179a152a38a39Ga41|uk(z)| < ak a20ak
a80
za184a185
a20a180
∞summationtext
k=1
ak a110a111
a20
a81
∞summationtext
k=1
uk(z)
a152G a41
a169a170
a180a31
a82a48
a110a111
a38
a44a45a98a99a96a95a52a53a54a55a56a57a251a252a56
1. a58a59
a251 a103a104u
k(z)a152Ga41
a60a61a20a70a69
∞summationtext
k=1
uk(z)a152Ga41
a82a48
a110a111
a20
a81
a10
a75a42
a69S(z) =
∞summationtext
k=1
uk(z)
a62
a152G a41
a60a61a38
a5
a83
a119a63a64a65a66a67
a20a103a104a70a69
a72
a2
a82
a163
a30a116
a60a61
a42
a69a20
a81
a82a48
a110a111
a70a69a132a133a68a163
a156
a113a114
(a33a69
a70a20 a71
a156
a113a114a72a80
a71
a156
a70a69
a75a72
a132a133a73
a253
a157a108
) a20
limz→z
0
∞summationdisplay
k=1
uk(z) =
∞summationdisplay
k=1
limz→z
0
uk(z).
2. a74a75a76a77a78 a37C
a116
a38a39G a41
a72
a82
a130a77a79a80a81a82a83
a20a103a104u
k(z) (k = 1,2,···)a116
C a84
a72
a60
a61
a42
a69a20
a81
a170a88
C a84
a82a48
a110a111
a72
a70a69
∞summationtext
k=1
uk(z)a132a133a68a163a156a4
a77
integraldisplay
C
∞summationdisplay
k=1
uk(z)dz =
∞summationdisplay
k=1
integraldisplay
C
uk(z)dz.
3. a74a75a76a85a95 (Weierstrassa66a86) a37uk(z)(k = 1,2,···)a152 G a32
a43
a18a87a88a20
∞summationtext
k=1
uk(z)a152G a32
a82a48
a110a111
a20
a81
a125a70a69a91
a75
f(z)
a116
G a41
a72
a87a88
a42
a69a20 f(z)
a72a89a90a91
a69a132a133a92
∞summationtext
k=1
uk(z)a68a163a156
a91
a69
a0a1a2 a3 a4 a5 a6 a75
a8
a149a150a20
f(p)(z) =
∞summationdisplay
k=1
u(p)k (z),
a156
a91
a69a93
a72
a70a69
a152 G a41
a72
a16
a82a94
a38a39
a32
a82a48
a110a111
a38
a5a95
a119a63
a72a96a97a98a99a100a101
a38
§4.3 a102
a5 a6 a76
a8
§4.3 a103 a65 a64
a104a70a69a105
a186a116a106
a105a163
a79
a104
a42
a69
a72a42
a69a163a70a69a20
∞summationdisplay
n=0
cn(z ?a)n = c0 + c1(z ?a) + c2(z ?a)2
+ ···+ cn(z ?a)n +···.
a5
a116
a82
a23a147a26a107a108
a72a42
a69a163a70a69a20a62
a116a109a110a99a111a109a186a120a72
a82
a23
a42
a69a163a70a69a38
a66a86 4.1 Abel(
a112
a44) a66a86 a103a104a70a69
∞summationtext
n=0
cn(z ?a)n a152a113a40 z0 a110a111a20a81a152a133a a40
a79a114a115
a20
|z0 ?a|
a79a116a117a72a114
a41
a169a170
a110a111
a20a180
a152 |z ?a| ≤ r(r < |z0 ?a|) a32a82a48a110a111a38
a118 a124
a79
∞summationtext
n=0
cn(z ?a)n a152z0 a110a111a20a119a82a122a120a121
a151a129a130a131
limn→∞cn(z0 ?a)n = 0.
a124a125
a183a152a122
a69 q a20
a47|cn(z0 ?a)
n| < q a38a105a133a20
|cn(z ?a)n| = |cn(z0 ?a)n|·
vextendsinglevextendsingle
vextendsinglevextendsingle z ?a
z0 ?a
vextendsinglevextendsingle
vextendsinglevextendsingle
n
< q
vextendsinglevextendsingle
vextendsinglevextendsingle z ?a
z0 ?a
vextendsinglevextendsingle
vextendsinglevextendsingle
n
.
a124
a79
vextendsinglevextendsingle
vextendsinglevextendsingle z ?a
z0 ?a
vextendsinglevextendsingle
vextendsinglevextendsingle < 1a181|z ?a| < |z0 ?a|
a188
a20
∞summationtext
n=0
vextendsinglevextendsingle
vextendsinglevextendsingle z ?a
z0 ?a
vextendsinglevextendsingle
vextendsinglevextendsingle
n
a110a111
a20a119
∞summationdisplay
n=0
cn(z ?a)na152
a114
|z ?a| < |z0 ?a|a41
a169a170
a110a111
a38
a180a187|z ?a| ≤ r < |z
0 ?a|a188
a20
|cn(z ?a)n| ≤ q r
n
|z0 ?a|n,
a186
a69a163a70a69
∞summationtext
n=0
rn
|z0 ?a|n a110a111
a20a119
∞summationdisplay
n=0
cn(z ?a)na152
a114
|z ?a| ≤ r (r < |z0 ?a|)a32a82a48a110a111a38
a123a124
a179
a70a69
∞summationtext
n=0
cn(z ?a)n a152a113
a40z1
a117a118
a20
a81a152
a114
|z ?a| = |z1 ?a|a125a126a126
a117a118
a38
a118
a120
a90
a96a173
a38
a179
a70a69
∞summationtext
n=0
cn(z ? a)n a152
a114
|z ? a| = |z1 ? a| a125a113
a82a40 z2
a110a111
a20
a81
a14 Abel
a122
a127a20a70a69
a151
a93
a152
a114
|z ?a| = |z2 ?a|(|z2 ?a| > |z1 ?a|) a41a110a111
a20
a80a128
a37a129a130a38a119a70a69
∞summationtext
n=0
cn(z ?a)n
a152
a114
|z ?a| = |z1 ?a|a125a126a126
a117a118
a38 square
a98a99a131a132a98a99a133a134 a92
a88
a82a83
a70a69
a152za135a136a84
a72
a16
a11
a82a40
a20a137
a116a129a138
a110a111
a20
a129a138a117a118
a38a124a125a20
a170a88
a104a70a69a139a70a20a148a135a140a141a5a142
a72a143a144
a56
a152z a135a136a84
a82
a74a77
a40
a104a70a69
a110a111
a20
a152a145a125
a82
a74a77
a40
a104a70
a0a1a2 a3 a4 a5 a6 a77
a8
a69
a117a118
a38a5a95
a110a111
a40
a80a117a118
a40
a91a146
a183a152
a82a83
a77a147a83
a38
star a126a127 Abela122
a127a20a5
a83
a77a147a83
a82
a122
a116a114
a38a5
a83
a114
a20a148
a112
a79
a104a70a69
a72
a98a99a131a38
star a110a111
a114a72a114a115
a56 z = a
a40
a38
star a110a111
a114a72a116a117
a112
a79
a98a99a133a134a38
a110a111
a116a117
a132a133
a116
0a38a5a188a20a110a111
a114a148a149a79
a82a83a40
a38a150z = a
a40
a125
a20a104a70a69
a152
a85
a135a136a126a126
a117a118
a38
a110a111
a116a117
a62a132a133
a116
∞a38a5a188a110a111
a114
a148
a116a85
a135a136
a38a104a70a69
a152
a85
a135a136a110a111
a20a151
a152∞
a40
a132a152
a110a111
a20
a62a132a152
a117a118
a38
a152a153a154
a104a70a69
a72
a119a63a188
a20a155a156a157a187
a156
a135
a110a111
a114
(a110a111
a116a117
)a38
a156
a104a70a69
a72
a110a111
a116a117a72a158a173
a20
a186a120a72a25a89
a83
a56
1. a126a127Cauchy
a172a78a173
a20a187
limn→∞|cn(z ?a)n|1/n < 1 a181 |z ?a| < 1lim
n→∞|cn|
1/n
a188
a70a69
a169a170
a110a111a189
a187
limn→∞|cn(z ?a)n|1/n > 1 a181 |z ?a| > 1lim
n→∞|cn|
1/n
a188
a70a69
a117a118
a38a124a125a20a104a70a69
∞summationtext
n=0
cn(z ?a)n
a72
a110a111
a116a117a116
R = 1lim
n→∞|cn|
1/n = limn→∞
vextendsinglevextendsingle
vextendsinglevextendsingle 1
cn
vextendsinglevextendsingle
vextendsinglevextendsingle
1/n
.
2. a126a127d’Alembert
a172a78a173
a20a103a104
limn→∞
vextendsinglevextendsingle
vextendsinglevextendsinglecn+1(z ?a)n+1
cn(z ?a)n
vextendsinglevextendsingle
vextendsinglevextendsingle = |z ?a| lim
n→∞
vextendsinglevextendsingle
vextendsinglevextendsinglecn+1
cn
vextendsinglevextendsingle
vextendsinglevextendsingle
a183a152
a20
a81
a187
limn→∞
vextendsinglevextendsingle
vextendsinglevextendsinglecn+1(z ?a)n+1
cn(z ?a)n
vextendsinglevextendsingle
vextendsinglevextendsingle < 1 a181 |z ?a| < lim
n→∞
vextendsinglevextendsingle
vextendsinglevextendsingle cn
cn+1
vextendsinglevextendsingle
vextendsinglevextendsingle
a188
a70a69
a169a170
a110a111a189
a187
limn→∞
vextendsinglevextendsingle
vextendsinglevextendsinglecn+1(z ?a)n+1
cn(z ?a)n
vextendsinglevextendsingle
vextendsinglevextendsingle > 1 a181 |z ?a| > lim
n→∞
vextendsinglevextendsingle
vextendsinglevextendsingle cn
cn+1
vextendsinglevextendsingle
vextendsinglevextendsingle
a188
a70a69
a117a118
a38a124a125a20a104a70a69
∞summationtext
n=0
cn(z ?a)n
a72
a110a111
a116a117a116
R = limn→∞
vextendsinglevextendsingle
vextendsingle cnc
n+1
vextendsinglevextendsingle
vextendsingle.
§4.3 a102
a5 a6 a78
a8
a159a160a161a224a209a210a162a163a28a164a35a165a146a192a229a193a38Cauchya164a35a23a166a167a168a169a28a20a236d’Alemberta164a35
a170a23a146a171a172a28(a31a224a218a219 lim
n→∞|cn/cn+1|
a139a140)a38a173a215a174a175a240a176a46a177a20a196a196a178a179
a213
a197a198a180a38
a92
a88
a104a70a69
∞summationtext
n=0
cn(z ?a)n
a72
a2
a82
a163
a30a116
z
a72
a87a88
a42
a69a20 Abel
a122
a127
a64a65a66a67
a20a104a70a69
a152
a10
a110
a111
a114
a41
a16
a82a94
a38a39
a32
a82a48
a110a111
a20a124a125a20a126a127 4.2
a181
a20
a152a110a111
a114
a41
a20a104a70a69a182a183a141
a82a83
a87a88
a42
a69 (
a33
a69
a70a20a104a70a69
a72a75a42
a69
a152a110a111
a114
a41
a87a88) a20a132a133
a170
a104a70a69a68a163a4
a77
a33
a68a163
a156
a91
a69a20
integraldisplay z
z0
∞summationdisplay
n=0
cn(z ?a)n dz =
∞summationdisplay
n=0
cn
integraldisplay z
z0
(z ?a)n dz
=
∞summationdisplay
n=0
cn
n + 1
bracketleftbig(z ?a)n+1 ?(z
0 ?a)n+1
bracketrightbig,
d
dz
bracketleftbigg ∞summationdisplay
n=0
cn(z ?a)n
bracketrightbigg
=
∞summationdisplay
n=0
cnd(z ?a)
n
dz
=
∞summationdisplay
n=0
cn+1(n + 1)(z ?a)n.
star a104a70a69a152a110a111
a114
a84
a72
a110a111a119
a212
? a132a133a126a126a110a111
a20
? a132a133a126a126
a117a118
a20
? a62a132a133a152a82
a74a77
a40
a110a111
a20
a152a145
a82
a74a77
a40
a117a118
a38
z2
2 +···+
zn
n(n?1) +··· a152|z|= 1a84a126a126a110a111a189
1 + z +···+ zn +··· a152|z|= 1a84a126a126
a117a118
a189
1 + z1 +···+ z
n
n +··· a152|z| = 1 a84
a150 z = 1
a125a184a110
a111
a20a180
a152z = 1
a40
a117a118
a38
a153a154a185
a23
a143a144
a20a104a70a69
a72
a110a111
a114
a84
a137a186
a122
a25a187
a40
a38
a151a181
a47a152
a187
a40
a20a104a70a69a3a93a132a152
a116
a110a111
a72
(a181
a25a188
a122
a72a42
a69a18) a38
a37a104a70a69
∞summationdisplay
n=0
cn(z ?a)n a152a110a111
a114
a41a110a111
a150f(z)a20a103a104a70
a69
a152a110a111
a114a189
a84a113
a40 z0
a62
a110a111
a20
a75a79
S(z0)a20a81 a190a191a192a112a193
a66a86(
a153
a96
) a64a65a66a67
a20a187 z a92
a110a111
a114
a41a194
a88
z0 a188
a20a195
a129a196a197
a152
a133z
0 a79a198
a40
a111
a199a200
a79
2φ < pi
a72a201a202
a41(
a98a203
4.1)a20f(z)a148
a82
a122a194
a88
S(z0)a38 a2044.1 a205a206a207
a7a208a209a210
a0a1a2 a3 a4 a5 a6 a79
a8
§4.4 a211a212a213a214a215a216a217a218a214a219a220a221
4.3a181
a32
a25
a185
a42
a69a70a69a87a88
a119
a72a222
a154
a20a62a132a133
a120
a139
a153a154a223a224a225
a72
a90
a186
a4
a77a72
a87a88
a119
a38
a66a86 4.2 a37
1. f(t,z)a23ta43z a28a226a227a27a19a20 t > aa20z ∈ Ga20
2. a144a145a136a228t ≥ aa20f(t,z)a23Ga225a28a198a190a25a26a27a19a20
3. a229
a195
integraldisplay ∞
a
f(t,z)dta140Ga225a37a230a209a210a20a220?ε > 0a20?T(ε)a20a215T2 > T1 > T(ε)a177a20a146
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
integraldisplay T2
T1
f(t,z)dt
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle < ε,
a81F(z) =
integraldisplay ∞
a
f(t,z)dta152G a41
a116
a87a88
a72
a20a31
Fprime(z) =
integraldisplay ∞
a
?f(t,z)
?z dt.
a118 a16a231
a82a83a232a233
a108a109
{an}
a0 = a < a2 < a3 < ··· < an < an+1 < ···, limn→∞an = ∞.
a71u
n(z) =
integraldisplay an+1
an
f(t,z)dta20a81a126a127 3.7a181a185
a88
a223a224a225
a72
a122
a4
a77a72
a87a88
a119
a72
a122
a127a20a132a234u
n(z)a116
G a41
a72a43
a18a87a88
a42
a69a38a235a124
a79
F(z) =
∞summationdisplay
n=0
un(z)
a152Ga84
a82a48
a110a111
a20a119a126a127 Weierstrass
a122
a127a20a234
F(z) =
∞summationdisplay
n=0
un(z) =
integraldisplay ∞
a
f(t,z)dt
a152G a41
a87a88a20a31
Fprime(z) =
∞summationdisplay
n=0
uprimen(z) =
integraldisplay ∞
a
?f(t,z)
?z dt. square
a170a88
a223a224a225
a72a236
a4
a77
a62a132a133a237a238a239
a126
a127a38
a152
a157
a120
a5
a83
a122
a127
a188
a20a240
a129a172a241
a184a242
a4
a77
(a33
a236
a4
a77
)
a116
a115
a82a48
a110a111
a38
a186a120a72a172a78a173a116
a56a243a244a139
a140a27a19φ(t)a20a143a199|f(t,z)| < φ(t)a20z ∈ Ga20a236a245
integraldisplay ∞
a
φ(t)dta209a210a20a170
integraldisplay ∞
a
f(t,z)dta140Ga225a248a144a236a245
a37a230a209a210a38
a246
a79
a223a224a225
a72
a184a242
a4
a77a72
a82a83
a19
a1
a20
a160
a136a153a154
a4
a77
F(z) =
integraldisplay ∞
0
e?t2 cos2ztdt. (4.1)
a5
a83
a4
a77
a32
a72a247
a4
a42
a69a248a93
a120a121a122
a127
a72a158a89
a83
a130a131
a20a180a31a124
a79a170a88
a68a69 z = x + iy a20
a25
|cos2zt| =
radicalBig
cosh22yt?cos22xt ≤ cosh2|yt| ≤ e2|yt|.
§4.4 a249a250a251a252a253a254a255a0a252a1a2a3
a710
a8
a105a133a20
a170a88
z a135a136a84
a72
a16
a11
a82a83a94
a38a39a84
a20 |Imz| < y
0
a20
a88a116
a20
vextendsinglevextendsingle
vextendsinglee?t2 cos2zt
vextendsinglevextendsingle
vextendsingle < e?t2+2y0t,
a180a4
a77
integraldisplay ∞
0
e?t2+2y0tdt a110a111a20a105a133a223a224a225
a72
a184a242
a4
a77
(4.1)a82a48a110a111
a20a124a125a20a5
a83
a4
a77
a246
a79
z
a72a42
a69a20
a152z a135a136a84
a72
a16
a11
a82a83
a38a39a41
a87a88a38a4a5
a82a6
a20a148
a25
Fprime(z) = ?
integraldisplay ∞
0
e?t22t sin2ztdt
= e?t2 sin2zt
vextendsinglevextendsingle
vextendsingle
∞
0
?2z
integraldisplay ∞
0
e?t2 cos2ztdt = ?2zF(z).
a87a5
a83a7
a77a8a9
a20a148a132a133a149a150 F(z) = Ce?z2 a20a10a32
a186
a69C
a116
C = F(0) =
integraldisplay ∞
0
e?t2dt = 12√pi,
a5a142a20
a109
a93a148a149a150
integraldisplay ∞
0
e?t2 cos2ztdt = 12√pie?z2.
a10a11a12 a13 a14 a15 a16 a1711
a18
§4.5 a19a20a21a22a23a24a25a26a27a28a29
1. a30a31a32 a33a34 uk(z) a35 G a36a37a38a39a40a41
∞summationtext
k=1
uk(z) a35 G a36a42a43a44a45a39a46a47a48a49a41 S(z) =
∞summationtext
k=1
uk(z)a50a35G a36a37a38a51
a52 a53z
0 a54
G a36a42a55a39
|S(z)?S(z0)|
= |S(z)?Sn(z) + Sn(z)?Sn(z0) + Sn(z0) ?S(z0)|
≤ |S(z)?Sn(z)| +|Sn(z)?Sn(z0)| +|S(z0) ?Sn(z0)|.
a56a57
a40a41
summationtextu
k(z)a58a42a43a44a45a59a60a61a39a62a63 ε > 0a39a64a60a65a66a67 N(ε)a39a68a69n > N(ε)a70a39
|S(z)?Sn(z)| < ε3, |S(z0) ?Sn(z0)| < ε3.
a71a72S
n(z) =
nsummationtext
k=1
uk(z)a73G a36a58a37a38a49a41a39a74a75a76a77a42a78 ε > 0a39a64a79a35 δ > 0a39a68a69|z ?z0| < δ
a70a39
|Sn(z)?Sn(z0)| < ε3.
a80a81
a65a82a83a34a39a84a85a67a86a75a76a62a63a58 ε > 0a39a79a35δ > 0a39a87a88|z ?z0| < δ a39a84a89
|S(z)?S(z0)| < ε.
S(z)a35z0 a55a37a38a51a90a76z0 ∈ Ga62a91a39a92a65S(z)a35G a36a37a38a51 square
2. a93a94a95a96a97 a53C a73a98a99G a36a58a42a100a101a102a103a104a105a106a39a33a34 uk(z) (k = 1,2,···)a73C a82a58a37
a38a49a41a39a46a75a76 C a82a42a43a44a45a58a40a41
∞summationtext
k=1
uk(z)a60a65a107a108a109a110a101
integraldisplay
C
∞summationdisplay
k=1
uk(z)dz =
∞summationdisplay
k=1
integraldisplay
C
uk(z)dz.
a52 a56a57
a59a111 1a61
∞summationtext
k=1
uk(z)a73a105a106C a82a58a37a38a49a41a39a74a110a101
integraldisplay
C
∞summationtext
k=1
uk(z)dz a79a35a39a112a89
integraldisplay
C
∞summationdisplay
k=1
uk(z)dz =
integraldisplay
C
nsummationdisplay
k=1
uk(z)dz +
integraldisplay
C
Rn(z)dz
=
nsummationdisplay
k=1
integraldisplay
C
uk(z)dz +
integraldisplay
C
Rn(z)dz,
a47a113Rn(z) = S(z)?Sn(z) =
∞summationtext
k=1
uk(z)a51
a56a57
a40a41a58a42a43a44a45a59a39a75a76a62a63a58ε > 0a39a79a35N(ε) > 0a39
a87a88n > N(ε)a39a84a89
|S(z)?Sn(z)| = |Rn(z)| < ε.
§4.5 a114a115a116a117
a15a16a118a119a120a121a122 a1712
a18
a72a123
vextendsinglevextendsingle
vextendsinglevextendsingle
integraldisplay
C
Rn(z)dz
vextendsinglevextendsingle
vextendsinglevextendsingle ≤
integraldisplay
c
|Rn(z)|·|dz| < εl,
la73C a58a124a125a51a126a127a128a129a130a39a131a85
limn→∞
integraldisplay
C
Rn(z)dz = 0.
a92a65 integraldisplay
C
∞summationdisplay
k=1
uk(z)dz = limn→∞
nsummationdisplay
k=1
integraldisplay
C
uk(z)dz =
∞summationdisplay
k=1
integraldisplay
C
uk(z)dz. square
3. a93a94a95a132a133 (Weierstrassa134a135) a53uk(z)(k = 1,2,···)a35 G a113a136a137a138a139a39
∞summationtext
k=1
uk(z)a35G a113
a42a43a44a45a39a46
a123
a40a41a140a48f(z)a73G a36 a58a138a139a49a41a39f(z)a58a141a142a143a41a60a65a90
∞summationtext
k=1
uk(z)a107a108a109a143a41
a85a67a39
f(p)(z) =
∞summationdisplay
k=1
u(p)k (z),
a109a143a41a144a58a40a41a35 G a36a58a62a42a145a98a99a113a42a43a44a45a51
a52 a146a147a148
a101a149a150a101a51
(1)a146a147f(z) =
∞summationtext
k=1
uk(z)a35G a36a138a139a51
a72
a54
uk(z)a138a139a39a74
a56a57 Cauchy
a110a101a151a152
uk(z) = 12pii
contintegraldisplay
C
uk(ζ)
ζ ?z dζ,
f(z) =
∞summationdisplay
k=1
uk(z)
= 12pii
∞summationdisplay
k=1
contintegraldisplay
C
uk(ζ)
ζ ?zdζ
= 12pii
contintegraldisplay
C
∞summationdisplay
k=1
uk(ζ) dζζ ?z
= 12pii
contintegraldisplay
C
f(ζ)
ζ ?zdζ.
a90a59a111 1a39a61f(ζ)a73C a82a58a37a38a49a41a39a74 f(z)a138a139a51
(2)a146a147a60a65a107a108a109a143a41a51
a53Gprime
a54
G a36a62a42a145a98a99a39 Cprime a73a153a58a154a155a39a46 f(z)a35Gprime a113a138a139a39a74a89
f(p)(z) = p!2pii
contintegraldisplay
Cprime
f(ζ)
(ζ ?z)p+1dζ
a156a157a158 a159 a14 a15 a16 a1713
a18
= p!2pii
contintegraldisplay
Cprime
∞summationdisplay
k=1
uk(ζ) dζ(ζ ?z)p+1
=
∞summationdisplay
k=1
p!
2pii
contintegraldisplay
Cprime
uk(ζ)
(ζ ?z)p+1dζ =
∞summationdisplay
k=1
u(p)k (z).
(3)a146a147a40a41
∞summationtext
k=1
u(p)k a35Gprime a113a42a43a44a45a51
a33a160a92a161a39a35G a36a64a60a65a162a128a42a78a145a98a99Gprimeprime a39a68a85Gprime a163a164a35Gprimeprime a36a51
a165Gprime
a58a154a155Cprime a67Gprimeprime
a58a154a155Cprimeprime a58a166a167a168a169
a54
δ a51a128z
a54
Gprime a36a42a55a39ζ
a54
Cprimeprime a82a58a170a55a51
a171 Weierstrass
a172a173
a90a82a174a58a59a1112a39a60a65a175a176a39
∞summationtext
k=1
uk(ζ)a35a154a155Cprimeprime a82a42a43a44a45a39a131a75a76a62a91a63a176a58ε > 0a39a64
a79a35N(ε)a39a68a69n > N(ε)a70a39a177a89 vextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle
n+qsummationdisplay
k=n+1
uk(ζ)
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle < ε,
q a73a62a91a178a179a41a51a76a73a39vextendsingle
vextendsinglevextendsingle
vextendsinglevextendsingle
n+qsummationdisplay
k=n+1
u(p)k (ζ)
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle =
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
n+qsummationdisplay
k=n+1
p!
2pii
contintegraldisplay
Cprimeprime
uk(ζ)
(ζ ?z)p+1dζ
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
=
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
p!
2pii
contintegraldisplay
Cprimeprime
n+qsummationdisplay
k=n+1
uk(ζ) dζ(ζ ?z)p+1
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
≤ p!2pi
contintegraldisplay
Cprimeprime
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
n+qsummationdisplay
k=n+1
uk(ζ)
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
|dζ|
|ζ ?z|p+1
< p!2pi εδp+1lprimeprime, lprimeprime
a54
Cprimeprimea58a125a180.
a92a65
∞summationtext
k=1
u(p)k (z)a35(G a36a58a62a42a145a98a99)Gprime a113a42a43a44a45a51 square