a0 a1 F a2a4a3a4a22a8a23a24a5a4a6a16a7a11a9a11a25 4 ? E?c`?? w ?US"?1: ? E?c`?? w ?US" 1 ??¨s ?M E | %? ?HqB? ^ ?) ?¥ bW u×?B? ^? 3ù5¥ ?D? T ?TK?? E=c? ? #¥+??? QZ? V[¨HelmholtzZ? r2u+k2u = 0 dB í ? ? ì¥ bW?s??Z?°?US"? ^ V[s ?M ¥ ? ?) ?¥ bW u×91 a?1b?USO P¤ u×¥H? ?DUS ?× ?V7 LC QH?Hq¥s ?M  ?Tá ì ?1) ?¥ bW u× ^???( ? ?¥+ y f?=? ü ? ¥?? u×) o? .à  e÷+Y¥? ?T ˉ ?ê4°?US"í ?8"b? USO9? ? P¤ u×¥H? ? ????US ?×?yN' PH?Hq ^ Q¥9íEs ?M  3 %??ù5¥÷E ^ê¨? a¥US" ??? u× nê ü ?US" ???? u× nê?US" ? o? u× nê oUS" ?tUS"/Laplace ??¥ 8? T ??$ HelmholtzZ? ^? V[s ?M $ ??s ?M $ x15.1?? w ?US"?2: x15.1?? w ?US" T1?t ü ?US"a?US"a oUS"?¥à ?Dw< V[?l w ?US"? fx1;x2;x3g x1 = ?(x;y;z); x2 = ·(x;y;z); x3 = ?(x;y;z); ?¥US ? ^ ?F w ? x1 =è ?; x2 =è ?; x3 =è ?: bW ?iB?¥US(x1;x2;x3)ü?V??¥ ??US ? %?1  £x1; x2?x3 ^? ? ¥??1 p ? ì¥Jacobi?  T @(x1;x2;x3) @(x;y;z) · flfl flfl flfl flfl flfl flfl fl @x1 @x @x1 @y @x1 @z @x2 @x @x2 @y @x2 @z @x3 @x @x3 @y @x3 @z flfl flfl flfl flfl flfl flfl fl 6= 0: ? bW¥ ?iB? ?TYV??¥ ??US ?9 ^oM<°¥ * 1??US"ü ?1?? w ?US" è ?°?US"?V bW ?iB?(x0;y0;z0)¥ ??US ? x = x0; y = y0; z = z0 ü ^oM<°¥ 1  ?B?US" ^? ^?? w ?US"? ? V[°¤?US"¥?l pUS ?¥ E O  ? ?÷訥÷E? ^9 ??éè ds2 =dx2 +dy2 +dz2 = @x @x1dx 1 + @x @x2dx 2 + @x @x3dx 3 ?2 + @y @x1dx 1 + @y @x2dx 2 + @y @x3dx 3 ?2 + @z @x1dx 1 + @z @x2dx 2 + @z @x3dx 3 ?2 = X i;j=1;2;3 gijdxidxj; ? gij = gji = @x@xi @x@xj + @y@xi @y@xj + @z@xi @z@xj: ?? ú¥xi (i = 1;2;3)? SiS: bW?¥US(s )i?V UZQ ???) ?ZE¥B?a? ^ V[°¤w<?ú? bW¥ f? è±s+??÷è { ? T?¥?|7°¤? ds2 = gijdxidxj: ?vEinstein?5N T? ?313 ?μ×ˉ·S(i OB? ^ ·SB? ^/·S) p? x15.1?? w ?US"?3: ?T gij = gii–ij 5?NUS"1?? wLUS"gij?¥ ?G?1N bW¥?(metric) è è è1?US"x = rcos ; y = rsin ; z = z ds2 = dx2 +dy2 +dz2 = (cos dr?rsin d )2 +(sin dr +rcos d )2 +dz2 = dr2 +r2d 2 +dz2: ?[?US" ^?? w ?US"g11 = 1; g22 = r2; g33 = 1 è è è2 oUS"x = rsin cos`;y = rsin sin`;z = rcos  ds2 = dx2 +dy2 +dz2 = (sin cos`dr +rcos cos`d ?rsin sin`d`)2 +(sin sin`dr +rcos sin`d +rsin cos`d`)2 +(cos dr?rsin d )2 = dr2 +r2d 2 +r2sin2 d`2: oUS"9 ^?? w ?US"g11 = 1; g22 = r2; g33 = r2sin2  x15.2?? w ?US"?¥Laplace ???4: x15.2?? w ?US"?¥Laplace ?? YV?±sEo ?? wLUS"?Laplace ??¥B?? T ??ZE¥a?? ?¥xM?' V[? ? 7US"¥ 8?l7¤?K ?R ¥Vr T T1K?¥o  { ? ?D ¥?ì?loóμ1¥ ??5 ?±sE5o ?±s ??a? ??#s ?[#±s? T¥à Q ?±s ??d ?T¨(S )f ?f  d : f 7! df = X @f @xidx i; ¤?¥df?1BQ±s? T(e?BQ? T) è è è3??US" du = @u@rdr + @u@ d + @u@zdz: è è è4? oUS" du = @u@rdr + @u@ d + @u@`d`:  ?E51?±s ??d?]US"?¥Vr T df = X i @f @xidx i = X i @f @yidy i: BQ±s? Tdfó¥? ^0gradf · rf¥xM±s? T, fdxi;i = 1;2;3g ?BF??(??S?? ^pgiidxi; i = 1; 2; 3) ?±s ??d V[T¨pQ±s? Tfi = PfiIdxI ¤?(p+1)Q±s? T dfi = d ?X I fiIdxI · = X i X I @fiI @xi dx i ^dxI; ? dxI · dxi1 ^dxi2 ^¢¢¢^dxip:  ?^?1s  ?E52 dxi ^dxj = ?dxj ^dxi; yN dxi ^dxi = 0:  ?E53 !fi1pQ±s? Tfl; ^qQ±s? T d(fl + ) = dfl +d ; d(fi^fl) = (dfi)^fl +(?)pfi^(dfl); d(dfi) = 0: x15.2?? w ?US"?¥Laplace ???5: o?p ?? ^B?L?MD ?üpQ±s? TMD1M?¥n?pQ±s? T ?dxi = pdetG gii dx I; ?dxI = giip detGdx i; ?(i;I)?(1;2;3)¥ } ? detGV U ?G¥?  T′  ?E54 ?1 = pdetGdx1 ^dx2 ^dx3; ?(pdetGdx1 ^dx2 ^dx3) = 1: ?ipdetGdx1dx2dx3?z ^Yè¥ ?? bW¥8í è è è5?US"detG = r2 ?du = r@u @rd ^dz + 1 r @u @ dz ^dr +r @u @zdr^d : è è è6 oUS"detG = r4sin2  ?du = r2 sin @u @rd ^d`+sin @u @ d`^dr + 1 sin @u @`dr^d : ?d ^ècurl¥xM±s? T? V[V ?T¨BQ±s? Ta1dx1 + a2dx2 + a3dx3¥2T ?d(a1dx1 +a2dx2 +a3dx3) = @a 3 @x2 ? @a2 @x3 ? g 11p detGdx 1 + @a 1 @x3 ? @a3 @x1 ? g 22p detGdx 2 + @a 2 @x1 ? @a1 @x2 ? g 33p detGdx 3 A ?d? ^ ?div¥xM±s? T ?d?(a1dx1 +a2dx2 +a3dx3) = 1pdetG @@x1 ?pdetG g11 a1 · + 1pdetG @@x2 ?pdetG g22 a2 · + 1pdetG @@x3 ?pdetG g33 a3 · : ?? wLUS"?¥Laplace ???d?d ^Laplace ??r2 · r¢r · divgrad¥xM± s? T x15.2?? w ?US"?¥Laplace ???6: è è è7?US" d?du = @@r r@u@r ? dr^d ^dz + 1r @ 2u @ 2d ^dz ^dr +r@ 2u @z2dz ^dr^d ; ?d?du = 1 r @ @r r@u@r ? + 1r2 @ 2u @ 2 + @2u @z2: yNLaplace ???US"/¥Vr T ^ r2 · 1r @@r r @@r ? + 1r2 @ 2 @ 2 + @2 @z2: è è è8 oUS" d?du = @@r r2@u@r ? sin dr^d ^d` + @@ sin @u@ ? d ^d`^dr + 1sin @ 2u @`2d`^dr^d ; ?d?du = 1 r2 @ @r r2@u@r ? + 1r2 sin @@ sin @u@ ? + 1r2sin2 @ 2u @`2: ?[Laplace ?? oUS"/¥Vr T ^ r2 · 1r2 @@r r2 @@r ? + 1r2 sin @@ sin @@ ? + 1r2sin2 @ 2 @`2: x15.3 Laplace ??¥ üMa??Q ?M??7: x15.3 Laplace ??¥ üMa??Q ?M? ê?US"[a p3?3ù5 Haa?31 I n ?ù5 ?USO ??b? ?USe?ê??USà+ y |_¥ê4[KvK1 ?¨ù5?¥?? P p3V?¤? s¥e? ??3ù5¥??D3¥??-W¥ ó" ? ?ù5 L= i? V? ?s 7 USO¥?]b? ?D üVC1?]US"-W¥L?MD ?tL?MD/Laplace ??¥? T ??M? B?XüT e5¥í sLaplace ??¥? T μ?M? F Laplace ??¥ üM?M? USe?¥?]b? #?¥ ^ üMMD x0 = x?a; y0 = y ?b; z0 = z ?c: ?^ A @2 @x02 = @2 @x2; @2 @y02 = @2 @y2; @2 @z02 = @2 @z2: yNLaplace ?? üMMD/ ^?M¥' @2 @x02 + @2 @y02 + @2 @z02 · @2 @x2 + @2 @y2 + @2 @z2: F Laplace ??¥??M? USà¥?] |_ #?US"-W¥??MD ! bWB?MD -a¥USsY ^fx;y;zg?fx0;y0;z0g 0 BB @ x y z 1 CC A = 0 BB @ a11 a12 a13 a21 a22 a23 a31 a32 a33 1 CC A 0 BB @ x0 y0 z0 1 CC A: ?ì??MD·¥ ^MD ? A = 0 BB @ a11 a12 a13 a21 a22 a23 a31 a32 a33 1 CC A ?@??1"X k=1;2;3 aikajk = X k=1;2;3 akiakj = –ij: x15.3 Laplace ??¥ üMa??Q ?M??8: ??MD-/Laplace ??¥? T ^?M¥'MDa¥Laplace ?? ˉ1 r2 = @ 2 @x02 + @2 @y02 + @2 @z02: ?o1£ üMDa¥? ? ˉ1?ê ?' V üMD -a¥US?1fx1; x2; x3g?fx10; x20; x30g?"üμ dxi = X k=1;2;3 akidxk0: ?^¤? ds2 = X ij –ijdxidxj = X ij X kl –ijakialjdxk0dxl0 = X kl X i akiali ? dxk0dxl0 = X kl –kldxk0dxl0: ? a üMD -a¥? ?? ^?ê ? MD ?A?μ32?í í????1"cμ3 £ 4=2?K?HqyNoμ3?  ?í ^? ?¥? ao V ?μ3?1?? ???N?USO ?(YVe?¥)%?ॠ?Laplace ?? ?(YVe?¥) ?i%?à¥?9 ^?M¥? ??? ?ü?^ |1 í D8?¥3?Euler? x y z,zprime xprime yprime,yprimeprime xprimeprime zprimeprime,zprimeprimeprime xprimeprimeprime yprimeprimeprime m15.1`Euler? F Laplace ??¥ bWQ ?M? A ? bWQ  x0 = ?x; y0 = ?y; z0 = ?z /Laplace ??9 ^?M¥  bWQ /· mUS"M1P mUS" x15.4?? u×?9: x15.4?? u× ?? u×?¥×?ù5?3ù51 @2u @x2 + @2u @y2 = 0; x 2 +y2 < a2; uflflx2+y2=a2 = f: °?US"/Z?(=?LaplaceZ?)? ? V[s ?M ?H?HqA ?? ???H? ¥? ^???1 ?1???¨ ü ?US"  ü ?US"?e ?¥?3ù5?? V[1 1 r @ @r r@u@r ? + 1r2 @ 2u @`2 = 0; 0 < r < a; uflflr=a = f(`): ± I5? ? ?Dù5? ??N ?$ 7u(r;`) = R(r)'(`)} ?Z?μ 1 r d dr rdRdr ? '+ Rr2 d 2' d`2 = 0; r R d dr rdRdr ? = ?1' d 2' d`2 = ?: yN V[s ?M  r ddr rdRdr ? ??R = 0; d2' d`2 +?' = 0: ? ^H?Hq R(a)'(`) = f(`) ˉ ?? ?s ?M y1H?Hq ^d Q¥á ìD5 ?| QZ?s ?M ¤? ? cμ??? ?¥ Qè±sZ?? ^i àμM?¥ QH?HqD- ¥?7?B?'?′ ù5 ü ?US"/?¨s ?M E??? ?¥+ y¥ ? 4  ?C¥ ? 4? ? ^??v?¥  P/?¥?? u×¥Hq/? ü ?°?U S"MD? ü ?US" H2T 1 r @ @r r@u@r ? + 1r2 @ 2u @`2 = 0; 0 < r < a; uflflr=a = f(`): i?? ??N?e ?¥?3ù5 ? a ?i??B???¥?3ù5 x15.4?? u×?10: F?B ?D e ??3ù5¥±sZ?? =))? ? ?7MD? ü ?US aZ? uW¥ ?` = 0?` = 2…i?? ??ì a ü ?US?1M `¥ M?S? ^[0; 2…]y1u(r; `) ?` = 0?` = 2…)¥ ê? ? àμ?l  K 9o ??lu(r; `) ? ?)¥?§ ê? ? ? ? ?Be ^???¨ ü ?US" í??7C¥id??¥+?H? e S¥?3ù5?ü ? 1·?M?¥H?Hq?"ü?á  ?¥2T?9 à μóu(r;`)` = 0?` = 2…) ??? ?@¥H?Hq I n? ü ?US"¥+?(r; ` = 0)?(r; ` = 2…)}V¥ ^ ü ? ¥]B? ?[ T1??¥?3ù5??? ? ùHq u(r;`)flfl`=0 = u(r;`)flfl`=2…?@u(r;`)@` flfl fl `=0 = @u(r;`)@` flfl fl `=2… : ?"  ?4?¥??üLaplaceZ?V°?US"D?US" H7? 3¥ ? > V [YV? ùHq7¤??ê F?=e ?¥Z?USe?(x; y) = (0; 0)9 ^? ?¥? ^MD? ü ?USa Z?r = 0?i?? ?y1u(r;`)r = 0?¥ ê? ?9i àμ?l  9o ?? lu(r; `)r = 0?¥?§ ê? ? r = 0?T11M r¥ ?9Be ^??¨US"7C¥ ?i? ^?? u×¥ +?H??"9?31? u(r; `)r = 0? ??? ?@¥H?Hq I n?e ?¥Z? ^ Q¥? =( ?USe?) ^í÷¥yNu(r; `)USe ??? ^μ?¥??1? μ?Hq u(r; `)flflr=0μ?: 92D? ü ?US"a?3ù5ü??M1 1 r @ @r r@u@r ? + 1r2 @ 2u @`2 = 0; 0 < ` < 2…; 0 < r < a; u(r;`)flfl`=0 = u(r;`)flfl`=2…; 0 < r < a; @u(r;`) @` flfl fl `=0 = @u(r;`)@` flfl fl `=2… ; 0 < r < a; u(r; `)flflr=0μ?; 0 < ` < 2…; uflflr=a = f(`); 0 < ` < 2…: C ?×ˉs ?M ¥??ü V[ A?"  - ?Xü¤?¥ ? Qè±sZ? r ddr rdRdr ? ??R = 0; d2' d`2 +?' = 0 x15.4?? u×?11: -??? ùHq? V[¤? '(0) = '(2…); '0(0) = '0(2…): ?"?¤? B??¥'?′ù5 d2' d`2 +?' = 0; '(0) = '(2…); '0(0) = '0(2…): ??'?′ù5¥+? ^ ? ^?cμ??? ?¥è±sZ??B? ùHq? ¥??'?′ù5¥3? ?ü?C?¥+? ?? = 0 Hè±sZ?¥Y31 '0(`) = A0`+B0: } ?? ùHqμ B0 = A02… +B0; A0 = A0: yN A0 = 0; B0 ?i: ? a ü? = 0 ^'?′M?¥'?f ? ^ '0(`) = 1: ?? 6= 0 HZ?¥Y31 '(`) = Asinp?`+Bcosp?`: } ?? ùHq¤? B = Asinp?2… +Bcosp?2…; A = Acosp?2… ?Bsinp?2…: ? V[ A? ^1?" ?A?B¥L? Q} ?Z?Fμd ,3¥ sA1Hq ^ flfl flfl fl sinp?2… cosp?2… ?1 cosp?2… ?1 ?sinp?2… flfl flfl fl = 0; '2(cosp?2… ?1) = 0?"? V[ p¤'?′ ?m = m2; m = 1;2;3;¢¢¢ ; M?¥d ,3 ^ A ?i; B ?i: ?ü ^ a??B?'?′?mμ ?'?f ? 'm1(`) = sinm`; 'm2(`) = cosm`: x15.4?? u×?12: ? ?9? V[|?0 = 0¥2T??0 6= 0¥2T?i  ?dB? 'm1(`) = sinm`; 'm2(`) = cosm`; 7|m¥ |′M?1?10;1;2;3;¢¢¢ ?vs ?M E¥S?? ? pè±sZ? r ddr rdRdr ? ??R = 0 ¥3?i??è±sZ? ^B?+ y¥M" ?Z?üV1M ¥MD d dt = r d dr't = lnr aü V[M1è" ?¥è±sZ? d2R dt2 ??R = 0: ?[??0 = 0 HY31 R0(r) = C0 +D0t = C0 +D0 lnr; ??m = m2; m 6= 0 HY31 Rm(r) = Cmemt +Dme?mt = Cmrm +Dmr?m: Cü p¤  ?@ QZ?? QH?Hq(? ùHq)¥ ??+3 u0(r;`) = C0 +D0 lnr; um1(r;`) = ? Cm1rm +Dm1r?m · sinm`; um2(r;`) = ? Cm2rm +Dm2r?m · cosm`: ?F  ?ü¤??3ù5¥B?3 u(r;`) =C0 +D0 lnr + 1X m=1 ? Cm1rm +Dm1r?m · sinm` + 1X m=1 ? Cm2rm +Dm2r?m · cosm`: I n?μ?Hq uflflr=0μ?; y1lnr?r?mr = 0?? ^í?¥ ?[ ? ì¥" ??A?10 D0 = 0; Dm1 = 0; Dm2 = 0: x15.4?? u×?13: } ? ?¥H?Hqü¤? u(r;`) flfl fl r=a = C0 + 1X m=1 am(Cm1 sinm`+Cm2 cosm`) = f(`): / ?¥ù5L ^ ????F" ?C0; Cm1?Cm2D59 V[VFourierZ 7¥? ? p " ?C0; Cm1?Cm2??¨s ?M E¥SSE? ^ ?¨'?f ?¥?????F" ? ?'?′ù5 d2' d`2 +?' = 0; '(0) = '(2…); '0(0) = '0(2…); ??]'?′¥'?f ? ^??¥ F'?f ?1(??'?′?0 = 0)?'?f ?sinm`cosm` (??'?′?m = m2; m 6= 0) ^??¥ Z 2… 0 sinm`d` = 0; Z 2… 0 cosm`d` = 0: F??'?′?m = m2¥'?f ?sinm`; cosm`???'?′?n = n2; n 6= m¥' ?f ?sinn`; cosn` ^  ??¥ Z 2… 0 sinn`sinm`d` = 0; Z 2… 0 sinn`cosm`d` = 0; Z 2… 0 cosn`cosm`d` = 0: ??]B?'?′?m = m2¥ ?'?f ?sinm`?cosm`9 ^??¥ Z 2… 0 sinm`cosm`d` = 0: yN ?¨'?f ?¥???[# Z 2… 0 sin2m`d` = …; Z 2… 0 cos2m`d` = …; x15.4?? u×?14: ü V p¤ C0 = 12… Z 2… 0 f(`)d`; Cm1 = 1am… Z 2… 0 f(`)sinm`d`; Cm2 = 1am… Z 2… 0 f(`)cosm`d`: C  ? p3V??¥ tù5TBt? ) ? F?B p3'?′ù5 H??B?'?′μ ?(L?í1¥)'?f ? ??B?'?′μ??B?(L?í1¥)'?f ?¥C`?1ei(|?) ? ?T?B?'?′μn?'?f ?5?'?′ù5 ^n×ei¥? aei 1n ??=¨è±sZ?¥'?′ù5Ko ? ^=×ei¥ ?=¨è±sZ?¥'?′ù5? ?TH?Hq ^Ba=a ? ?5?B?' ?′o ?μB?'?f ?? a'?′ù5B? ^dei¥7?H?Hq ^? ùHq H'?′ù5? ^ei¥ F?=?ei¥'?′ù5'?f ?¥ê |i?·B ??]B?'?′¥'?f ?9?B??? ?? ^B? V[YV a?¥×?F?7 P ? ì??? ü'57yü V[|???m = m2; m = 1; 2; 3; ¢¢¢¥'?f ? |1 eim`?e?im`; ?e?1| ??'?′( ??0 = 0)?'?f ?dB? ?m = m2; m = 0; §1; §2; §3; ¢¢¢ ; 'm(`) = eim`: ? H??]'?′¥'?f ?? ? ˉ ? ^??¥ Z 2… 0 ein`(eim`)?d` = 0; n; m = 0;§1;§2;§3;¢¢¢ ; On 6= m: 7 O??]B?'?′?m = m2; m 6= 0¥ ?'?f ?e§im`9 ^?? ¥Z 2… 0 eim`(e?im`)?d` = 0: ?iC¥'?f ? ^ˉf ?  ?¥??1"?31| ?¥B?'?f ? |ˉ a x15.4?? u×?15: F1??3ù5¥+3 ? ì ^ 1; lnr; rm sinm`; rm cosm`; r?m sinm`?r?m cosm`: ?i? ú¥ ê±sZ? ^(=?)LaplaceZ?ˉMf ??s?á ì;ü£ ü3 f ?¥ L?′?B? ^LaplaceZ?¥3ürei` A? ^ˉM ?z = x + iyü V[ A   ?¥?t+3? ^3f ? z0; lnz; zm?z?m ¥ L??′?7μ?Hq? ^ Pá ì` ?? =jzj < ai?))3¥f ?lnz?z?m ÷éB?ü  ? p¤¥" ?} ??3 T?? V[¤? u(r;`) = 12… Z 2… 0 f(`0)d`0 + 1… 1X m=1 ?r a ·m sinm` Z 2… 0 f(`0)sinm`0d`0 + 1… 1X m=1 ?r a ·m cosm` Z 2… 0 f(`0)cosm`0d`0 = 12… Z 2… 0 f(`0) h 1+2 1X m=1 ?r a ·m cosm(`?`0) i d`0: A ??r < a H) ? l ?|??f ??1ˉ· ?f ? ?¨?1) ?¥ p? Tü V[ p) ?¥?Kaü¤? u(r;`) = a 2 ?r2 2… Z 2… 0 f(`0) r2 +a2 ?2arcos(`?`0)d` 0: ??2T?1Poissons T ?üLaplaceZ?? =¥?B ?H′ù5¥3V U1H′f(`)¥s Y L ?3f ?¥Cauchys T9 V[w??2 T(n3.7?)7u(r;`)?z ^3f ?¥ L?′?? úo?VBQ A?3f ? ¥ L?′??=?LaplaceZ?¥3-W¥1" x15.5 HelmholtzZ??US"/¥s ?M ?16: x15.5 HelmholtzZ??US"/¥s ?M  ?US"?HelmholtzZ?¥ 8? T ^ 1 r @ @r r@u@r ? + 1r2 @ 2u @ 2 + @2u @z2 +k 2u = 0: ??f ? ^ ??1M ¥f ? ?Qs ?M  n55s ? ?B?1M  ?a| ?¥ ?1M s ? 7u(r; ;z) = v(r; )Z(z)} ?Z?'¤ Z h1 r @ @r r@v@r ? + 1r2 @ 2v @ 2 +k 2vi+vd2Z dz2 = 0: ?[ 1 v h1 r @ @r r@v@r ? + 1r2 @ 2v @ 2 +k 2vi = ?1 Z d2Z dz2 : ? T¥P ^r? ¥f ?Dzí1 · ^z¥f ?Dr# (í1 ?[ ? ìA???; Dr; í1?Dzí1¥è ?ü??è ?:1?ü¤? 1 r @ @r r@v@r ? + 1r2 @ 2v @ 2 + ? k2 ?? · v = 0; d2Z dz2 +?Z = 0:  7v(r; ) = R(r)£( )?¤? £( ) ?1 r d dr rdRdr ? + ? k2 ?? · R ? + R(r)r2 d 2£ d 2 = 0:  e[r2=R(r)£( )iM[? ?¤? r2 R(r) ?1 r d dr rdRdr ? + ? k2 ?? · R ? = ? 1£( ) d 2£ d 2 : Q A?? T¥P o ^r¥f ?D í1 · o ^ ¥f ?Drí1 ?[ ? ìA?? ?;Drí1?D í1¥è ?:1?? ^?¤? 1 r d dr rdRdr ? + ? k2 ??? ?r2 · R = 0; d2£ d 2 +?£ = 0: ?"ü?? HelmholtzZ?¥s ?M  x15.6 HelmholtzZ? oUS"/¥s ?M ?17: x15.6 HelmholtzZ? oUS"/¥s ?M  oUS"?HelmholtzZ?¥ 8? T ^ 1 r2 @ @r r2@u@r ? + 1r2 sin @@ sin @u@ ? + 1r2sin2 @ 2u @`2 +k 2u = 0: 7u(r; ;`) = R(r)S( ;`)} ?Z?'¤ S( ;`) ? 1 r2 d dr ? r2dR(r)dr · +k2R(r) ? + R(r)r2 ? 1 sin @ @ ? sin @S( ;`)@ · + 1sin2 @ 2S( ;`) @`2 ? = 0:  e[r2=R(r)S( ;`)iM[ü V[¤? r2 R(r) ? 1 r2 d dr ? r2dR(r)dr · +k2R(r) ? = ? 1S( ;`) ? 1 sin @ @ ? sin @S( ;`)@ · + 1sin2 @ 2S( ;`) @`2 ? : ? T¥P o ^r¥f ?D ; `í1 · o ^ ; `¥f ?,Drí1 ?[ ? ìA???; Drí1?D ; `í1¥è ?ü??è ?:1?ü¤? 1 r2 d dr ? r2dR(r)dr · + k2 ? ?r2 ? R(r) = 0; 1 sin @ @ ? sin @S( ;`)@ · + 1sin2 @ 2S( ;`) @`2 +?S( ;`) = 0:  7S( ;`) = £( )'(`)V7¤? ' ? 1 sin d d ? sin d£( )d · +?£ ? + £sin2 d 2' d`2 = 0: |? T  e[sin2 =£'M[? V[¤? sin2 £ ? 1 sin d d ? sin d£( )d · +?£ ? = ?1' d 2' d`2: ?"? T¥P o ^ ¥f ?D`í1 · o ^`¥f ?D í1 ?[ ? ìA??? ;D í1?D`í1¥è ?:1?? ^??? | ?s?`?s¥s ?¤?¥ ?è± sZ? ^ 1 sin d d ? sin d£( )d · + ? ?? ?sin2 · £ = 0; d2' d`2 +?' = 0: ?"?K??? HelmholtzZ? oUS"?¥s ?M  x15.6 HelmholtzZ? oUS"/¥s ?M ?18: ? ú?1) ?B?èn+ y f?'u = u(r; )D`í1¥ f??ü ^ a???3ù 5 ?à? ?i? H?M?? f?/HelmholtzZ?¥? Tü?e1 1 r2 @ @r r2@u@r ? + 1r2 sin @@ sin @u@ ? +k2u = 0: 7u(r; ) = R(r)£( )} ?Z?'¤ £( ) ? 1 r2 d dr ? r2dR(r)dr · +k2R(r) ? + R(r)r2 1sin @@ ? sin @£( )@ · = 0:  e[r2=R(r)£( )iM[ü V[¤? r2 R(r) ? 1 r2 d dr ? r2dR(r)dr · +k2R(r) ? = ? 1£( ) 1sin dd ? sin d£( )d · : ? T¥P o ^r¥f ?D í1 · o ^ ¥f ?Drí1 ?[ ? ìA???;Drí 1?D í1¥è ?:T??"ü?? s ?M ¥ ?¤?¥ ?è±sZ??_Z ?? - ?¥? ?M] 6B?DZê?('?) μ1¥è±sZ? ^ 1 sin d d ? sin d£( )d · +?£( ) = 0; ?1LegendreZ? ? ^ ?{LegendreZ? 1 sin d d ? sin d£( )d · + ? ?? ?sin2 · £ = 0 ¥+ y f?(? = 0) x15.7? ?USMD p ü ?US"??US"/¥Lapalce ???19: x15.7? ?USMD p ü ?US"??US"/¥Lapalce ?? ü ?US(r;`)?°?US(x;y)¥1" ^ x = r cos`; y = r sin`: ?N ?^ p dr = cos`dx+sin`dy; d` = ?sin`r dx+ cos`r dy; ' @r @x = cos`; pp`x = ? sin` r ; @r @y = sin`; @` @y = cos` r : ?vˉ?f ?¥ p?E5 @ @x = @r @x @ @r + @` @x @ @` = cos` @@r ? sin`r @@`; @ @y = @r @y @ @r + @` @y @ @` = sin` @@r + cos`r @@`: éB?ü ?¤? @2 @x2 = cos` @@r ? sin`r @@` ? cos` @@r ? sin`r @@` ? = cos2` @ 2 @r2 ? 2sin` cos` r @2 @r@` + sin2` r2 @2 @`2 +sin 2 ` r @ @r + 2sin` cos` r2 @ @`; @2 @y2 = sin` @@r + cos`r @@` ? sin` @@r + cos`r @@` ? = sin2` @ 2 @r2 + 2sin` cos` r @2 @r@` + cos2` r2 @2 @`2 +cos 2 ` r @ @r ? 2sin` cos` r2 @ @`: Kaü¤? ü ?US"/¥Laplace ?? r2 · @ 2 @r2 + 1 r @ @r + 1 r2 @2 @`2 · 1r @@r r @@r ? + 1r2 @ 2 @`2: x15.7? ?USMD p ü ?US"??US"/¥Lapalce ???20: N$ ? V[¤??US"/¥Laplace ?? r2 · @ 2 @r2 + 1 r @ @r + 1 r2 @2 @`2 + @2 @z2 · 1r @@r r @@r ? + 1r2 @ 2 @`2 + @2 @z2: x15.8? ?USMD p oUS"/¥Lapalce ???21: x15.8? ?USMD p oUS"/¥Lapalce ?? oUS(r; ;`)?°?US(x;y;z)¥1" ^ x = r sin cos`; y = r sin sin`; z = r cos : ?N V[3 dr = sin cos`dx+sin sin`dy +cos dz; d = cos cos`r dx+ cos sin`r dy ? sin r dz; d` = ? sin`rsin dx+ cos`rsin dy: yN @ @x = @r @x @ @r + @ @x @ @ + @` @x @ @` = sin cos` @@r + cos cos`r @@ ? sin`r sin @@`; @ @y = @r @y @ @r + @ @y @ @ + @` @y @ @` = sin sin` @@r + cos sin`r @@ + cos`r sin @@`; @ @z = @r @z @ @r + @ @z @ @ = cos @@r ? sin r @@ : x15.8? ?USMD p oUS"/¥Lapalce ???22: N$ ü V[ p @2 @x2 = sin cos` @@r + cos cos`r @@ ? sin`r sin @@` ? sin cos` @@r + cos cos`r @@ ? sin`r sin @@` ? = sin2 cos2 ` @ 2 @r2 + cos2 cos2` r2 @2 @ 2 + sin2 ` r2 sin2 @2 @`2 + 2sin cos cos 2 ` r @2 @r@ ? 2sin` cos` r @2 @r@` ? 2cos sin` cos`r2 sin @ 2 @ @` + cos2 cos2 `+sin2 ` r @ @r + ?2sin 2 cos cos2 `+cos sin2 ` r2 sin @ @ + 2sin` cos`r2 sin2 @@`; @2 @y2 = sin sin` @@r + cos sin`r @@ + cos`r sin @@` ? sin sin` @@r + cos sin`r @@ + cos`r sin @@` ? = sin2 sin2` @ 2 @r2 + cos2 sin2` r2 @2 @ 2 + cos2 ` r2 sin2 @2 @`2 + 2sin cos sin 2 ` r @2 @r@ + 2sin` cos` r @2 @r@` + 2cos sin` cos`r2 sin @ 2 @ @` + cos2 sin2 `+cos2 ` r @ @r + ?2sin 2 cos sin2 `+cos cos2 ` r2 sin @ @ ? 2sin` cos`r2 sin2 @@`; @2 @z2 = cos @@r ? sin r @@ ? cos @@r ? sin r @@ ? = cos2 @ 2 @r2 + sin2 r2 @2 @ 2 ? 2sin cos r @2 @r@ + 2sin cos r2 @@ + sin 2 r @ @r: Kaü¤? oUS"/¥Laplace ?? r2 · @ 2 @r2 + 2 r @ @r + 1 r2 @2 @ 2 + cos r2 sin @ @ + 1 r2 sin2 @2 @`2 · 1r2 @@r r2 @@r ? + 1r2 sin @@ sin @@ ? + 1r2 sin2 @ 2 @`2: