Γ
a0 a1
star a2a3a4a5a6a7a8a9a10 4
star §8.3(ψ(z)) a11a12a13a14a15a16a17
star §8.5(Γ a18a19a20a21a22a23a24a25) a26a6a7
a0a1a2 Γ
a3 a4 a51a6
a7a8a9 Γ
a10 a11
§8.1 Γ a12a13a14a15a16
a17a18 Γ
a19a20a21a22a23a24a25a26a27
Γ(z) =
integraldisplay ∞
0
e?ttz?1dt, Rez > 0.
a28a29a30a31a32a33a34a35a36 Eulera30a31a37a38a39
a21
a30a31a40a41 t
a42a43a44a45
a33 argt = 0
a46
star a47a48a49a50a51a52a53a54a55a56a57a58a59a60a61a46
a62a33a28
a27a63
a29a64
a23
a30a31a37a65a66
a27a63
a29a67a30a31(
a68t = 0a69)a37a70a27a63
a29a71a72a30a31a37a73a74a75a76a65a77
a78a79a80a31a81a31a82a83a84
a46 integraldisplay
∞
0
e?ttz?1dt =
integraldisplay 1
0
e?ttz?1dt +
integraldisplay ∞
1
e?ttz?1dt.
a85a86a34a35a80a31
a46
a87a88a37a89t ≥ 1
a90
a37a91a30
a19a20e
?ttz?1
a27 ta21a92a93a19a20
a37a94a95a96a33z
a21a19a20
a37
a68
a97a98a99
a45a100a46a101a25a44 4.2a102a103
a37a75a104a105a65a106a107
a63
a29
a45a100a19a20
a37a108a109a110a104a105a30a31
a63a111a112a113a46
a62a33
et =
∞summationdisplay
n=0
tn
n!,
a73a74a114a115a116a117a118a119
a20 N a37
et > t
N
N!, e
?t < N!
tN .
a120a114a115z a98a99a121a116
a63a122a123a124 (a125a123a124a126a21
a116a117
a63a127
a37a128a129 Rez<x
0
a37(
a130a131 8.1)
vextendsinglevextendsinglee?ttz?1vextendsinglevextendsingle < N!·tx
0?N?1.
a1328.1
a28a133a37a109a75a134a135a136a137a138
a21N ( a139a140N > x0)
a37a30a31
integraldisplay ∞
1
tx0?N?1dta108a112a113a37a120
integraldisplay ∞
1
e?ttz?1dta68za98
a99
a21
a116
a63a122a123a124
a39
a63a111a112a113
a37a62
a125a68
a97a98a99
a45a100a46
a75a104a105a34
a63
a80a31
a21
a30a31
a68a141a142
a98a99
a45a100
a37a143a144a145
a27
a104a105a65
a21a63a111a112a113a146a46
a62a33
vextendsinglevextendsinglee?ttz?1vextendsinglevextendsingle = e?ttx?1, x = Rez.
§8.1 Γa3a4a147a148a149 a52a6
a62
a125
a37a114a115z a98a99a121
a141a142
a98a99
a21
a116
a63a123a124
a37a129 Rez = x ≥ δ > 0a37
vextendsinglevextendsinglee?ttz?1vextendsinglevextendsingle ≤ tδ?1,
a150
integraldisplay 1
0
tδ?1dta112a113
a37a120a30a31
integraldisplay 1
0
e?ttz?1dta68z a98a99a121a141a142
a98a99
a21
a116
a63a122a123a124
a39
a63a111a112a113
a37a62
a125a68a141
a142
a98a99
a45a100a46
a76a79a80a31a151a152a81a37a108
a140a153
Γ(z) =
integraldisplay ∞
0
e?ttz?1dt
a68z a21a141a142
a98a99
a45a100a46 square
star a47a48a154a155a156a157a158
? a121a99a21
a30a31
a25a26
a39a37a30a31a159a160a94a161a110a75a162
a25a68a163a164
a121a37a150
a102a165a166
a33
Γ(z) =
integraldisplay
L
e?ttz?1dt, Rez > 0,
a30a31a159a160L
a27ta98a99a121a167t = 0a168a169a21a142a170a171
a37arg t = αa33
a23a20
a37|α| <pi/2
a46
a172a173a174C
a175a1318.2a37
a42a24a176a20a25a44
a83a84a177a40a30a31
contintegraldisplay
C
e?ttz?1dt,a108a178a104a140
a28a29a179a84
a46
a1328.2
? a180a63a181a165a166a182a30a31a159a160La102a74a27 t a98a99a121a167 t = 0 a168a169a21a116a117a31a183a184a185a186a171a37a109a75a22a187a74
Ret → +∞a21a188a189a190
a115a71a72a191
a127a192a102a46
star a58a59a193a194
a195a196a197a198a199Γ
a200a201
a199a202a203a204a205a206a207Rez > 0
a46
a208a209a210a211a199a212
a213a214
a211a215a216a217a218a196a219a220a199a37
a221a222a37a223a224a225a226a227za199a217a218a196a37a204a228a206a205a229a199a230a231a232a210a211a212a233
a214
a211a225a226a227a217a218a196a234a235
a46
a236a237a238a239
a21a188a240a27a241a242a20a19a20
a96 Taylor
a243a244
integraldisplay 1
0
e?ttz?1dt =
∞summationdisplay
n=0
(?)n
n!
integraldisplay 1
0
tn+z?1dt =
∞summationdisplay
n=0
(?)n
n!
1
n + z.
a28a29a179a245
a27a68Rez > 0a21a246a247a248a140a153a21a46a249a250a189a251a69a68a141a142
a98a99
a45a100
a37a150
a141a69a21a252a20
a87a88
a68
a97a98
a99a121(z negationslash= 0,?1, ?2,···)
a63a111a112a113
a37a62a150
a68
a97a98a99
a45a100 (z negationslash= 0,?1,?2,···)a46
a28a253a105a37
a250a189a141a69a21a252
a20
a107a254
a189
a108
a27a251a69
a30a31a107a254
a189a68
a97a98a99a121
a21a45a100a255a0a46
a0a1a2 Γ
a3 a4 a53a6
Γ(z) =
integraldisplay ∞
1
e?ttz?1dt +
∞summationdisplay
n=0
(?)n
n!
1
n + z.
§8.2 Γa3a4a147a1a2a3a4 a54a6
§8.2 Γ a12a13a14a5a6a7a8
a9a10 1 Γ(1) = 1
a46
a238a239
a68 Γa19a20a21a25a26
a39a106a11 z = 1
a192a102a140a153
a28a29a179a245
a46
a9a10 2 Γ(z + 1) = zΓ(z)
a46
a12 a13a14Γ
a19a20a21a25a26
Γ(z + 1) =
integraldisplay ∞
0
e?ttzdt
= ?e?ttz
vextendsinglevextendsingle
vextendsingle
∞
0
+
integraldisplay ∞
0
e?tztz?1dt
= z
integraldisplay ∞
0
e?ttz?1dt = zΓ(z). square
a15a207a16a17a18a19a235a20a21a22a17a23a24a25a26a219
a46
? a233a215a27a28a216a29a30a31a32a33a206a227a224a34a35 Rez > 0a46
a36a37a207 Γ(z + 1)
a38zΓ(z)a39
a216a217a218a196a219
a220 (z = 0, ?1, ?2, ···
a40a41) a37a221a222a37a42a43a219a220a225a226a44a26a37a235a20a45a202a37a16a17a46a47a48a49a216
a217a218a196a50a51a52
a46
? a53
a233a230a196a37a54a235a20a55a56a57a31a46a47a48a49a25a58a51 Γ
a200a201
a199a219a220a225a226
a46
a16a59a37a235a232a46a47a48a49
a60a61a51
Γ(z) = 1zΓ(z + 1).
a195a62a63a64a199
a200a201
a216a65a218a196Rez > 0a195a219a220a37a66a64a199
a200a201
a216a65a218a196 Rez > ?1a195a219a220a67
a22a68a216a69a70a71a72 Rez > 0 a195a73a74
a67a37a222
a235a75
a37 Γ(z + 1)/z
a76
a215a66a64a199 Γ(z) a216a71a72
Rez > ?1a195a199a219a220a225a226a46a77a78
a37a79a19a80
a225a226a81a82a227a199a18a19a83a84a223 Γ(z)
a37a16
a76
a215a85a37
a235a20a80
Γ(z) = 1zΓ(z + 1), z negationslash= 0
a86
a51a215Γ(z)a216a71a72Rez > 1a195a199a202a203
a37
a77z = 0a87
a215Γ
a200a201
a199a233a88a89
a87
a37resΓ(0) = 1
a46
? a90a91
a195a92a93a94
a37a95
a235a20a232 Γ
a200a201
a225a226a227a71a72 Rez > ?2
a37
Γ(z) = 1z(z + 1)Γ(z + 2), z negationslash= 0,?1.
z = ?1a54a215Γa200a201
a199a233a88a89
a87
a37 resΓ(?1) = ?1
a46
? a79a222a96a97a37a76
a235a20a232 Γ
a200a201
a219a220
a225a226a227a217a218a196
a37
a77 z = 0, ?1, ?2, ···a39
a215Γ
a200a201
a199a233
a88a89
a87
a37
resΓ(?n) = (?1)
n
n! .
a0a1a2 Γ
a3 a4 a55a6
a98a99 1 a114a115a118a119
a20na37
Γ(n) = (n?1)!.
a118
a27
a62a33a28a29a100a62a37 Γ
a19a20
a70a32a33a101a102
a19a20a46
a9a10 3
a103a104a105
a41
a25a44
Γ(z)Γ(1?z) = pisinpiz.
a28a29a106
a189a21
a104a105
a130a187
a99
a21
a34 8.4
a107a46
a98a99 2 Γ(1/2) = √pi
a46
a109a75
a68
a121a99
a21a146a1083
a39a106a11z = 1/2a37a94a95a109a117Γ(1/2) >0(a62a33a91a30
a19a20a110a111
a33a118)
a192a102a140a153
a125
a179a245
a46
a98a99 3 Γ
a19a20a68
a97a98a99a71a112
a127a46
a12 a62a33pi/sinpiz negationslash= 0 a37a73a74 Γ(z)Γ(1?z) negationslash= 0
a46
a28a133a37
a175
a245
a68 z = z0 a127
a129 Γ(z
0) = 0
a37a113
a114a129 Γ(1?z
0) = ∞ a46
a28a109a178
a169a115a68 1 ? z0 = ?n(a116a192 z0 = n + 1) a37 n = 0,1,2,···a90a46a249a125a90
Γ(z0) = Γ(n + 1) = n!a37a117a73a118a119a120a46a62a125 Γa19a20a68
a97a98a99a71a112
a127a46 square
a131 8.3 a39a121a168a122 Γ(x)(x a33a163a20) a21a131a123a46
a65a167
a163a20a124
a173a238a125a126a107a127
a168
a28a29a128a84a74a129 Γ
a19a20a21
a130
a127
a31a131
a46
a1328.3
a132
a133a134a135a136a137a138a139 Γ
a140
a137a141
a9a10 4
a142
a102a106
a189
Γ(2z) = 22z?1pi?1/2Γ(z)Γ
parenleftbigg
z + 12
parenrightbigg
.
a28a29a106
a189a21
a104a105a145
a130 8.4a107a46
§8.2 Γa3a4a147a1a2a3a4 a56a6
a9a10 5 Γ
a19a20a21a143a144a243a244
a37
a192 Stirlinga106a189a182
a89|z|→∞a37|argz| <pi
a90
a37a129
Γ(z) ~ zz?1/2e?z√2pi
braceleftBig
1 + 112z + 1288z2 ? 13951840z3 ? 5712488320z4 +···
bracerightBig
,
lnΓ(z) ~
parenleftbigg
z ? 12
parenrightbigg
lnz ?z + 12 ln(2pi) + 112z ? 1360z3 + 11260z5 ? 11680z7 +···.
a68a145a44
a39a146
a23a24a21
a179a245
a27
lnn! ~ nlnn?n.
a0a1a2 Γ
a3 a4 a57a6
§8.3 ψ a12 a13
ψa19a20a27 Γa19a20a21
a114
a20a147a148
ψ(z) = dlnΓ(z)dz = Γ
prime(z)
Γ(z).
a13a14Γ
a19a20a21a146a108
a37
a102
a74
a140a168ψ(z)a21a248a149a146a108a182
1. z = 0,?1,?2,···a150a27ψ(z)a21a63
a101a151
a127
a37
a176a20
a128a33?1a67a152
a122
a28a153
a127
a74a154a37ψ(z)
a68
a97a98a99
a45a100a46
2. ψ(z + 1) =ψ(z) + 1z.
ψ(z + n) =ψ(z) + 1z + 1z + 1 +···+ 1z + n?1, n = 2,3,···.
3. ψ(1?z) =ψ(z) +picotpiz.
4. ψ(z)?ψ(?z) = ?1z ?picotpiz.
5. ψ(2z) = 12ψ(z) + 12ψ
parenleftbigg
z + 12
parenrightbigg
+ ln2.
6. ψ(z) ~ lnz ? 12z ? 112z2 + 1120z4 ? 1252z6 +···, z →∞, |argz| <pi.
7. limn→∞bracketleftbigψ(z + n)?lnnbracketrightbig = 0.
ψa19a20a21a155a156a110a129
ψ(1) = ?γ, ψprime(1) = pi
2
6 ,
ψ
parenleftbigg1
2
parenrightbigg
= ?γ ?2ln2, ψprime
parenleftbigg1
2
parenrightbigg
= pi
2
2 ,
ψ
parenleftbigg
?12
parenrightbigg
= ?γ ?2ln2 + 2, ψprime
parenleftbigg
?12
parenrightbigg
= pi
2
2 + 4,
ψ
parenleftbigg1
4
parenrightbigg
= ?γ ? pi2 ?3ln2, ψ
parenleftbigg3
4
parenrightbigg
= ?γ + pi2 ?3ln2,
ψ
parenleftbigg1
3
parenrightbigg
= ?γ ? pi2√3 ? 32 ln3, ψ
parenleftbigg2
3
parenrightbigg
= ?γ + pi2√3 ? 32 ln3.
a157a33γ = ?ψ(1)a215
a201a158
a33a199a233a17a159a160a161
a201
a37a162a223 Eulera161
a201
γ = 0.5772 1566 4901 5328 6060 6512 0900 8240 ···.
a163a199a202a203a215
γ = limn→∞
bracketleftBigg nsummationdisplay
k=1
1
k ?lnn
bracketrightBigg
.
star a164a24ψa19a20
a37
a102
a74
a188a165
a126a166
a168a167a168
a33a129
a44a189a21
a71a72
a252a20
∞summationdisplay
n=0
un =
∞summationdisplay
n=0
p(n)
d(n)
§8.3 ψ a3 a4 a58a6
a169a170a37a38a39p(n)a170d(n)
a150a27na21a171a168a189a46
a33
a122a172
a104
a252a20a112a113
a37 p(n)
a21a173a20a174a175
a75a236d(n)
a21a173a20
a1762a37
a192
limn→∞un = limn→∞n·un = 0.
a175
a245d(n)
a27na21ma173a171a168a189
a37a94a95a97a80a112
a127a150a27a63
a101a112
a127
a37
d(n) = (n + α1)(n + α2)···(n + αm),
a192un a109a129a63
a101a151
a127
a37a113
a102
a80a31a31
a189
a33
un = p(n)d(n) =
msummationdisplay
k=1
ak
n + αk.
a164a24ψa19a20a21a177
a128a143a178a37
a192a102
a166
a140
Nsummationdisplay
n=0
un =
msummationdisplay
k=1
ak [ψ(αk + N)?ψ(αk)]
=
msummationdisplay
k=1
ak [ψ(αk + N)?lnN ?ψ(αk)],
a38a39
a164a24a122
msummationtext
k=1
ak = 0a46a172a151a162N →∞a37a192a140
∞summationdisplay
n=0
un = lim
N→∞
msummationdisplay
k=1
ak [ψ(αk + N)?lnN ?ψ(αk)]
= lim
N→∞
msummationdisplay
k=1
ak [ψ(αk + N)?lnN]?
msummationdisplay
k=1
akψ(αk)
= ?
msummationdisplay
k=1
akψ(αk).
a179 8.1 a166a71a72
a252a20
∞summationtext
n=0
1
(3n + 1)(3n + 2)(3n + 3)
a169a170
a46
a58
a62a33
1
(3n + 1)(3n + 2)(3n + 3) =
1
6
1
n + 1/3 ?
1
3
1
n + 2/3 +
1
6
1
n + 1,
a73a74a37a13a14a121a99a121
a168a21
a166a170a106
a189
a37a129
∞summationdisplay
n=0
1
(3n + 1)(3n + 2)(3n + 3) = ?
1
6
bracketleftbigg
ψ
parenleftbigg1
3
parenrightbigg
?2ψ
parenleftbigg2
3
parenrightbigg
+ψ(1)
bracketrightbigg
.
a106a11ψ
a19a20a21a155a156a110
a37
a192a140
∞summationdisplay
n=0
1
(3n + 1)(3n+ 2)(3n + 3) =
1
4
bracketleftbigg pi
√3 ?ln3
bracketrightbigg
.
a179 8.2 a166a71a72
a252a20
∞summationtext
n=0
1
n2 + a2
a169a170a37a38a39 a > 0
a46
a0a1a2 Γ
a3 a4 a59a6
a58
a62a33
1
n2 + a2 =
i
2a
parenleftbigg 1
n + ia ?
1
n?ia
parenrightbigg
,
a73a74
∞summationdisplay
n=0
1
n2 + a2 = ?
i
2a [ψ(ia)?ψ(?ia)].
a164a24
a121a99
a149a168a21ψa19a20a21a146a108 4a37
ψ(ia)?ψ(?ia) = ? 1ia ?picotipia = i
bracketleftbigg1
a +pi coth pia
bracketrightbigg
,
a108
a102
a74a166
a140
∞summationdisplay
n=0
1
n2 + a2 =
1
2a2
bracketleftbig1 +piacothpiabracketrightbig.
star a175a245un
a180
a129a35a101a151
a127
a37a181
a175
a37
d(n) = (n + α1)(n + α2)···(n + αm)(n + β1)2(n + β2)2···(n + βl)2,
a113
un = p(n)d(n) =
msummationdisplay
k=1
ak
n + αk +
lsummationdisplay
k=1
bracketleftbigg b
1k
n + βk +
b2k
(n + βk)2
bracketrightbigg
.
a182
a42
a126a37
a252a20a112a113a21a246a247a27
msummationdisplay
k=1
ak +
lsummationdisplay
k=1
b1k = 0.
a13a14ψ
a19a20a21a177
a128a143a178a37
a192a140
∞summationdisplay
n=0
un = ?
msummationdisplay
k=1
akψ(αk)?
lsummationdisplay
k=1
bracketleftbigb
1kψ(βk)?b2kψprime(βk)
bracketrightbig.
a179 8.3 a166a71a72
a252a20
∞summationtext
n=0
1
(n + 1)2(2n + 1)2
a169a170
a46
a58
a62a33
1
(n + 1)2(2n + 1)2 =
bracketleftbigg 4
n + 1 +
1
(n + 1)2
bracketrightbigg
?
bracketleftbigg 4
n + 1/2 ?
1
(n + 1/2)2
bracketrightbigg
,
a73a74
∞summationdisplay
n=0
1
(n + 1)2(2n + 1)2 = ?
bracketleftbig4ψ(1)?ψprime(1)bracketrightbig+bracketleftbigg4ψparenleftbigg1
2
parenrightbigg
+ψprime
parenleftbigg1
2
parenrightbiggbracketrightbigg
= 2pi
2
3 ?8ln2.
§8.4 B a3 a4 a510a6
§8.4 B a12 a13
Ba19a20a27a101
a34
a63
a36 Eulera30a31
a25a26a21a182
B(p,q) =
integraldisplay 1
0
tp?1(1?t)q?1dt, Rep > 0, Req > 0.
a183t = sin2θ a37
a180
a102
a74
a140a153 Ba19a20a21a184a63
a29a107a254
a189
B(p,q) = 2
integraldisplay pi/2
0
sin2p?1θcos2q?1θdθ.
a68Ba19a20a21a25a26
a39a96a40a185 s = 1?ta37a108
a102
a74
a140a153
B(p,q) =
integraldisplay 1
0
tp?1(1?t)q?1dt
=
integraldisplay 0
1
(1?s)p?1sq?1 (?ds)
=
integraldisplay 1
0
sq?1(1?s)p?1 ds,
a192B(p,q)a114a115pa170q a27
a114a32
a21a182
B(p,q) = B(q,p).
Ba19a20a102
a74
a24 Γa19a20
a107a186
a168
a81a37
B(p,q) = Γ(p)Γ(q)Γ(p + q) .
a12
a68Rep > 0a37Req > 0a21a246a247a248
a37a87a88a129
Γ(p) =
integraldisplay ∞
0
e?ttp?1dt = 2
integraldisplay ∞
0
e?x2x2p?1dx,
Γ(q) =2
integraldisplay ∞
0
e?y2y2q?1dy.
a115
a27
Γ(p)Γ(q) = 4
integraldisplay ∞
0
integraldisplay ∞
0
e?(x2+y2)x2p?1y2q?1dxdy.
a183x = rsinθ a37y = rcosθ a37
a140
Γ(p)Γ(q) =4
integraldisplay ∞
0
integraldisplay pi/2
0
e?r2(rsinθ)2p?1(rcosθ)2q?1rdrdθ
=4
integraldisplay ∞
0
e?r2r2(p+q)?1dr
integraldisplay pi/2
0
sin2p?1θcos2q?1θdθ
=Γ(p + q)B(p,q). square
a187a206a16a17a48a49a62a37a235a80 B
a200a201
a219a220
a225a226a227 p
a38q a199a217a218a196a46
a21a16a17a48a49a62
a37
a54a235a20a188a189a190
a86a191B(p,q)a15a207p
a38q a215a15a162a199a46
a0a1a2 Γ
a3 a4 a511a6
a127
a68
a13a14 B
a19a20
a170Γ
a19a20a21
a143a178
a189
B(p,q) = Γ(p)Γ(q)Γ(p + q) . (star)
a192a104Γ
a19a20a21
a79a29
a146a108
a37
a192a103a104a105
a41
a25a44
Γ(z)Γ(1?z) = pisinpiz
a170
a142
a102a106
a189
Γ(2z) = 22z?1pi?1/2Γ(z)Γ
parenleftbigg
z + 12
parenrightbigg
.
a85a104a105
a103a104a105
a41
a25a44
a37
a68 (star)a189
a39a183p = z, q = 1?z a37
B(z, 1?z) = Γ(z)Γ(1?z)Γ(1) = Γ(z)Γ(1?z).
a184a63a188
a99a37
B(z, 1?z) =
integraldisplay 1
0
tz?1(1?t)?zdt.
a183x = t/(1?t)a37a121
a189a192a102a193
a33
B(z, 1?z) =
integraldisplay ∞
0
xz?1
1 + xdx.
a28a29a30a31
a68
a34 7.6
a107
a39a194a195a196a197a198a37a28a133a108a104
a140
Γ(z)Γ(1?z) = B(z, 1?z) = pisinpiz.
a28a29a104a105a89a88
a27a680 < Rez < 1a21a246a247a248a140a153a21a46a249a27
a37
a101
a115
a250a189a21
a79
a69a68
a97a98a99
a150a45a100
a37a62
a125
a37
a28a29
a250a189a68
a97a98a99a128a78a199
a46 square
a200a104a105
a142
a102a106
a189a46
a28
a102
a74
a167
a198a30a31
integraldisplay 1
?1
(1?x2)z?1dx, Rez > 0
a21
a196a197
a140a153a46
a183 x2 = ta37a113
a140
integraldisplay 1
?1
(1?x2)z?1dx
= 2
integraldisplay 1
0
(1?x2)z?1dx =
integraldisplay 1
0
(1?t)z?1t?1/2dt
= B
parenleftbigg
z, 12
parenrightbigg
= Γ(z)Γ(1/2)Γ(z + 1/2) .
a201a96a40a185 1 + x = 2ta371?x = 2(1?t)a37a113a129
a184a63a202a123a189a21
a179a245
a182
integraldisplay 1
?1
(1?x2)z?1dx =22z?1
integraldisplay 1
0
tz?1(1?t)z?1dt
= 22z?1B(z, z) =22z?1Γ(z)Γ(z)Γ(2z) .
§8.4 B a3 a4 a512a6
a115
a27
Γ(z)Γ(1/2)
Γ(z + 1/2) = 2
2z?1Γ(z)Γ(z)
Γ(2z) ,
a192a142
a102a106
a189
Γ(2z) = 22z?1pi?1/2Γ(z)Γ
parenleftbigg
z + 12
parenrightbigg
.
a28a203
a21
a104a105a204a88
a27a68Rez > 0 a21a246a247a248a180a205a21a46a249a27
a37a118
a175a206
a99
a171a173
a84a104a198
a21
a37a28a29a179a245
a68
a97a98a99
a150
a78a199
a46 square
a0a1a2 Γ
a3 a4 a513a6
?8.5 Γ
a12a13a14a207a208a209a210a211
Γ a19a20a21a25a26 (a34a35a36a212a213a30a31 (8.1)a189) a109a214a24
a115
a141a142
a98a99
a46
a33
a122a215
a192a28
a63a216a217
a37a218
a107
a161a219
a104a105a126a220a221 Γ
a19a20a21a184
a154a222
a202
a107a254
a189
a37
a188a189a223a224
a173a174a30a31a107a186a170a71a72a102a30a107a186a37a65a225
a150a68
a97a98a99
a78a199(
a226
a153
a127a102
a178a181a154)
a46
a129a143a104a105
a130a227a228a229a230[12]a37a34 3a231a46
1. Γa60a61a156a232a233a47a48a55a234
Γ(z) = ? 12isinpiz
integraldisplay (0+)
∞
e?t(?t)z?1dt, |arg(?t)| <pi,
a38a39
a21
a30a31a173a174a33
a182
a167a121
a142
a98a99a235
a144
a118
a163a164
a71a72a191a236
a168a169
a37
a251a205a237
a100
a127
a118a238
a63a239
a37a200
a141a205a153a248a142
a98a99a235
a144
a118
a163a164
a71a72a191a236 (
a130a131 8.4)a46a125a189a68
a97z a98a99a78a199a37
a249 z =a119a20
a152a154
a46
a132 8.4 a132 8.5
Γa19a20a21a184a63a29a173a174a30a31a107a186a27
Γ(z) = 12pii
integraldisplay (0+)
?∞
ett?zdt, |argt| <pi,
a30a31a173a174a167
a248a142
a98a99a235
a144a240a163a164
a71a72a191a236
a168a169
a37
a141a205a237
a100
a127
a118a238
a63a239
a37a200
a251a205a153
a121
a142
a98a99a235
a144a240
a163a164
a71a72a191a236 (
a130a131 8.5)a46a125a189a68
a97z a98a99a78a199a37
a223a224 z =a119a20a46
2. Γa60a61a156a241a242a243a244a245a47a55a234
Γ(z) = 1z
∞productdisplay
n=1
braceleftbiggparenleftBig
1 + zn
parenrightBig?1parenleftbigg
1 + 1n
parenrightbiggzbracerightbigg
,
a125a189
a114a116a246 z a128a78a199a37
a249
a151
a127 z =a240
a119
a20
a152a154
a46
3. Γa60a61a156a247a248a249a250a242a249a243a244a245a47a55a234
1
Γ(z) = ze
γz
∞productdisplay
n=1
bracketleftBigparenleftBig
1 + zn
parenrightBig
e?z/n
bracketrightBig
,
a38a39
γ = limn→∞
bracketleftBigg nsummationdisplay
k=1
1
k ?lnn
bracketrightBigg
= 0.5772156649···
a108
a27
a212a213
a23a20(8.3a107)a46
a28a29a71a72a102a30a121
a168a122
a116a246z
a21Γ(z)a37a251a90a242a105a122Γ(z)a21
a130
a127
a33
a63
a101a151
a127
z = 0,?1,?2,···a150a71a112a127a46
?8.5 Γ
a3a4a147a252a253a254a255a0 a514a6
a167Γ
a19a20a21
a71a72a102a30a107a186
a102a140a153a63
a178
a149
a129a117
a26a21
a179a245
a46
a181
a175
sinpiz = piΓ(z)Γ(1?z) =piz
∞productdisplay
m=1
bracketleftbigg
1? z
2
m2
bracketrightbigg
,
cospiz = sin2piz2sinpiz =
∞productdisplay
m=1
bracketleftbigg
1? 4z
2
(2m?1)2
bracketrightbigg
.
a241
a28a79
a189
a166a114
a20a147a148
a37a70
a102
a74
a140a153
pitanpiz = ?8z
∞summationdisplay
m=1
1
4z2 ?(2m?1)2, z negationslash= ±
1
2,±
3
2,···, (8.1)
picotpiz = 1z + 2z
∞summationdisplay
m=1
1
z2 ?m2, z negationslash= 0,±1,±2,···, (8.2)
picscpiz = pi2
bracketleftBig
tanpiz2 + cotpiz2
bracketrightBig
= 1z + 2z
∞summationdisplay
m=1
(?1)m
z2 ?m2, z negationslash= 0,±1,±2,···, (8.3)
pisecpiz =picscpi
parenleftbigg1
2 ?z
parenrightbigg
= 4
∞summationdisplay
m=1
(?1)m(2m?1)
4z2 ?(2m?1)2, z negationslash= ±
1
2,±
3
2,···. (8.4)
a28a153
a243a244a189
a32a33a129
a44
a31
a189a243a244a46
a28
a202a243a244a21a123a189
a161a251a115a1a225a198a2
a130
a198
a21 Taylora243a244
a170 Laurent
a243
a244
a67
a112a113a124
a173
a150a27
a97a98a99 (a130
a127
a236a152a154) a37a145a161
a27a226a63a3a124a4a5a124a46a68
a28
a202a243a244
a39a37a178a76
a19a20a68
a65
a21
a97a80a151
a127a21
a130a6
a146
a251
a90
a107a127a71a7
a46
a178a137a96a129
a44
a31
a189a243a244a21
a37a8a162a115
a68
a129a162
a123a124a126
a109a129a151
a127a21a9
a110a19a20
a37
a192a10a11a12a13a14
a15(8.1)
a16(8.2)a17a18a19a20a21a22a23a24a25a26a27a28a29a30a31
pi2sec2piz =4
∞summationdisplay
m=?∞
1
[2z ?(2m?1)]2, z negationslash= ±
1
2,±
3
2,···,
pi2csc2piz =
∞summationdisplay
m=?∞
1
(z ?m)2, z negationslash= 0,±1,±2,···.
a15(8.1) ~ (8.4)
a32a18a33a34a35z = 0a36a37 Taylora38a39a23a40a41a42a20a16a43a44a23a45a25a26a30a31
piz tanpiz = 2
∞summationdisplay
n=1
bracketleftbigg ∞summationdisplay
m=1
1
(2m?1)2n
bracketrightbigg
(2z)2n, piz cotpiz = 1?2
∞summationdisplay
n=1
bracketleftbigg ∞summationdisplay
m=1
1
m2n
bracketrightbigg
z2n,
pisecpiz = 4
∞summationdisplay
n=0
bracketleftbigg ∞summationdisplay
m=1
(?)m?1
(2m?1)2n+1
bracketrightbigg
(2z)2n, piz cscpiz = 1 + 2
∞summationdisplay
n=1
bracketleftbigg ∞summationdisplay
m=1
(?)m?1
m2n
bracketrightbigg
z2n,
a19a165.8a46a47a48a49a50a51a18a49a52a53a23a54a25a26a30a55a56a57a58a59a60a13a16a61
∞summationdisplay
m=1
1
m2n =
(?)n?1
2
(2pi)2n
(2n)! B2n,
∞summationdisplay
m=1
(?1)m?1
m2n = (?)
n?122n?1 ?1
(2n)! pi
2nB2n,
∞summationdisplay
m=1
1
(2m?1)2n =
(?)n?1
2
22n ?1
(2n)! pi
2nB2n,
a62a63a64 Γ
a65 a66 a6715a68
∞summationdisplay
m=1
(?1)m?1
(2m?1)2n+1 =
(?)n
22n+2
pi2n+1
(2n)! E2n.
a15a69a70
a48a71a28a18a72a73a74
B2n = (?)n?1 2(2n)!(2pi)2n
∞summationdisplay
m=1
1
m2n,
a54a25a26a75a55a76 n →∞a77B2n →∞a14a78a79a23
B20 = ?5.291×102, B30 = 6.016×108, B40 = ?1.930×1016,
B50 = 7.501×1024, ··· B200 = ?3.647×10215.