a0 a1
star a2a3a4a5a6a7a8a9a10 2
star §19.3 a11a12a6a7
1 ? ¨'C A^ 11
1 ? ¨'C AA^^
0 ?) ' §‰)flK , ? {§= ¨'C A^u3?) '
§‰)flK'
~^ ¨'C kLaplaceC FourierC ?'
x19.1 LaplaceC 12
x19.1 LaplaceC
LaplaceC ^u?)? m ' §‰)flK'C §gC ?’ 5~
'~X§ 5·x t gC ' §‰)flK§C I?)~ '
§(gC x) ‰)flK' ‘5§ o’ N·?)'? ? · ' ‰)flK
) …?§ 7L § U 'flK )'
~1 ??.\ 9D flK
@u
@t ??
@2u
@x2 = f(x;t), ?1 < x < 1; t > 0;
uflflt=0 = 0, ?1 < x < 1
)'
) LaplaceC '-
u(x;t);U(x;p) =
Z 1
0
u(x;t)e?ptdt;
|^—'^ §k
@u
@t ;pU(x;p):
rC …? w?·x …?§p·o?§?–
@2u
@x2 ;
d2U(x;p)
dx2 ;
?$ · …? ?'2? -
f(x;t);F(x;p);
? §3?LLaplaceC §‰)flK C?
pU(x;p)??d
2U(x;p)
dx2 = F(x;p):
|^~11.11 (J§ –
U(x;p) = 12 1p?p
Z 1
?1
F(x0;p)exp
‰
?
rp
?jx?x
0j
dx0:
2 LaplaceC ?“( ~10.7)
1p
pe
?fipp: 1p
…t exp
‰
?fi
2
4t
–9 ¨‰n( 10.3!)§ U
u(x;t) = 12p?…
Z 1
?1
dx0
Z t
0
exp
‰
?(x?x
0)2
4?(t??)
f(x0;?)
pt?? d?:
3???.?m ‰)flK¥§ ? ?( >.^ '¢S §?.?m§ · n ? §
§ ·L?3? ( m§ §¢¢¢)S§ K – 'ˇd§XJ / ‰)flK
{§K A k>.^
uflflx!§1 ! 0:
x19.1 LaplaceC 13
^LaplaceC ?) ' §‰)flK§ –~ gC ?8– §,
fi …? …?(~X § g §§ /“ U?E,)$ 7
N? §3? IAA^^ ¨‰n= '
~2 ^LaplaceC ?)?.u ˉ?flK
@2u
@t2 ?a
2@
2u
@x2 = 0, ?1 < x < 1; t > 0;
uflflt=0 = `(x); @u@t
flfl
fl
t=0
= ?(x);?1 < x < 1:
) 3LaplaceC e§
u(x;t);U(x;p);
u·§ 5 ‰)flK z
p2U(x;p)?a2d
2U(x;p)
dx2 = p`(x)+?(x):
~11.11 (J§ –? d § )(¢S ? U(x;p)3x !§1 1 )
U(x;p) = 12ap
Z 1
?1
h
p`(x0)+?(x0)
i
exp
n
?pa
flfl
flx?x0
flfl
fl
o
dx0
= 12a
Z 1
?1
h
`(x0)+ ?(x
0)
p
i
exp
n
?pa
flfl
flx?x0
flfl
fl
o
dx0:
ˇ
e?fip;–(t?fi); 1pe?fip;·(t?fi);
?–
u(x;t) = 12a
Z 1
?1
`(x0)–
?
t? jx?x
0j
a
·
dx0
+ 12a
Z 1
?1
?(x0)·
?
t? jx?x
0j
a
·
dx0
= 12
Z 1
?1
`(x0)–(at?jx?x0j)dx0
+ 12a
Z 1
?1
?(x0)·(at?jx?x0j)dx0;
5?
–(at?jx?x0j) =
(
0; jx?x0j6= at;
1; jx?x0j = at
–9
·(at?jx?x0j) =
(
0; jx?x0j > at;
1; jx?x0j < at;
–?
u(x;t) = 12
Z 1
?1
`(x0)–
?
t? jx?x
0j
a
·
dx0 + 12a
Z x+at
x?at
?(x0)dx0
= 12
h
`(x?at)+`(x+at)
i
+ 12a
Z x+at
x?at
?(x0)dx0:
x19.1 LaplaceC 14
? ·1 n ¥^1ˉ{ (J'
^LaplaceC ?) ' §‰)flK k ‘:§? · 7 g
>.^ gz(?+3? ~f¥§>.^ gz· 'N· )§ˇ ?
k ' §‰)flK g>.^ =z ~ ' § g>
.^ (ˇ 5 flK · gC flK)§??? ? 5 KK (J'
x19.2 FourierC 15
x19.2 FourierC
FourierC ? mC ?1' mC Cz?m§ – ^
F FourierC ?u?.?m(?1; 1) …?f(x)§XJ3??k ?m kk
4 4 k 1 am :§
¨'
Z 1
?1
f(x)dx ?′?§K§ FourierC 3§
F(k) = 1p2…
Z 1
?1
f(x)e?ikxdx;
_C ( )·
f(x) = 1p2…
Z 1
?1
F(k)eikxdk:
?p FourierC _C /“ U G /“ k '/“ \?
?§ ??// n?[? ^'
F uC {uC XJf(x)·‰′3 ?.?m[0; 1) §K x = 0 >.^
a.§ ^ uC
F(k) =
r
2
…
Z 1
0
f(x)sinkxdx;
f(x) =
r
2
…
Z 1
0
F(k)sinkxdk;
‰{uC
F(k) =
r
2
…
Z 1
0
f(x)coskxdx;
f(x) =
r
2
…
Z 1
0
F(k)coskxdk::
Fk u!{uC XJf(x)·‰′3k.?m §KA ^k u‰{uC '
!0 ?. m FourierC '
FourierC A^u?) ' §‰)flK§7, 9…? ! ?
FourierC ' f(x) FourierC 3§? ?P
F(k) = 1p2…
Z 1
?1
f(x)e?ikxdx = F[f(x)];
u·§
1p
2…
Z 1
?1
f0(x)e?ikxdx
= 1p2…f(x)e?ikx
flfl
fl
1
?1
+ ikp2…
Z 1
?1
f(x)e?ikxdx;
x19.2 FourierC 16
du¨'
Z 1
?1
f(x)dx ?′?§ ‰k limx!§1f(x) = 0§?–
F[f0(x)] = 1p2…
Z 1
?1
f0(x)e?ikxdx = ikp2…
Z 1
?1
f(x)e?ikxdx
= ikF(k) = ikF[f(x)]:
? § , k
F[f00(x)] = ?k2F[f(x)]:
^FourierC 5?) ! ~1 ~2'
F?u~1§=?.\ 9D flK
@u
@t ??
@2u
@x2 = f(x;t), ?1 < x < 1; t > 0;
uflflt=0 = 0, ?1 < x < 1:
–b u(x;t) FourierC 3§
U(k;t) = 1p2…
Z 1
?1
u(x;t)e?ikxdx;
?
F(k;t) = 1p2…
Z 1
?1
f(x;t)e?ikxdx;
? §3 FourierC §‰)flK C
dU(k;t)
dt +?k
2U(k;t) = F(k;t);
U(k;t)flflt=0 = 0;
^~?C·{?)? ~ ' § — flK§
U(k;t) = e??k2t
Z t
0
F(k;?)e?k2?d?:
2? §
u(x;t) = 1p2…
Z 1
?1
U(k;t)eikxdk
=
Z t
0
? 1
p2…
Z 1
?1
F(k;?)e??k2(t??)eikxdk
?
d?:
|^1o ¥ (J§ Z 1
0
e?t2 cos2xtdt = 12p…e?x2;
–
1p
2…
Z 1
?1
e??k2(t??)eikxdk = 1p2…
Z 1
?1
e??k2(t??) coskxdk
= 1p2?(t??) exp
?
? x
2
4?(t??)
?
;
x19.2 FourierC 17
2|^
f(x;t) = 1p2…
Z 1
?1
F(k;t)eikxdk;
FourierC ¨?“§
F[f1(x)]F[f2(x)] = F
? 1
p2…
Z 1
?1
f1(?)f2(x??)d?
?
;
U
u(x;t) =
Z t
0
(
1p
2…
Z 1
?1
f(?;?)p
2?(t??) exp
?
? (x??)
2
4?(t??)
?
d?
)
d?
= 12p?…
Z t
0
‰Z 1
?1
f(?;?)exp
?
? (x??)
2
4?(t??)
?
d?
d?
pt??:
!¥ )“ '
l){ w§FourierC flKq ’LaplaceC { §ˇ
I ^3?‰n5O ¥ y ‰¨'' ~ § ? { ^
¨?“'
F25)~2§?.u gd ?flK§
@2u
@t2 ?a
2@
2u
@x2 = 0, ?1 < x < 1; t > 0;
uflflt=0 = `(x); @u@t
flfl
fl
t=0
= ?(x);?1 < x < 1:
E u(x;t) FourierC 3§
U(k;t) = 1p2…
Z 1
?1
u(x;t)e?ikxdx;
?
'(k) = 1p2…
Z 1
?1
`(x)e?ikxdx;
“(k) = 1p2…
Z 1
?1
?(x)e?ikxdx;
u·§3 FourierC §‰)flK C
d2U(k;t)
dt2 +k
2a2U(k;t) = 0;
U(k;t)flflt=0 = '(k); U(k;t)flflt=0 = “(k):
?· ~ ' § — flK§) =
U(k;t) = '(k)coskat+“(k)sinkatka :
x19.2 FourierC 18
FourierC ?“§ –?
u(x;t) = 1p2…
Z 1
?1
?
'(k)coskat+“(k)sinkatka
?
eikxdk:
5?
1p
2…
Z 1
?1
'(k)coskateikxdk
= 1p2… 12
Z 1
?1
'(k)
h
eik(x+at) +eik(x?at)
i
dk
= 12£`(x+at)+`(x?at)?;
aq/§ k
1p
2…
Z 1
?1
“(k)sinkatka eikxdk
= 1p2…
Z 1
?1
“(k)
?Z t
0
coska? d?
?
eikxdk
=
Z t
0
? 1
p2…
Z 1
?1
“(k)coska? eikxdk
?
d?
= 12
Z t
0
h
?(x+a?)+?(x?a?)
i
d?
= 12a
Z x+at
x?at
?(?)d?;
\ ? (J§
u(x;t) = 12
h
`(x+at)+`(x?at)
i
+ 12a
Z x+at
x?at
?(?)d?:
? , ^LaplaceC /“ '
~3 ?)n ?. mˉ? § ‰)flK§
@2u
@t2 ?c
2r2u = f(r;t);t > 0;
uflflt=0 = `(r); @u@t
flfl
fl
t=0
= ?(r):
) ?k FourierC '-
U(k;t) = 1(2…)3=2
ZZZ
u(r;t)expf?ik¢rgdr;
F(k;t) = 1(2…)3=2
ZZZ
f(r;t)expf?ik¢rgdr;
'(k) = 1(2…)3=2
ZZZ
`(r)expf?ik¢rgdr;
“(k) = 1(2…)3=2
ZZZ
?(r)expf?ik¢rgdr;
x19.2 FourierC 19
K‰)flKz ~ ' §— flK
d2U
dt2 +k
2c2U(k;t) = F(k;t);
Uflflt=0 = '(k); dUdt
flfl
fl
t=0
= “(k):
2 LaplaceC
U(k;t) ;U(k;p);
F(k;t) ;F(k;p):
u·§‰)flK? C? ? §
p2U(k;p)?p'(k)?“(k)+k2c2U(k;p) = F(k;p):
) =
U(k;p) = 1p2 +k2c2£F(k;p)+p'(k)+“(k)?:
? 'k LaplaceC §k
U(k;t) = 1kcΨ(k)sinkct+Φ(k)coskct
+ 1kc
Z t
0
sinkc? F(k;t??)d?:
2 FourierC §
u(r;t) = 1(2…)3=2
ZZZ
U(k;t) expfik¢rgdk
= 1(2…)3=2
ZZZ
Ψ(k) sinkctkc expfik¢rgdk
+ 1(2…)3=2
ZZZ
Φ(k) coskctexpfik¢rgdk
+ 1(2…)3=2
ZZZ ? 1
kc
Z t
0
sinkc? F(k;t??)d?
?
expfik¢rgdk:
|^FourierC ¨?“§ –? a §l “? ‰)flK )'
^k m ¥ I§ –
F1
1
(2…)3=2
ZZZ sinkct
kc expfik¢rgdk
= 1(2…)3=2
ZZZ sinkct
kc e
ikrcos k2 sin dkd d`
= 1p2…c
Z 1
0
k sinkctdk
Z …
0
eikrcos sin d
= 1p2…c
Z 1
0
sinkct 1?ir eikrcos
flfl
fl
…
0
dk
= 1p2…c 2r
Z 1
0
sinkct sinkrdk
=
r…
2
1
cr –(r?ct):
x19.2 FourierC 110
?–§ FourierC ¨?“§ k
1
(2…)3=2
ZZZ
Ψ(k) sinkctkc expfik¢rgdk
= 1(2…)3=2
r…
2
1
c
ZZZ 1
jr?r0j –(jr?r
0j?ct)?(r0)dr0
= 14…c
ZZ
Σ0
1
jr?r0j ?(r
0)dΣ0;
¥Σ0·–r ¥%!ct ? ¥?jr?r0j = ct'
F1
1
(2…)3=2
ZZZ
Φ(k) coskct expfik¢rgdk
= 1(2…)3=2 @@t
ZZZ
Φ(k) sinkctkc expfik¢rgdk
= 14…c @@t
ZZ
Σ0
1
jr?r0j `(r
0)dΣ0:
F1n
1
(2…)3=2
ZZZ ? 1
kc
Z t
0
sinkc? F(k;t??)d?
?
expfik¢rgdk
=
Z t
0
‰ 1
(2…)3=2
ZZZ ?sinkc?
kc F(k;t??)
?
expfik¢rgdk
d?
=
Z t
0
‰ 1
4…c
ZZZ 1
jr?r0j –(jr?r
0j?c?)f(r0;t??)dr0
d?
= 14…c
ZZZ 1
jr?r0j
?Z t
0
–(jr?r0j?c?)f(r0;t??)d?
?
dr0;
w,§ Z
t
0
–(jr?r0j?c?)f(r0;t??)d?
=
8<
:
1
cf(r
0;t?jr?r0j=c); jr?r0j < ct;
0; jr?r0j > ct:
?–§
1
(2…)3=2
ZZZ ? 1
kc
Z t
0
sinkc? F(k;t??)d?
?
expfik¢rgdk
= 14…c2
ZZZ
jr?r0j<ct
1
jr?r0j f(r
0;t?jr?r0j=c)dr0:
r ? (J8¥ 5§ ?
u(r;t) = 14…c
2
4
ZZ
Σ0
1
jr?r0j ?(r
0)dΣ0 + @
@t
ZZ
Σ0
1
jr?r0j `(r
0)dΣ0
3
5
+ 14…c2
ZZZ
jr?r0j<ct
1
jr?r0j f(r
0;t?jr?r0j=c)dr0:
x19.3 ?. m / 111
x19.3 ?. m /
?u ?. m§ – ? ^ uC ‰{uC '
^ uC ‰{uC K
3 uC e§
F(k) =
r
2
…
Z 1
0
f(x)sinkxdx;
u·
r
2
…
Z 1
0
f0(x)sinkxdx
=
r
2
…
?
f(x)sinkx
flfl
fl
1
0
?k
Z 1
0
f(x)coskxdx
?
= ?
r
2
…k
Z 1
0
f(x)coskxdx;
r
2
…
Z 1
0
f00(x)sinkxdx
= ?
r
2
…k
Z 1
0
f0(x)coskxdx
= ?
r
2
…k
?
f(x)coskx
flfl
fl
1
0
+k
Z 1
0
f(x)sinkxdx
?
=
r
2
…kf(0)?k
2F(k):
dd §?u ' § ‰)flK§K k
F‰)flK¥= y …?9 ?§
F 3 ?. m x = 0 ·1 a>.^ §
– ^ uC '
§?u{uC
G(k) =
r
2
…
Z 1
0
g(x)coskxdx;
k
r
2
…
Z 1
0
g0(x)coskxdx = ?
r
2
…g(0)+
r
2
…k
Z 1
0
g(x)sinkxdx;
r
2
…
Z 1
0
g00(x)coskxdx = ?
r
2
…g
0(0)?k2G(k):
?–§XJ u ? ‰§K k ‰)flK¥
F= y …?9 ?§
x19.3 ?. m / 112
F 3x = 0 ·1 a>.^ §
– ^{uC '
~4 ?) ?.\ 9D flK
@u
@t ??
@2u
@x2 = f(x;t), 0 < x < 1; t > 0;
uflflx=0 = u0, t > 0;
uflflt=0 = 0, 0 < x < 1;
¥u0 ~?'
) AT^ uC '
U(k;t) · F[u(x;t)] =
r
2
…
Z 1
0
u(x;t)sinkxdx;
Kk
F
?@2u(x;t)
@x2
?
=
r
2
…
Z 1
0
@2u(x;t)
@x2 sinkxdx
=
r
2
…ku0 ?k
2U(k;t):
u·§3?LFourierC §‰)flK =z ~ ' § — flK
dU(k;t)
dt +?k
2U(k;t) =
r
2
…?ku0;
U(k;t)flflt=0 = 0;
)
U(k;t) =
r
2
…
u0
k
h
1?e??k2t
i
:
?–
u(x;t) = 2u0…
Z 1
0
1
k
h
1?e??k2t
i
sinkxdk:
\1 ¥ (J§
Z 1
0
sinkx
k dk =
…
2;
Z 1
0
sinkx
k e
??k2tdk = p…
Z x=2p?t
0
e??2d?;
u(x;t) = u0 ? 2u0p…
Z x=2p?t
0
e??2d? = u0 erfc x2p?t:
? ‰)flKw, u~19.3 l ! 1 /' T‰)flK ) 4 l !
1§ˇ ??¥¥ k 0§?= – ? (J'
x19.3 ?. m / 113
~5 ?) ?. m ?‰flK
@2u
@x2 +
@2u
@y2 = 0; ?1 < x < 1; y > 0;
uflfly=0 = f(x); ?1 < x < 1:
) KEAT^ uC '
U(x;k) · F[u(x;y)] =
r
2
…
Z 1
0
u(x;y)sinkydy;
Kk
F
?@2u(x;y)
@y2
?
=
r
2
…
Z 1
0
@2u(x;y)
@y2 sinkxdx
=
r
2
…kf(x)?k
2U(x;y):
u·§3?LFourierC §‰)flK =z ??.?m?1 < x < 1
d2U(x;k)
dx2 ?k
2U(k;t) =
r
2
…kf(x)
k.)'2|^~11.11 (J§k
U(x;k) = 1p2…
Z 1
?1
e?kjx?x0jf(x0)dx0:
§ uC _C ?“§ –?
u(x;y) = 1…
Z 1
0
?Z 1
?1
e?kjx?x0jf(x0)dx0
?
sinkydk
= 1…
Z 1
?1
f(x0)
?Z 1
0
e?kjx?x0jsinkydk
?
dx0
= y…
Z 1
?1
f(x0)
(x?x0)2 +y2dx
0:
? · ?? Poisson?“'
x19.4 ’u¨'C ? 114
x19.4 ’u¨'C ?
¨'C ?
F(k) =
Z b
a
K(k;x)f(x)dx;
§rgC x 2 [a; b](?p x – L m) …?f(x)C EC k …?F(k)§
¥K(k;x)·¨'C §
LaplaceC K(k;x) = e?kx; 0 ? x < 1;
FourierC K(k;x) = e?ikx; ?1 < x < 1;
uC K(k;x) = sinkx; 0 ? x < 1;
{uC K(k;x) = coskx; 0 ? x < 1;
? k
HankelC K(k;x) = xJn(kx); 0 ? x < 1;
MellinC K(k;x) = xk?1; 0 ? x < 1:
N ' §( E u ' §)‰)flK § .A ^= ?¨
'C § ?–eA K
F K1 ? 9 gC Cz?m TC ?·? '
? XJgC Cz?m·(?1; 1)§ – ? ^FourierC ?
? XJgC Cz?m·[0; 1)§K ?A?¨'C – ?'
F K2 ?u …?5 )§AO·…?3x ! (§)1 1 § T?¨
'C ·? 3'
? ?uLaplaceC §C ·e?kx§ˇd?f(x) ? $§$ –#Nx !
1 f(x)·u ?
? HankelC ·P~ …?§?f(x) ? p?
? FourierC ! uC {uC ·–ˇ …?§ˇd ?x !
(§)1 f(x) ! 0?
? MellinC ?…?f(x) ? p§ˇ § C · …?xk?1'
F K3 ?…?f(x)9 ?f(n)(x)3TC ek{ ?’X'
? LaplaceC FourierC v? ?'
? ?u uC {uC § k…? ? ?(~Xf00(x)) “ UL?
?F(k) 5…?§…? ? ?K?'? § k‰)flK 9 …?
9 ?TgC ? ? § – ^ u‰{uC '
x19.4 ’u¨'C ? 115
?u9D §§?+t Cz ·[0; 1)§ u‰{uC ? §
dduu §¥¥ y …??t ?§?– ?{AA^^? ?C '
?uˉ? §§ §¥ y?t ?( u3 n ??{
Z)§@o§33 KK §N ? mC t u‰{uC '
F K4 3 v K3 ?: §…?9 ?3TC e 3{ ?’X§@o§
3?? ?’X¥§ ; /? y…?9 $ ? Aˇ ' ,§ U??/
¢yTC §7L ?? Aˇ fi § ?(/‘§ ?? Aˇ —d‰)fl
K¥ ‰‰)^ '
?uLaplaceC § ?—'^ . ‰)^ §=XJ ? …? ? A
ˇ {§ ‰·…?9 ?3 :: ? '
?u ? ?¨'C § ?>.^ . ‰‰)^ '
? K3 La ?^u~X? ' §'XJ? CX? ' §‰)fl
K§? K I ?U'~X§?u ' §
£L
1(x)+L2(y)
?u(x;y) = f(x;y);
¥L1(x) L2(y)'O·x y ( ) ' ?§b‰ ?L1(x) ¥ X? ·x ¢…?§
2 u(x;y) ·¢…?§K¨'C
Z b
a
K(k;x)u(x;y)dx = U(k;y)
e§ §C
Z b
a
K(k;x)f(x;y)dx
=
Z b
a
K(k;x)£L1(x)u(x;y)?dx+L2(y)
Z b
a
K(k;x)u(x;y)dx
= Z
b
a
£M
1(x)K(k;x)
?u(x;y)dx+L
2(y)U(k;y) = F(k;y);
¥M1(x)· ?L1(x) ?' y ’uU(k;y) ' §§M1(x)K(k;x)7L
K(k;x)? ’§
M1(x)K(k;x) = ?K(k;x):
? § ‰ ?U J C K(k;x)'~X§3? IX?)Laplace §‰Poisson
§ §?u? C r§ U ^HankelC '
– ? ·?.‰ ?.?m ¨'C § A:·EC k ·oY
§Ly _C ( ?“) ·?k ¨''3¢^¥ kk.?m ¨'C §?
x19.4 ’u¨'C ? 116
k U l §?– –rC P Kn(x)'~X§~ k.?m ¨'C k
k uC Kn(x) = sinnx; n = 1;2;3;¢¢¢ ; 0 ? x ? …;
k {uC Kn(x) = cosnx; n = 0;1;2;¢¢¢ ; 0 ? x ? …;
LegendreC Kn(x) = Pn(x); n = 0;1;2;¢¢¢ ; ?1 ? x ? 1:
–w §? ¨'C T— ·‰′3 g?m …?'3A^? C ?)
' § ‰)flK § 'lC {?vk o K O§ )“ 'lC {
'
x19.5 ˉC {0 117
x19.5 ˉC {0
/ ˉ' 0§·Cc5u— 5 ’ # n K A^?? {' ˉ§
L?…? ?# ?§ mcurrency1“˙' ?E § fi?/? # ??? §
§ ?3 u— L§ ¥' ! Ul¨'C §? ˉC \ 5
0 'O(/‘§ ˉ' 8c ) '§=/¨' ˉC 0 / ˉ??0'
k' eD FourierC ' [ §3(?1; 1) ‰′ …?f(t)§
f(t) v ‰^ §K§ FourierC
F(!) = 1p2…
Z 1
?1
f(t)e?i!tdt
–9_C
f(t) = 1p2…
Z 1
?1
F(!)ei!td!
3'ˇ~§C t L m§! L“˙'F(!) & f(t) “ 'lFourierC
?“ –w § ? & “ A5§7Lu & 3(?1; 1) m
S Cz ?§$ ) 5 Cz' Xn ? §3¢^ ?·?J '
, ?§XJ& 3, ( S)u) Cz§@o§ “ ? K '
4 /§ y3t0 & –(t?t0)§ “ ·e?i!t0=p2…§ CX
“˙ '
FourierC v§@3 ?Vc§ k<J L/\I0FourierC §ˇ
L ? m z /I…?0gfi(t?b)§ J?? a(–t = b ¥% ‰
S) & §ˇL* & 3, “˙NC “ –… d& v ( &E'
?£I…?(=UCb) –CX 'Gauss. …? · ? I…?'d
uGauss.…?
gfi(t) = 12p…fi exp
n
? t
2
4fi
o
FourierC
1p
2…
Z 1
?1
1
2p…fi exp
n
? t
2
4fi
o
e?i!tdt = 1p2…e?fi!2;
E,·Gauss. …?§?–§ FourierC ¨?“
Z 1
?1
f1(t)f2(t)e?i!tdt =
Z 1
?1
F1(?)F2(! ??)d?;
1p
2…
Z 1
?1
f1(t)e?i!tdt = F1(!);
1p
2…
Z 1
?1
f2(t)e?i!tdt = F2(!);
?u??…?f(t)§ k
Z 1
?1
f(t)gfi(t?b)e?i!tdt = 1p2…
Z 1
?1
F(?)e?i(!??)be?fi(!??)2d?; (#)
¥§F(!)·f(t) FourierC §
F(!) = 1p2…
Z 1
?1
f(t)e?i!tdt:
x19.5 ˉC {0 118
–r(#)“ n) …?gfi(t?b)ei!t f(t) S¨
?
gfi(t?b)ei!t; f(t)
·
=
Z 1
?1
h
gfi(t?b)ei!t
i?
f(t)dt;
m K·§ C S¨§
? 1
p2…ei(!??)be?fi(!??)2; F(?)
·
=
Z 1
?1
h 1
p2…ei(!??)be?fi(!??)2
i?
F(?)d?:
? (J L· ?H Parseval §
?f
1(t); f2(t)
¢ = ?F
1(?); F2(?)
¢
A~'dugfi(t?b)3t = b?k kb ?§
limfi!0gfi(t?b) = –(t?b);
?–§3(#)“¥§?u ¨' z 5gt = bNC§ ?um ¨' zK 5
g? = !NC' ?{‘§& f(t)3t = b &E –ˇL3“˙? = !NC* ? &
“ ' –r(#)“ m U
? 1
p2fie?i!b
·Z 1
?1
F(?)g1=(4fi)(? ?!)ei?bd?;
(#)“‘?§e gfi(t) & mI…?§Kg1=(4fi)(?) A “ “˙I…?'
‰′
ˉtgfi = ?gfi(t); tgfi(t)¢ =
Z 1
?1
tflflgfi(t)flfl2dt
gfi(t) ¥%'dugfi(t) …?§?–ˉtgfi = 0'3d?: § –? ‰′gfi(t)
¢gfi =
s?
(t?ˉt)gfi(t); (t?ˉt)gfi(t)¢?
gfi(t); gfi(t)¢
w,k¢gfi = pfi' § –? g1=(4fi)(?) ¥%
¥ % ˉ!g1=(4fi) = 0;
¢g1=(4fi) = 12pfi:
?–§ mI £“˙I ~?§
?
2¢gfi
·
£
?
2¢g1=(4fi)
·
= 2:
–3t ? ??? –(b; !): ¥% /b ? ¢gfi ? t ? b + ¢gfi; ! ? ¢g1=(4fi) ? ? ?
! +¢g1=(4fi)5/ z/L? m–“˙ z( a19.1)'? /
£b?¢
gfi; b+¢gfi
?££! ?¢
g1=(4fi); ! +¢g1=(4fi)
?
? a\IFourierC m–“˙I' mI 2¢gfi ? m–“˙I §“
˙I 2¢g1=(4fi)? m–“˙I p ' m–“˙I !p –9?¨ · ‰
'
x19.5 ˉC {0 119
a19.1 GaborC m-“˙I
– 0 · ?Aˇ/“ \IFourierC §=I…? Gauss.…? \IFourierC
§? GaborC ' – O /“ I…?w(t)§X ?w(t)9tw(t) ? ¨(ˇ
d ¢w k )§ §§ FourierC W(?)9?W(?) ? ¨(ˇ ¢W k
)§? \IFourierC ? ? FourierC 'GaborC ,·? FourierC
?'
GaborC ‰ ?? FourierC ":· § m–“˙I· ‰ § U “˙
p$ N 'ˇ “˙ mS –ˇ?? ’§?–§n ?· ( ?p
“y § A ? mI? ?$“y §K mI'GaborC ‰
?? FourierC ? u?n“ !Cz- & ' ¨' ˉC K· ??aflK
u— 5 '
0 ¨' ˉC §?k ?? ˉ9 ˉ Vg'
XJh(t)9 FourierC H(!) ? ¨…?§ k § v N5^
Ch =
Z 1
?1
jH(!)j2
j!j d! < 1;
K?h(t) ? ˉ' N5^ ? X ‰kH(0) = 0§=
Z 1
?1
h(t)dt = 0:
? ·? ˉ ˇ'3 ?¨' ˉC §I ^ N5^ '
? ˉh(t) §ˇL?£ § – x…?
hb;a(t) = 1pjajh
t?b
a
?
; a 6= 0;
? ˉ' & f(t) ¨' ˉC K‰′
(Whf)(b;a) = 1pjaj
Z 1
?1
f(t)h?
t?b
a
?
dt = ?hb;a; f¢: (z)
…?h(t) ¥% 'O ˉt ¢h,K…?hb;a(t)·¥%3b+aˉt jaj¢h
I…?'ˇd§(z)“L? ¨' ˉC & f(t)3 mI
£b+aˉt?jaj¢
h; b+aˉt+jaj¢h
?
S &E'jajC mIC??jajC mIC '
x19.5 ˉC {0 120
N·? hb;a(t) C
Hb;a(?) = 1p2…a
Z 1
?1
h
t?b
a
?
e?i?tdt =
r a
2…e
?ib?H(a?):
H(?) ¥% 'O ˉ! ¢H§-
·(? ? ˉ!) · H(?);
K·(?)·¥% 'O 0 ¢H I…?' Parseval §§ –
(Whf)(b;a) =
r a
2…
Z 1
?1
·?(a? ? ˉ!)F(?)d?:
du·(a? ? ˉ!) ¢H=jaj§?–§ “ q·H(?)3“˙I
?ˉ!
a ?
¢H
jaj ;
ˉ!
a +
¢H
jaj
?
S &E'? m–“˙I ·
£b+aˉt?jaj¢
h; b+aˉt+jaj¢h
?£? ˉ!
jaj ?
1
jaj¢H;
ˉ!
jaj +
1
jaj¢H
?
;
2jaj¢h'ˇd§¨' ˉC k/C 0A5 3u p“y (=jaj ) §I?g
?C?? u $“y (=jaj ) §I?g?C ( a19.2)' ·??C A5§?
¨' ˉC ? N?n ?9 §E A^ k '
a19.2 ˉC m-“˙I
2? §d& f(t) ¨' ˉC (Whf)(b;a) –? f(t)(= )§
f(t) = 1C
h
Z 1
?1
?Z 1
?1
(Whf)(b;a)hb;a(t)db
? da
a2 :
? –n) o?? ˉ \ N5^ '
3¢SA^¥§ k¨' ˉC l /“'~X§ˇLHaar…?
h(t) =
8>
><
>>:
1; 0 ? t < 1=2;
?1; 1=2 ? t < 1;
0; t < 0‰t ? 1
x19.5 ˉC {0 121
? ?£§
hj;k(t) = 2?j=2h?2?jt?k¢; j;k ?? ?;
? | 8 ?§ ?
hj;k; hl;m¢ = –jl–km;
?? ? ¨ …?f(t) –(3? ′??′e)—m ˉ??§
f(t) =
1X
j;k=?1
cj;khj;k(t);
—mX?cj;k
cj;k = ?hj;k;f¢ = (Whf)
k
2j;
1
2j
?
: