a0 a1
star a2a3a4a5a6a7a8a9a10 6
1 o 'lC { 11
1 o 'lC {
'' §‰)flK ~^){§'lC {'
)~ ' §‰)flK §ˇ~o·k? ' § A)§d 5?’ A)
U\ ˇ)§ ^‰)^ (~X—^ )‰ U\X?'
5 ' § ?)flK§? { ·=z 5~ ' §|
?)flK'
?u –9 p ' §‰)flK§ ?k =? –k?
' § ˇ)§duˇ)¥?k ‰…?§ ‘5§J– ‰)^
‰ ' ?) '' § ‰‰)flK§ 7Lr?) ‰\–? ?U'
14.1 ‰u gd ? 12
14.1 ‰u gd ?
‰)flK ? l! ‰ u gd ?§ §9‰)^
@2u
@t2 ?a
2@2u
@x2 = 0; 0 < x < l; t > 0;
uflflx=0 = 0, uflflx=l = 0, t ? 0;
uflflt=0 = `(x), @u@t
flfl
fl
t=0
= ?(x), 0 ? x ? l:
§ >.^ · g § —'^ · g '
? F"? A)) k'lC /Ҥ=
u(x;t) = X(x)T(t):
F u(x;t) \ §§=
X(x)T00(t) = a2X00(x)T(t):
“ –X(x)T(t)§
1
a2
T00(t)
T(t) =
X00(x)
X(x) :
3? “¥§
·t …? ( ?{‘§ x?’)
m ·x …? ( ?{‘§ t?’)
ˇd§ m § 7L u Q x?’!q t?’ ~?' ??§ ?
(J –z?
T00(t)+?a2T(t) = 0;
X00(x)+?X(x) = 0:
F u(x;t) \>.^ §
X(0)T(t) = 0; X(l)T(t) = 0:
? 7Lk
X(0) = 0; X(l) = 0:
? ? ^'lC {?) ' §‰)flK
1 'lC
F8I 'lC /“ ")u(x;t) = X(x)T(t)
F(J …?X(x) v ~ ' § >.^ –9T(t) v ~ ' §
14.1 ‰u gd ? 13
F^ ' § >.^ · g
y3 y …?X(x) ~ ' §‰)flK§A:· ' §¥?k ‰~
??§‰)^ · ? g>.^ '? ‰)flK u~ ' § —
flK'
? ?u? ? § kQ v g~ ' §!q v g>.^ "
)'
k ? , A‰ § kQ v g~ ' §!q v g>.^
")X(x)'
? ? A‰ ? §
A ")? …?'
…?X(x) ~ '' §‰)flK§? flK'
1 ?) flK
Fe? = 0§ ' § ˇ)·
X(x) = A0x+B0:
\>.^
X(0) = 0; X(l) = 0;
–‰
A0 = 0; B0 = 0:
?‘?? = 0 ' § k")' ?{‘§? = 0 · '
F ? 6= 0 §~ ' §
X00(x)+?X(x) = 0
ˇ)·
X(x) = Asin
p
?x+Bcos
p
?x;
\>.^ § k
B = 0; Asinp?l = 0:
ˇ A 6= 0§ 7kp?l = n…§=
?n =
?n…
l
·2
; n = 1;2;3;¢¢¢ :
A …? ·
Xn(x) = sin n…l x:
14.1 ‰u gd ? 14
? ? k??? §§ –^ ?nIP§ˇd§3 ? (J¥§r
A …? P ?n Xn(x)'
1n ?A)§?U\ )
3?) flK §?uz ?n§d §
T00(t)+?a2T(t) = 0
–? A Tn(t)§
Tn(t) = Cn sin n…l at+Dn cos n…l at:
ˇd§ v ' § >.^ A)
un(x;t) =
?
Cn sin n…l at+Dn cos n…l at
·
sin n…l x (n = 1;2;3;¢¢¢):
F? A)k???
Fz A) v g ' § g>.^
F ‘5§ ? A) U T— v‰)flK¥ —'^ §= ?{?
~?Cn Dn§ v
Dn sin n…l x = `(x); Cnn…al sin n…l x = ?(x):
F ' § >.^ · g §r§ (??k )A)U\ 5§E,· v
g § g>.^ )'·? U v—'^ ”
Fr ??? A)U\ 5
u(x;t) =
1X
n=1
?
Cn sin n…l at+Dn cos n…l at
·
sin n…l x;
?? kv — ′?5(~X§ –ˉ ? ?)§@o§?
u(x;t) E,· g ' §3 g>.^ e )'
??/“ )? )'§ u ' § ˇ)§ˇ ) · v
' §§ v g>.^
X J )¥ UU\X?Cn Dn”
1X
n=1
Dn sin n…l x = `(x); (z)
1X
n=1
Cnn…al sin n…l x = ?(x) (>)
14.1 ‰u gd ? 15
1o |^ …? 5‰U\X?
n …? 5
Z l
0
Xn(x)Xm(x)dx = 0; n 6= m:
3(z)“ ?–sin m…l x§ˉ ¨'§
Z l
0
`(x)sin m…l xdx =
Z l
0
1X
n=1
Dn sin n…l xsin m…l xdx
=
1X
n=1
Dn
Z l
0
sin n…l xsin m…l xdx = Dm ¢ l2:
?–
Dn = 2l
Z l
0
`(x)sin n…l xdx:
§d(>)“§ –
Cn = 2n…a
Z l
0
?(x)sin n…l xdx:
? § —'^ ¥ fi …?`(x) ?(x)§ – U\X?Cn Dn§l ?
‰)flK )'
F …? 5 y?
Xn(x) = sin n…l x Xm(x) = sin m…l x·'O?Au ?n ?m …?§?n 6=
?m(=n 6= m)'§ 'O v
X00n(x)+?nXn(x) = 0;
Xn(0) = 0; Xn(l) = 0;
X00m(x)+?mXm(x) = 0;
Xm(0) = 0; Xm(l) = 0:
^Xm(x)?–Xn(x) §§^Xn(x)?–Xm(x) §§ ~§?3?m[0;l] ¨'§=
(?n ??m)
Z l
0
Xn(x)Xm(x)dx
=
Z l
0
£X
n(x)X00m(x)?Xm(x)X00n(x)
?dx
= £Xn(x)X0m(x)?Xm(x)X0n(x)?
flfl
fl
l
0
= 0:
?^ Xn(x) Xm(x) v >.^ ' ? ?n 6= ?m§ y …? 5
Z l
0
Xn(x)Xm(x)dx = 0; n 6= m:
14.1 ‰u gd ? 16
4 3 ? y?¥ ^
1. …? v ' §
2. …? v >.^
vk^ …? N…?/“
4 ˇd§ …? v ' §
X00(x)+?X(x) = 0;
K(J
(?n ??m)
Z l
0
Xn(x)Xm(x)dx
= £Xn(x)X0m(x)?Xm(x)X0n(x)?
flfl
fl
l
0
E,??'
4 XJ …? v >.^ U
fi1X(0)+fl1X0(0) = 0;
fi2X(l)+fl2X0(l) = 0;
¥fi1 fl1!fi2 fl2 0§Kk
fi1Xn(0)+fl1X0n(0) = 0;
fi1Xm(0)+fl1X0m(0) = 0
fi2Xn(l)+fl2X0n(l) = 0;
fi2Xm(l)+fl2X0m(l) = 0:
ˇ fi1 fl1 0§?–
flfl
flfl
fl
Xn(0) X0n(0)
Xm(0) X0m(0)
flfl
flfl
fl = 0:
qˇ fi2 fl2 0§?–qk
flfl
flfl
fl
Xn(l) X0n(l)
Xm(l) X0m(l)
flfl
flfl
fl = 0:
F( ?u flK
X00(x)+?X(x) = 0;
fi1X(0)+fl1X0(0) = 0;
fi2X(l)+fl2X0(l) = 0
14.1 ‰u gd ? 17
…? 5 Z
l
0
Xn(x)Xm(x)dx = 0; n 6= m
E,??'
4 ? >.^ ”X ! !nan?a. >.^ '
F …?
kXnk2 ·
Z l
0
X2n(x)dx = l2:
Fˉ?3 ‰u D′L§
{ §E– Xd— £ ˉ? ~'
t > 0 §— £ 3?.u 'O mD′§ ?· :x = 0‰x =
l §7L £5§? k …(=3 :x = 0 x = l7L §?·d
‰? >.^ ?‰ )' u ?? :3?? £ §§ ·— £
3 :m?g E U\ (J'?u— -u ˉ?§ , –aq/?
'
Fu oU
3? t§u ?U U'O·
1
2
Z l
0
‰
@u
@t
?2
dx 12
Z l
0
T
@u
@x
?2
dx;
oU
E(t) = 12
Z l
0
‰
@u
@t
?2
dx+ 12
Z l
0
T
@u
@x
?2
dx:
)“ \§|^ …? 8 5§ N·?
E(t) = m…
2a2
4l2
1X
n=1
n2£jCnj2 +jDnj2?:
“m w,·~?§ t?’§=u oU ˉ '
kXnk ?~? …? 8 ˇf'?·ˇ
1
kXnk2
Z l
0
X2n(x)dx = 1
= …?Xn(x)=kXnk 1', § – ? ?Z
l
0
Xn(x)Xm(x)dx = l2–nm:
? …? 8 5'
{· 13.6! {§ dE=dt = ?2§ 6u N ?) {(~X§'lC {)'
14.1 ‰u gd ? 18
F) 5
XJd‰)flKk )§u1(x;t) u2(x;t)§@o§v(x;t) · u1(x;t)?u2(x;t) ‰ v‰
)flK
@2v
@t2 ?a
2@2v
@x2 = 0; 0 < x < l; t > 0;
vflflx=0 = 0; vflflx=l = 0; t ? 0;
vflflt=0 = 0; @v@t
flfl
fl
t=0
= 0; 0 ? x ? l:
U y?v(x;t) = 0= 'l n – §? ‰· ( 'lU ˉ ?5
w§ t = 0 u oU 0§ˇd– ? t§E(t) 0'?? X ‰k
@v
@x = 0;
@v
@t = 0;
=v(x;t) ~?'d—'^ ‰>.^ § U‰ d~? 0'
F|^'lC {?) ' §‰)flK ? ‰
1. 1 §'lC '
? ?–U ¢y§k?^ · ' § >.^ · g '
'lC (J§· ( ‰? )?k ‰~? g~ ' §
g>.^ §=( ‰? ) flK'
2. 1 §?) flK'
3. 1n §? A)§?? U\ )'
w,flkvk? nd ¥ ? A)'
4. 1o §|^ …? 5‰U\X?'
‘5§ ? ·/“)'?u NflK§ 7L y
1. ? u(x;t)·? v ' §§ ?{‘§??)·? –ˉ ?
??
2. ? u(x;t)·? v>.^ § ?{‘§??) ……??··?oY?
3. 3‰‰UU\X?? §ˉ ¨'·? {'
14.1 ‰u gd ? 19
’u?n flK§ 9 ??) ′?5'duX?Cn Dn·d`(x) ?(x)?‰ §
ˇ `(x) ?(x) 5 ?‰ ??n flK £ '
ln ‘§'lC { ??§ ?ue A ^
1. flKk)?
2. ‰)flK ) ‰ –U …?—m§ ?{‘§ …? N· ?
3. …? ‰ k 5'
– 3? £ ?A flK'
) n?′
kwA)
un(x;t) =
?
Cn sin n…l at+Dn cos n…l at
·
sin n…l x
= An sin(!nt+–n)sinknx;
¥
!n = n…l a; kn = n…l ;
An cos–n = Cn; An sin–n = Dn:
F un(x;t) L 7ˉ
F An sinknxL?u : '
F sin?!nt+–n¢L? ˇf
F !n·7ˉ “˙§? ‰u k“˙‰ “˙§ —'^ ?’
F kn? ˉ?§· ˉ –ˇ?
F –n·— §d—'^ ?‰
F3knx = m…§=x = m…=kn = (m=n)l; m = 0;1;2;3;¢¢¢ ;n : § ?
0§? ˉ!'
)u :3S§ˉ!: kn+1 '
F3knx = (m+1=2)…§=x = (2m+1)…=2kn = (2m+1)l=2n; m = 0;1;2;3;¢¢¢ ;n?1
: § ? ? §? ˉ?'ˉ?: kn '
F flK )K·? 7ˉ U\'
·ˇ ? ˇ§??){ ? 7ˉ{'
14.1 ‰u gd ? 110
‰ u5‘§ k“˙¥k §=
!1 = …l a;
? ?“§ ? k“˙!n ·?“!1 ? §
!n = n!1; n = 2;3;¢¢¢ ;
? “'
Fu ?“ ?‰ ?u( N'3uW ¥§ u ‰(=‰ ‰) §ˇLU
Cu ;§ (=UC T )§ –N!?“!1 '
F)“¥?“ “ U\X?fCng fDng ? ?‰ ( “ ' §=?‰
( '
F ?
1X
n=1
n2£jCnj2 +jDnj2?
u oU ? ’§?– ?‰ ( r '
F'lC { ) 1ˉ) ?X
—'^ `(x) ?(x)
'(x) =
8
<
:
?`(?x); ?l ? x ? 0;
`(x); 0 ? x ? l;
“(x) =
8
<
:
??(?x); ?l ? x ? 0;
?(x); 0 ? x ? l;
, 2 –ˇ 2l –ˇ…?(EP '(x) “(x))'? (J y 3 :x = l
· ' '(x) “(x)—m Fourier??
'(x) =
1X
n=1
fin sin n…l x; “(x) =
1X
n=1
fln sin n…l x;
¥
fin = 1l
Z l
?l
'(x)sin n…l xdx = 2l
Z l
0
`(x)sin n…l xdx;
fln = 1l
Z l
?l
“(x)sin n…l xdx = 2l
Z l
0
?(x)sin n…l xdx:
c?‰ Cn Dn ’ § –w
fin = Dn; fln = n…al Cn:
14.1 ‰u gd ? 111
?–
u(x;t) =
1X
n=1
?
Cn sin n…l at+Dn cos n…l at
·
sin n…l x
= 12
1X
n=1
Dn
h
sin n…l (x?at)+sin n…l (x+at)
i
+ 12
1X
n=1
Cn
h
cos n…l (x?at)?cos n…l (x+at)
i
= 12
1X
n=1
fin
h
sin n…l (x?at)+sin n…l (x+at)
i
+ 12
1X
n=1
fln
n…a
h
cos n…l (x?at)?cos n…l (x+at)
i
= 12 ['(x?at)+'(x+at)]+ 12a
Z x+at
x?at
“(x)dx:
1ˉ) /“ § L?p '(x) “(x)·d—'^ `(x) ?(x)U c? {K
'
? )“u(x;t)§ , ?^u?m0 ? x ? l¥'
14.2 /? S ?‰flK 112
14.2 /? S ?‰flK
'lC { ?^^uu9D § ?‰flK(~X§Laplace §) ‰‰)flK'
k‰)flK
@2u
@x2 +
@2u
@y2 = 0; 0 < x < a;0 < y < b;
uflflx=0 = 0, @u@x
flfl
fl
x=a
= 0, 0 ? y ? b;
uflfly=0 = f(x),@u@y
flfl
fl
y=b
= 0, 0 ? x ? a:
E^'lC {?)'-
u(x;y) = X(x)Y(y);
F \ §§'lC §=
X00(x)Y(y) = ?X(x)Y00(y):
u·
X00(x)
X(x) = ?
Y00(y)
Y(y) :
3? “¥§
·x …?( y?’)
m ·y …?( x?’)
ˇd§ 7L u Q x?’!q y?’ ~?'-? ~? ??§
X00(x)+?X(x) = 0 Y00(y)??Y(y) = 0:
F \’ux ? g>.^
X(0)Y(y) = 0; X0(a)Y(y) = 0;
–'lC
X(0) = 0; X0(a) = 0:
? §q flK
X00(x)+?X(x) = 0;
X(0) = 0; X0(a) = 0:
F?) flK
14.2 /? S ?‰flK 113
e? = 0§~ ' § ˇ)·
X(x) = A0x+B0:
\( g)>.^ § A0 = 0; B0 = 0'ˇd ' § k")' ?{‘§? = 0 ·
'
e? 6= 0§~ ' § ˇ) ·
X(x) = Asin
p
?x+Bcos
p
?x:
\( g)>.^ § B = 0; A 6= 0; cosp?a = 0'u·§ ?
?n =
2n+1
2a …
?2
; n = 0;1;2;3;¢¢¢
…?
Xn(x) = sin 2n+12a …x:
A/§
Yn(y) = Cn sinh 2n+12a …y +Dn cosh 2n+12a …y:
u·§ Q vLaplace §!q v g>.^ A)
un(x;y) =
Cn sinh 2n+12a …y +Dn cosh 2n+12a …y
?
sin 2n+12a …x:
???? A)U\ 5§ )
u(x;y) =
1X
n=0
Cn sinh 2n+12a …y +Dn cosh 2n+12a …y
?
sin 2n+12a …x:
\’uy ?( g)>.^ §
uflfly=0 =
1X
n=0
Dn sin 2n+12a …x = f(x);
@u
@y
flfl
flfl
y=b
=
1X
n=0
2n+1
2a …
?
Cn cosh 2n+12a …b
+Dn sinh 2n+12a …b
·
sin 2n+12a …x = 0;
2g …? 8 5§Z
a
0
sin 2n+12a …xsin 2m+12a …xdx = a2–nm;
–?
Dn = 2a
Z a
0
f(x)sin 2n+12a …xdx
Cn cosh 2n+12a …b+Dn sinh 2n+12a …b = 0;
dd
Cn = ?Dn tanh 2n+12a …b:
? § ? /? SLaplace §> flK ??)'XJ f(x) N/
“§ –? ? U\X?Cn Dn N/“'
14.2 /? S ?‰flK 114
F? flK·?‰flK§ mt?’§ˇd y—'^ '
F^'lC {?) § ^ g>.^ ? flK§ ^ g>.^ ‰UX?'
14.3 ?u gC ‰)flK 115
14.3 ?u gC ‰)flK
‰)flK
@u
@t ??
?@2u
@x2 +
@2u
@y2
·
= 0; 0 < x < a; 0 < y < b; t > 0;
@u
@x
flfl
fl
x=0
= 0, @u@x
flfl
fl
x=a
= 0, 0 ? y ? b; t ? 0;
@u
@y
flfl
fl
y=0
= 0, @u@y
flfl
fl
y=b
= 0, 0 ? x ? a; t ? 0;
uflflt=0 = `(x;y); 0 ? x ? a; 0 ? y ? b:
u(x;y;t) = v(x;y)T(t);
\ §§'lC §
@2v
@x2 +
@2v
@y2 +?v(x;y) = 0;
T0(t)+??T(t) = 0;
¥?·'lC ? ‰~?'2-
v(x;y) = X(x)Y(y);
? 'lC §
X00(x)+?X(x) = 0;
X0(0) = 0; X0(a) = 0
Y00(y)+”Y(y) = 0;
Y0(0) = 0; Y0(b) = 0:
?pq ? ~?? ”§ ?; ” ?¥ k · ? §§ 7L v?+” = ?'
B§? //?? ~?'
?)’uX(x) flK
F ? = 0 §~ ' § ˇ)·
X(x) = A0x+B0:
\( g)>.^ §
A0 = 0; B0??:
?‘?? = 0· § …?
X(x) = 1:
14.3 ?u gC ‰)flK 116
c ! ·?p ? = 0· §?·ˇ ? = 0 § flKk
")X(x) = B0; B0·??~?'
F ? 6= 0 §~ ' § ˇ)·
X(x) = Asinp?x+Bcosp?x:
\( g)>.^ §q
A = 0; p?sinp?a = 0:
?–§p?a = n…§=
?n =
?n…
a
·2
; n = 1;2;3;¢¢¢ :
A/§
…?Xn(x) = cos n…a x:
r? = 0 ? > 0 (J ? 5§ – ?
?n =
?n…
a
·2
; n = 0;1;2;3;¢¢¢ ;
…? Xn(x) = cos n…a x:
–) ’uY(y) flK )
”m =
?m…
b
·2
; m = 0;1;2;3;¢¢¢ ;
…? Ym(x) = cos m…b y:
?u ‰ n m§2? ?
T00(t) = A00; n = m = 0;
Tnm(t) = Anm e??nm?t; ? /;
– ? /“
Tnm(t) = Anm e??nm?t; n = 0;1;2;3;¢¢¢ ; m = 0;1;2;3;¢¢¢ ;
?nm = ?n +”m =
?n…
a
·2
+
?m…
b
·2
:
ˇd§ ? ‰)flK A)
unm(x;y;t) = Xn(x)Ym(y)Tnm(t)
= Anm cos n…a xcos m…b ye??nm?t
14.3 ?u gC ‰)flK 117
)
u(x;y;t) =
1X
n=0
1X
m=0
unm(x;y;t)
=
1X
n=0
1X
m=0
Anm cos n…a xcos m…b ye??nm?t
=
1X
n=0
1X
m=0
Anm cos n…a xcos m…b y
£exp
‰
?
??n…
a
·2
+
?m…
b
·2?
?t
:
\—'^ §k
u(x;y;t)flflt=0 =
1X
n=0
1X
m=0
Anm cos n…a xcos m…b y = `(x;y):
e A …? 5‰ U\X?'y3Q ^ fXn(x); n = 0;1;2;¢¢¢g
5§q ^ fYm(y);m = 0;1;2;¢¢¢g 5§" ' g§ ? § 8
5
Z a
0
Xn(x)Xn0(x)dx = a2 (1+–n0)–nn0;
Z b
0
Ym(y)Ym0(y)dy = b2 (1+–m0)–mm0:
O ¥ I 3%?'n = 0 n 6= 0 m = 0 m 6= 0 /'O (J·
Anm = 4ab 1(1+–
n0)(1+–m0)
£
Z a
0
Z b
0
`(x;y)cos n…a xcos m…b ydxdy:
14.4 ‰u r‰ ? 118
14.4 ‰u r‰ ?
g ' § g>.^ 3'lC {¥ X’ ^ ˇ § >.
^ · g §'lC –¢y'
XJ‰)flK¥ § >.^ · g § kvk UAA^^'lC {”
‰)flK
@2u
@t2 ?a
2@2u
@x2 = f(x;t); 0 < x < l; t > 0;
uflflx=0 = 0, uflflx=l = 0, t ? 0;
uflflt=0 = 0, @u@t
flfl
flfl
t=0
= 0, 0 ? x ? l:
?u § g ?n§?p ?X{d ‰u r‰ ?§u
— £ — 0'
? ){
§ >.^ gz'
u(x;t) = v(x;t)+w(x;t);
3 g § gz §7L – k g>.^ C'
){ ’ 3u? A)v(x;t)'?^uf(x;t)/“’ { /'
) U ?) g § 0 {§k? g § A)v(x;t)§
@2v
@t2 ?a
2@2v
@x2 = f(x;t):
? §XJ
u(x;t) = v(x;t)+w(x;t);
Kw(x;t) ‰· A g § )§
@2w
@t2 ?a
2@2w
@x2 = 0:
UAA^^'lC {§w(x;t)7L v g>.^
w(x;t)flflx=0 = 0; w(x;t)flflx=l = 0:
ˇd§? ? ˇ? A)v(x;t) AT v g>.^ '
u(x;t)flflx=0 = 0; u(x;t)flflx=l = 0:
14.4 ‰u r‰ ? 119
? ? A)§ –? w(x;t) )
w(x;t) =
1X
n=1
?
Cn sin n…l at+Dn cos n…l at
·
sin n…l x;
?–
u(x;t) = v(x;t)+
1X
n=1
?
Cn sin n…l at+Dn cos n…l at
·
sin n…l x;
\—'^ §
1X
n=1
Dn sin n…l x = ?v(x;t)flflt=0;
1X
n=1
Cnn…al sin n…l x = ?@v(x;t)@t
flfl
fl
t=0
;
|^ …? 8 5§‰ U\X?
Cn = ? 2n…a
Z l
0
@v(x;t)
@t
flfl
fl
t=0
sin n…l xdx;
Dn = ? 2l
Z l
0
v(x;0)sin n…l xdx:
??){? § >.^ gz'
3 g § gz §7L – k g>.^ CC'
){ ’ 3u? A)v(x;t)'?^^uuf(x;t)/“’ { /'
g—'^ – '
~1 ?)‰)flK
@2u
@t2 ?a
2@2u
@x2 = f(x); 0 < x < l; t > 0;
uflflx=0 = 0, uflflx=l = 0, t ? 0;
uflflt=0 = 0, @u@t
flfl
flfl
t=0
= 0, 0 ? x ? l;
¥f(x) fi …?'
) )K g·'
du § g ·x …?§ –r gz…? ·x …?§=
u(x;t) = v(x)+w(x;t);
¥v(x) v~ ' § > flK
v00(x) = ? 1a2f(x);
v(0) = 0; v(l) = 0;
14.4 ‰u r‰ ? 120
w(x;t)K v‰)flK
@2w
@t2 ?a
2@2w
@x2 = 0; 0 < x < l; t > 0;
wflflx=0 = 0, wflflx=l = 0, t ? 0;
wflflt=0 = ?v(x), @w@t
flfl
flfl
t=0
= 0, 0 ? x ? l:
~2 ?)‰)flK
@2u
@t2 ?a
2@2u
@x2 = A0 sin!t; 0 < x < l; t > 0;
uflflx=0 = 0, uflflx=l = 0, t ? 0;
uflflt=0 = 0, @u@t
flfl
flfl
t=0
= 0, 0 ? x ? l;
¥a; A09! fi ~?'
)
u(x;t) = v(x;t)+w(x;t);
? g N/“§ gz…?v(x;t)
v(x;t) = f(x)sin!t:
? v(x;t) v g §9 g>.^ §
@2v
@t2 ?a
2@2v
@x2 = A0 sin!t; 0 < x < l; t > 0;
vflflx=0 = 0, vflflx=l = 0, t ? 0;
· Jf(x)§?
?!2f(x)?a2f00(x) = A0;
f(0) = 0; f(l) = 0:
? g~ ' § ˇ)
f(x) = ?A0!2 +Asin !ax+Bcos !ax:
\ g>.^ –‰
B = A0!2 ; A = A0!2 tan !l2a:
u·
f(x) = ?A0!2
??
1?cos !ax
·
?tan !l2a sin !ax
?
= ?A0!2
?
1? cos(!(x?l=2)=a)cos(!l=2a)
?
:
14.4 ‰u r‰ ? 121
? U w(x;t)? v ‰)flK§
@2w
@t2 ?a
2@2w
@x2 = 0; 0 < x < l; t > 0;
w
flfl
fl
x=0
= 0, wflflx=l = 0, t ? 0;
wflflt=0 = 0, @w@t
flfl
flfl
t=0
= ?!f(x), 0 ? x ? l:
§ )
w(x;t) =
1X
n=1
h
Cn sin n…l at+Dn cos n…l at
i
sin n…l x:
|^ ? —'^ –‰
Dn = 0;
Cn = ? 2!n…a
Z l
0
f(x)sin n…l xdx
= ?2A0!l
3
…2a
1?(?)n
n2
1
(n…a)2 ?(!l)2:
kn = ? §Cn 0'? § ?
w(x;t) = ?4A0!l
3
…2a
1X
n=0
? 1
(2n+1)2
1
[(2n+1)…a]2 ?(!l)2
£sin 2n+1l …x sin 2n+1l …at
?
u(x;t) = ? A0!2
?
1? cos!(x?l=2)=acos(!l=2a)
?
sin!t
? 4A0!l
3
…2a
1X
n=0
? 1
(2n+1)2
1
[(2n+1)…a]2 ?(!l)2
£sin 2n+1l …x sin 2n+1l …at
?
:
Aˇ / r‰ “˙! —·u , k“˙§
! = (2k +1)…a=l; k , (‰ K ?
u3r‰ ^e?u) y '
~3 ?)‰)flK
@2u
@x2 +
@2u
@y2 = xy; 0 < x < a; 0 < y < b;
uflflx=0 = 0, uflflx=a = 0, 0 ? y ? b;
uflfly=0 = `(x), uflfly=b = ?(x), 0 ? x ? a:
14.4 ‰u r‰ ? 122
) N·? § ˇ)
1
6x
3y +f(x+iy)+g(x?iy):
? J…?f g§~X§
f(x+iy)+g(x?iy) = ? a
2
24i
h
(x+iy)2 ?(x?iy)2
i
= ?16a2xy;
? )
v(x;y) = 16
?
x2 ?a2
·
xy
v g>.^
v(x;y)flflx=0 = 0; v(x;y)flflx=a = 0:
-
u(x;y) = v(x;y)+w(x;y);
– w(x;t)?A v ‰)flK§
@2w
@x2 +
@2w
@y2 = 0; 0 < x < a; 0 < y < b;
wflflx=0 = 0; wflflx=a = 0; 0 ? y ? b;
wflfly=0 = `(x); wflfly=b = ?(x)? b6 ?x2 ?a2¢x; 0 ? x ? a:
¥ § ?>.^ · g §ˇd§?N·?)'
XJ § g f(x;t) /“’ E,§J–? g § A)§ –
^e? ?? ){'
? ){ ‰n{
? g·· ‰ ? flK=z (??? )gd ?flK U\'
~X§?uu r‰ ?flK
@2u
@t2 ?a
2@2u
@x2 = f(x;t); 0 < x < l; t > 0;
uflflx=0 = 0, uflflx=l = 0, t ? 0;
uflflt=0 = 0, @u@t
flfl
flfl
t=0
= 0, 0 ? x ? l;
–r g ( ? )f(x;t)L? (??? )] ( ) U\§
f(x;t) =
Z 1
0
f(x;?)–(t??)d?;
A/§r £u(x;t) L?
u(x;t) =
Z 1
0
v(x;t;?)d?;
14.4 ‰u r‰ ? 123
Kv(x;t;?)d? A ·] f(x;?)–(t??)d?? ) £'O(/‘§v(x;t;?)A ·‰)
flK
@2v
@t2 ?a
2@2v
@x2 = f(x;?)–(t??); 0 < x < l; t > 0;
vflflx=0 = 0, vflflx=l = 0, t ? 0;
vflflt=0 = 0, @v@t
flfl
flfl
t=0
= 0, 0 ? x ? l
)' g ( 3 mS? )f(x;?)–(t??) 3u? § J
·? u3? … ] '? l ' § ¨'
Z ?+0
??0
@2v
@t2 dt?a
2
Z ?+0
??0
@2v
@x2dt =
Z ?+0
??0
f(x;?)–(t??)dt
'ˇ v(x;t;?)·t oY…?§@2v(x;t;?)=@x2 A ·t oY…?§ “ z
@v(x;t;?)
@t
flfl
fl
t=?+0
t=??0
= f(x;?):
=@v(x;t;?)=@t3t = ? oY'dut < ? u ] ^§E?u? G
§
@v(x;t;?)
@t
flfl
fl
t=??0
= 0;
?– §
@v(x;t;?)
@t
flfl
fl
t=?+0
= f(x;?):
? § ‰)flK¥ ' § g =£ —^ §= ‰)flKU ?(–e
t = ? +0{ / t = ?)
@2v
@t2 ?a
2@2v
@x2 = 0; 0 < x < l; t > 0;
vflflx=0 = 0, vflflx=l = 0, t ? 0;
vflflt=? = 0, @v@t
flfl
flfl
t=?
= f(x;?), 0 ? x ? l;
kv(x;t;?)flflt<? = 0'?p 5? · ?EO § ] ^QO\
§ g §qO\—— '
n ?a§ ‰n r?) g §! g>^ g—^ ‰)flK=z ?
) g §! g>^ ! g—^ ‰)flK§ U\= §
u(x;t) =
Z 1
0
v(x;t;?)d? =
Z t
0
v(x;t;?)d?:
y3$^ {?#?) ? ~2'? v(x;t;?)A v‰)flK
@2v
@t2 ?a
2@2v
@x2 = 0; 0 < x < l; t > 0;
vflflx=0 = 0, vflflx=l = 0, t ? 0;
vflflt=? = 0, @v@t
flfl
flfl
t=?
= A0 sin!?, 0 ? x ? l;
' u3? ?… §l ? UC§ – ? ( '
14.4 ‰u r‰ ? 124
N· )
v(x;t;?) =
1X
n=1
h
Cn sin n…l a(t??)+Dn cos n…l a(t??)
i
sin n…l x·(t??):
d—^ –‰
Dn = 0;
Cn = 2n…aA0 sin!?
Z l
0
sin n…l xdx = 2A0l(n…)2a£1?(?)n?sin!?:
?–§ =
u(x;t) =
Z t
0
v(x;t;?)d?
= 4A0l…2a
1X
n=0
1
(2n+1)2 sin
2n+1
l …x
£
Z t
0
sin!? sin 2n+1l …a(t??)d?
= 4A0l
2
…2a
1X
n=0
1
(2n+1)2
1
[(2n+1)…a]2 ?(!l)2 sin
2n+1
l …x
£
?
(2n+1)…a sin!t?(!l)sin 2n+1l …at
?
:
{ –A^u?) g9D §! g>^ —^ ‰)flK§~X
@u
@t ??
@2u
@x2 = f(x;t); 0 < x < l; t > 0;
uflflx=0 = 0, uflflx=l = 0, t ? 0;
uflflt=0 = 0; 0 ? x ? l:
? A ?] 9 9D flK v g §! g>^ g —^ '
? { ’ ‰)flK'
? ){n
¥%g · {? | …?fXn(x); n = 1;2;3;¢¢¢g§ ?| …?·
§@o§ – )u(x;t)9 g § g f(x;t) U …?—m
u(x;t) =
1X
n=1
Tn(t)Xn(x);
f(x;t) =
1X
n=1
gn(t)Xn(x);
, 2 {? Tn(t)= 'duTn(t)· …?§§ v ·~ ' §(|)§k U’?
) ' §5 { '
…?|fXn(x)g { {· JfXn(x)g A g‰)flK …
14.4 ‰u r‰ ? 125
?§= vd g ' § g>.^
@2u
@t2 ?a
2@2u
@x2 = 0; 0 < x < l; t > 0;
uflflx=0 = 0; uflflx=l = 0; t ? 0
'lC flK
X00n(x)+?nXn(x) = 0;
Xn(0) = 0; Xn(l) = 0:
ru(x;t) f(x;t) —m“ \ ' §§?ˉ ?§
1X
n=1
T00n(t)Xn(x)?a2
1X
n=1
Tn(t)X00n(x) =
1X
n=1
gn(t)Xn(x):
|^Xn(x)? v ~ ' §§qz?
1X
n=1
T00n(t)Xn(x)+a2
1X
n=1
?nTn(t)Xn(x) =
1X
n=1
gn(t)Xn(x):
2 …? 5§ Tn(t)? v ~ ' §
T00n(t)+?na2Tn(t) = gn(t):
§ u(x;t) —m“ \—'^ §
1X
n=1
Tn(0)Xn(x) = 0;
1X
n=1
T0n(0)Xn(0) = 0:
…? 5§=U
Tn(0) = 0; T0n(0) = 0:
^) g~ ' § ~?C·{§‰ ^LaplaceC § –?
Tn(t) = ln…a
Z t
0
gn(?)sin n…l a(t??)d?:
?1n?){§? U A gflK …?—m{'
2^?? {?)~2¥ ‰)flK
@2u
@t2 ?a
2@2u
@x2 = A0 sin!t; 0 < x < l; t > 0;
uflflx=0 = 0, uflflx=l = 0, t ? 0;
uflflt=0 = 0, @u@t
flfl
flfl
t=0
= 0, 0 ? x ? l:
) A gflK …?fi314.1!¥ §ˇd
u(x;t) =
1X
n=1
Tn(t)sin n…l x;
14.4 ‰u r‰ ? 126
g A0 sin!t U? | …?—m§
A0 sin!t = 2A0…
1X
n=1
1?(?1)n
n sin
n…
l xsin!t;
\ § —'^ §
T00(t)+
?n…
l a
·2
Tn(t) = 2A0… 1?(?1)
n
n sin!t;
T(0) = 0; T0(0) = 0:
) =
Tn(t) = 2A0l
2
…
1?(?1)n
n
1
(n…a)2 ?(!l)2 sin!t
?2A0!l
3
…2a
1?(?1)n
n2
1
(n…a)2 ?(!l)2 sin
n…
l at:
ˇdq –? ~2 , ?/“ )
u(x;t) = 4A0l
2
…
1X
n=0
1
2n+1
1
[(2n+1)…a]2 ?(!l)2 sin
2n+1
l …x sin!t
? 4A0!l
3
…2a
1X
n=0
? 1
(2n+1)2
1
[(2n+1)…a]2 ?(!l)2
£sin 2n+1l …x sin 2n+1l …at
?
:
?u?‰flK§~X§Poisson § 1 a> flK
@2u
@x2 +
@2u
@xy2 = f(x;y); 0 < x < a; 0 < y < b;
uflflx=0 = 0, uflflx=a = 0, 0 ? y ? b;
uflfly=0 = 0, uflfly=b = 0, 0 ? x ? a;
, ^U A gflK …?—m {?)'~X§
u(x;y) =
1X
n=1
Yn(y)sin n…a x;
f(x;y) =
1X
n=1
gn(y)sin n…a x:
\ § >.^ §
Y00n (y)?
?n…
a
·2
Yn(y) = gn(y);
Yn(0) = 0; Yn(b) = 0;
? Yn(y)§ )u(x;y)' d/§ –
u(x;y) =
1X
m=1
Xm(x)sin m…b y;
f(x;y) =
1X
m=1
hm(x)sin m…b y;
14.4 ‰u r‰ ? 127
Xm(x) v g~ ' §> flK
X00m(x)?
?m…
b
·2
Xm(x) = hm(x);
Xm(0) = 0; Xm(a) = 0;
? Xm(x)= '
? ? {vk? O' · g gn(y) hm(x) …?/“
U §ˇ 3’uYn(y) Xm(x) g ~ ' §¥k ·u?
)'
– ? ? {§= u(x;y) f(x;y) QU …?fXn(x)g!qU …
?fYm(y)g—m( ???)
u(x;y) =
1X
n=1
1X
m=1
cnm sin n…a xsin m…b y;
f(x;y) =
1X
n=1
1X
m=1
dnm sin n…a xsin m…b y;
—mX?cnm ?'ˇ f(x;y)·fi …?§?–cnm ·fi '3 ???—m §
,fi? ? >.^ ' ? —m“ \ §§=
?
1X
n=1
1X
m=1
cnm
??n…
a
·2
+
?m…
b
·2?
sin n…a xsin m…b y
=
1X
n=1
1X
m=1
dnm sin n…a xsin m…b y:
…? 5§’ X?§=
?cnm
??n…
a
·2
+
?m…
b
·2?
= dnm:
u·
cnm = ? dnm?n…
a
·2
+
?m…
b
·2:
§? )
u(x;y) = ?
1X
n=1
1X
m=1
dnm?
n…
a
·2
+
?m…
b
·2 sin n…a xsin m…b y:
?? { —?· ; ?) g~ ' §'
14.5 g>.^ gz 128
14.5 g>.^ gz
8c § 3?‰flK¥I k '>.^ ^u‰U\X?!ˇ #
N· g – §? o· ?>.^ · g '
o>.^ 7L· g ”
? g>.^ U'lC
? k v g § g>.^ A)U
\ 5 EU v g § g>.^
? ˇ 9 …? 5
g>.^ X ?n”
E–ˉ? § ‰)flK ~'
g>.^ ?n§b‰ § —'^ · g '
@2u
@t2 ?a
2@2u
@x2 = 0; 0 < x < l; t > 0;
uflflx=0 = ?(t), uflflx=l = ”(t), t ? 0;
uflflt=0 = 0, @u@t
flfl
flfl
t=0
= 0, 0 ? x ? l:
A^'lC {§O? J§ kk g>.^ gz§=-
u(x;t) = v(x;t)+w(x;t);
? Jv(x;t)§? v
v(x;t)flflx=0 = ?(t); v(x;t)flflx=l = ”(t):
? §w(x;t) , ‰ v g>.^
w(x;t)flflx=0 = 0; w(x;t)flflx=l = 0:
‘5§w(x;t)? v § —'^ · g §
@2w
@t2 ?a
2@2w
@x2 = ?
@2v
@t2 ?a
2@2v
@x2
?
;
wflflt=0 = ?vflflt=0; @w@t
flfl
flfl
t=0
= ? @v@t
flfl
flfl
t=0
:
^114.4! {§ –? w(x;t)§ )u(x;t)'
FX gz…?v(x;t)”
ˇ = ?v(x;t) v>.^
v(x;t)flflx=0 = ?(t); v(x;t)flflx=l = ”(t);
14.5 g>.^ gz 129
?–k J{/'
XJrtw?·o?§? ?3(x;y)?? ? y = v(x;t) ˇL ‰
:(0;?(t)) (l;”(t))= '
~X§
v(x;t) = A(t)x+B(t);
\>.^ §= ‰
B(t) = ?(t); A(t) = 1l£”(t)??(t)?:
v(x;t) = A(t)x2 +B(t);
A(t) = 1l2£”(t)??(t)?; B(t) = ?(t);
‰
v(x;t) = A(t)(l?x)2 +B(t)x2;
A(t) = 1l2?(t); B(t) = 1l2”(t):
~4 ?)‰)flK
@u
@t ??
@2u
@x2 = 0; 0 < x < l; t > 0;
uflflx=0 = Asin!t, uflflx=l = 0, t ? 0;
uflflt=0 = 0; 0 ? x ? l:
) ? g>.^ N/“§ gz…?
v(x;t) = A
?
1? xl
·
sin!t:
u·-
u(x;t) = A
?
1? xl
·
sin!t+w(x;t);
Kw(x;t) v‰)flK
@w
@t ??
@2w
@x2 = ?A!
?
1? xl
·
cos!t; 0 < x < l; t > 0,
wflflx=0 = 0, wflflx=l = 0, t ? 0;
wflflt=0 = 0; 0 ? x ? l:
w(x;t) § g 1?x=l U A gflK …?—m§k
w(x;t) =
1X
n=1
Tn(t)sin n…l x; 1? xl =
1X
n=1
2
n… sin
n…
l x:
14.5 g>.^ gz 130
Tn(t)?AT v g ~ ' §
T0n(t)+?
?n…
l
·2
Tn(t) = ?2A!n… cos!t
—'^
Tn(0) = 0;
N·?
Tn(t) = 2A!l
2
n…
1
?2(n…)4 +!2l4
‰
?(n…)2 exp
h
?
?n…
l
·2
?t
i
??(n…)2 cos!t?!l2 sin!t
:
? ? w(x;t)§2 £ § ‰)flK )u(x;t)'
J gz…?v(x;t)§ w(x;t) ‰)flK , §?
w(x;t) ' ·§‰)flK ) 3 5§ y
u(x;t) ‰· §?+L “ /“ Uk? '
? –J p ? J ? gz…?v(x;t)§?w(x;t)? v ‰)
flK? U{ ' n ?§ , · 5u(x;t) §· · g §
“w(x;t) §· g ' ? ‰)flK §?? X ? gz…?v(x;t) · §
)§
@2v
@t2 ?a
2@2v
@x2 = 0:
?u, Aˇ ?(t) ”(t)§· – ? : '
5 §· · g §? r?? { ?
§ >.^ gz'
~5 ?)‰)flK
@2u
@t2 ?a
2@2u
@x2 = 0; 0 < x < l; t > 0;
uflflx=0 = 0, @u@x
flfl
flfl
x=l
= Asin!t, t ? 0;
uflflt=0 = 0, @u@t
flfl
flfl
t=0
= 0, 0 ? x ? l:
) y3 `a? gz…?§ § >.^ gz'
d§ u(x;t) = v(x;t)+w(x;t)§ ? g>.^ N…?/“§ gz
…?v(x;t)
v(x;t) = f(x)sin!t;
f(x)·e ~ ' §> flK
f00(x)+
?!
a
·2
f(x) = 0;
f(0) = 0; f0(l) = A
14.5 g>.^ gz 131
)§
f(x) = Aa! 1
cos !la
sin !ax:
w(x;t)? v ‰)flK·
@2w
@t2 ?a
2@2w
@x2 = 0; 0 < x < l; t > 0;
wflflx=0 = 0, @w@x
flfl
flfl
x=l
= 0, t ? 0;
wflflt=0 = 0, @w@t
flfl
flfl
t=0
= ? Aa
cos !la
sin !ax, 0 ? x ? l:
)
w(x;t) =
1X
n=0
Cn sin 2n+12l …at+Dn cos 2n+12l …at
?
sin 2n+12l …x:
—'^ § –‰
Cn = ? 4A
…cos !la
1
2n+1
Z l
0
sin !axsin 2n+12l …xdx
= (?)n 4A!(2n+1)…a 1?!
a
·2
?
2n+1
2l …
?2;
Dn = 0:
? ? v(x;t) w(x;t) \§ )u(x;t)'