a0 a1
star a2a3a4a5a6a7a8a9a10 4
star §6.5 a11a12a8a13a14a15
a16a17a18
a6a7
a0a1a2 a3a4a5a6a7a8a9a10a11a12a13a14a15a16a17 a181
a19
a20a21a22 a23a24a25a26a27a28a29a30a31a32a33a34a35a36a37
§6.1 a38a39a40a41a42a43a44a45a46a47a42a48a49a50a48
a51a52a53a54a55a56a57a58a59a60a61a62a63a64a65a66
d2w
dz2 + p(z)
dw
dz + q(z)w = 0, (6.1)
p(z)a67q(z)a68a69a70a71a72a73a74a75
? a70a71a72a76a77a78a79a80a70a71a72a73a74a81a82a72a75
? a83a84a77a85a70a71a76a72a76a86a87a77a78a79a80a70a71a73a74a72a76a86a87a81a82a72a75
a88a89a90a91a92a91a93a94a95a96a97a98
a85
a99a100a101a91a102a103a104a105a106a107a108z
0
a101a109a110a111a112a113a101a114a115a89a90
a75
a96a97a116a90p(z), q(z)
a117z0a108a101a91a118a119a120a121a107a122a89a90a91a117z0a108a101a91a118a119a85
a123a124a125
a85
a120a121a107
a122a89a90a91a101a126a127
a85a128a129a85
a103Taylora89a90a130a103Laurenta89a90
a75
? a131a132p(z), q(z)a133z0
a134
a76a86a85a135z0
a134
a68a69a70a71a72a136
a134
a75
? a131a132p(z), q(z) a137a138a139a140a141a142a133z0
a134a143
a76a86a85a135z0
a134
a68a69a70a71a72a144
a134
a75
a1456.1
a146a147a148a70a71(Hypergeometric equation)
z(1?z)d
2w
dz2 +
bracketleftbigγ ?(1 + α + β)zbracketrightbigdw
dz ?αβw = 0
a72a73a74a77
p(z) = γ ?(1 + α+ β)zz(1?z) a67 q(z) = ? αβz(1?z).
a133a140a149a150a151a85p(z)a67q(z)a140a152a142a144
a134a153
z = 0a67z = 1a75a154a155a85a156a157z = 0a67z = 1a77a146a147a148a70a71
a72a144
a134a158
a85a140a149a150a151a72a159a160
a134a161
a77a70a71a72a136
a134
a75
a1456.2 Legendre
a70a71
parenleftbig1?x2parenrightbig d2y
dx2 ?2x
dy
dx + l(l + 1)y = 0,
a133a140a149a150a151a72a144
a134
a69x = ±1a75
a162a163a164a165a166
a150
a134
z = ∞a77
a143
a77a70a71(6.1)a72a144
a134
a85a135a167a168a169a170
a171a172
a72
a171a173z = 1/t
a75
dw
dz = ?t
2dw
dt ,
d2w
dz2 = t
4d2w
dt2 + 2t
3dw
dt .
a174a175
a85a70a71(6.1)
a171
a69
d2w
dt2 +
bracketleftbigg2
t ?
1
t2p
parenleftbigg1
t
parenrightbiggbracketrightbigg dw
dt +
1
t4q
parenleftbigg1
t
parenrightbigg
w = 0. (6.2)
a131a132t = 0a77a70a71(6.2)a72a136
a134
(a144
a134
)a85a135a68
a165a166
a150
a134
z = ∞a77a70a71 (6.1)a72a136
a134
(a144
a134
)a75
§6.1 a3a4a5a6a7a8a9a10a11a12a7a176a177a178a176 a182a19
t = 0 (a179z = ∞)a69a70a71a136
a134
a72a180a181a77
p
parenleftbigg1
t
parenrightbigg
= 2t+ a2t2 + a3t3 +···,
q
parenleftbigg1
t
parenrightbigg
= b4t4 + b5t5 +···,
a179
p(z) = 2z + a2z2 + a3z3 +···,
q(z) = b4z4 + b5z5 +···.
a165a166
a150
a134
a77a146a147a148a70a71a67Legendrea70a71a72a144
a134
a75
a0a1a2 a3a4a5a6a7a8a9a10a11a12a13a14a15a16a17 a183
a19
§6.2 a60a61a57a182a183a184a185a62a186
a187a188
a85
a143a189a190a191a192a193a194a195a196
a72a82a197a75
a198a1996.1
a131a132p(z)a67q(z)a133a200|z ?z0| < Ra201a202a203a76a86a85a135a133
a175
a200a201a136a204a205a70a71a206a203a207a208
d2w
dz2 + p(z)
dw
dz + q(z)w = 0,
w(z0) = c0, wprime(z0) = c1 (c0, c1a69a209a210a136a74)
a140a211a141a72a141a142a76w(z)a85a212a213w(z)a133a214a142a200a201a202a203a76a86a75
a215a216
a214a142a82a197a85a217a155a218w(z)a133z0
a134
a72a219a220|z ?z0| < Ra201a221a222a69Taylora223a74
w(z) =
∞summationdisplay
k=0
ck(z ?z0)k.
a224a225
a85a214a226(z ?z0)
0a227(z ?z0)1
a72a73a74c0a227c1
a228a229
a67a206a203a180a181a141a230a75
a231
a214a142a232a233a72a223a74a76a234a235a204a205a70a71a85a236a237a73a74a85a238a217a155a239a240a73a74ck a75a82a197a241
a191
a85a73a74
ck(k = 2,3,···)a242a217a243c0, c1
a244a245
a75
a1456.3
a239Legendrea70a71
parenleftbig1?x2parenrightbig d2y
dx2 ?2x
dy
dx + l(l + 1)y = 0
a133x = 0
a134
a219a220a201a72a76a85a159a137la77a141a142a246a74a75
a186 x = 0
a77a70a71a72a136
a134
a85
a174a175
a85a217a247a76
y =
∞summationdisplay
k=0
ckxk.
a234a235a70a71a85a238a140
parenleftbig1?x2parenrightbig ∞summationdisplay
k=0
ckk(k ?1)xk?2 ?2x
∞summationdisplay
k=0
ckkxk?1 + l(l + 1)
∞summationdisplay
k=0
ckxk = 0,
a248
a197a249a212a85a250a251
∞summationdisplay
k=0
braceleftBig
(k + 2)(k + 1)ck+2 ?bracketleftbigk(k + 1)?l(l + 1)bracketrightbigck
bracerightBig
xk = 0.
a215a216Taylor
a221a222a72a211a141a87a85a217a250
(k + 2)(k + 1)ck+2 ?[k(k + 1)?l(l + 1)]ck = 0,
a179
ck+2 = k(k + 1)?l(l + 1)(k + 2)(k + 1) ck = (k ?l)(k + l + 1)(k + 2)(k + 1) ck.
§6.2 a10a11a7a176a252a253a254a12a16 a184a19
a214a255a238a250a251a157a73a74a0a1a72a2a3a4a5a75a6a7a8a243a9a10a11a73a85a238a217a155a239a250a73a74
c2n = (2n?l?2)(2n + l?1)2n(2n?1) c2n?2
= (2n?l?2)(2n?l?4)(2n + l?1)(2n + l?3)2n(2n?1)(2n?2)(2n?3) c2n?4
= ···
= c0(2n)!(2n?l?2)(2n?l?4)···(?l)
×(2n + l?1)(2n + l?3)···(l + 1),
c2n+1 = (2n?l?1)(2n + l)(2n + 1)(2n) c2n?1
= (2n?l?1)(2n?l?3)(2n + l)(2n + l?2)(2n + 1)(2n)(2n?1)(2n?2) c2n?3
= ···
= c1(2n + 1)!(2n?l?1)(2n?l?3)···(?l + 1)
×(2n + l)(2n + l?2)···(l + 2).
a8a243Γa12a74a72a87a13
Γ(z + 1) = zΓ(z),
Γ(z + n + 1) = (z + n)(z + n?1)···(z + 1)zΓ(z),
a217a155
a231c
2na67c2n+1 a14a15
c2n = 2
2n
(2n)!
Γ
parenleftbigg
n? l2
parenrightbigg
Γ
parenleftbigg
?l2
parenrightbigg
Γ
parenleftbigg
n + l + 12
parenrightbigg
Γ
parenleftbiggl + 1
2
parenrightbigg c0,
c2n+1 = 2
2n
(2n + 1)!
Γ
parenleftbigg
n? l?12
parenrightbigg
Γ
parenleftbigg
?l?12
parenrightbigg
Γ
parenleftbigg
n + 1 + l2
parenrightbigg
Γ
parenleftbigg
1+ l2
parenrightbigg c1.
a154a155a85Legendrea70a71a72a76a238a77
y(x) = c0y1(x) + c1y2(x),
a159a137
y1(x) =
∞summationdisplay
n=0
22n
(2n)!
Γ
parenleftbigg
n? l2
parenrightbigg
Γ
parenleftbigg
?l2
parenrightbigg
Γ
parenleftbigg
n + l + 12
parenrightbigg
Γ
parenleftbiggl + 1
2
parenrightbigg x2n,
a0a1a2 a3a4a5a6a7a8a9a10a11a12a13a14a15a16a17 a185
a19
y2(x) =
∞summationdisplay
n=0
22n
(2n + 1)!
Γ
parenleftbigg
n? l?12
parenrightbigg
Γ
parenleftbigg
?l?12
parenrightbigg
Γ
parenleftbigg
n + 1 + l2
parenrightbigg
Γ
parenleftbigg
1 + l2
parenrightbigg x2n+1.
a228
a131a82a197a154a241a85a209a210a16a82a141a17a206a180a181c0a67c1a85a238a141a82a217a155a239a240a70a71a72a141a142a83a76a75a83a84
a77a85
? a131a132a18c0 = 1, c1 = 0a85a238a250a251a83a76y1(x)a19
? a131a132a18c0 = 0, c1 = 1a85a238a250a251a83a76y2(x)a75
a224a225
a85a214a152a142a83a76y1(x)a67y2(x)a77a20a87
a165
a11a72a75
a21
a214a152a142a20a87
a165
a11a83a76a240a22a85a238a217a155a23
a24
a240a70a71a72a25a76a75
? a131a132a218a26
a196
a76a233a137a72a136a74c0a67c1
a27a15
a77a209a210a28
a189
a136a74a85a26
a196
a250a251a72a238a77a70a71
a72a25a76a75
a4a29
a186a62a30a31a54a62a32a33
a75a26
a196
a239a250a72a83a76a137a85y1(x)a34a35a140xa72a36a37a38a85y2(x)a34a35a140xa72a144
a37a38a85a179y1(x)a77xa72a36a12a74a85y2(x)a77xa72a144a12a74a75
a21
a239a76a72a39a71a40
a27
a85a214a77a80a41a9a10a11a73a137a34
a240a42a73a74ck+2a67cka85a43
a227ck+1
a165
a11a85
a174a175c
2na78a79a80c0a81a82a85c2n+1a78a79a80c1a81a82a75
a21a215a44
a26
a40a241a85a70a71a72a76a72a45a68a87(a214a226a46a72a77a144a36a87)a85a47
a225a48a49
a77a70a71a72a45a68a87a72a6a50a75
a25a39a214a142a51a52a85a217a155
a27
a240a133a136
a134
a219a220a201a239a223a74a76a72a141a53a54a55a75a214a238a77
a153
? a231(a70a71a136
a134
a219a220a201a72)a76a221a222a69Taylora223a74a85a234a235a204a205a70a71a19
? a236a237a73a74a85a250a251a73a74a0a1a72a9a10a11a73a19
? a6a7a8a243a9a10a11a73a85a239a240a73a74cka72a56a57
a244a58
a233(a243c0a67c1
a244a245
)a85
a21
a43a59a60a250a240a223a74a76a19
a80a41a9a10a11a73a141a82a77a20a87a72(a174a69a70a71a77a20a87a72)a85a154a155a59a60a72a223a74a76a141a82a217a155
a14a15
w(z) = c0w1(z)+ c1w2(z)
a72a232a233a75
a61a162
a46a240a85a133a73a74a0a1a72a9a10a11a73a137a85a141a53a62a63a64a240a42 ck, ck+1, ck+2
a65
a142a66a219a72a73a74a85
a174a175
ck a62a63a64a67a68a41c0a67c1a85a59a60a239a250a72w1(z)a69w2(z)a238
a143
a62a34a35a140za72a36a37a38a69a144a37a38a75
a48
a243a136a204a205a70a71a72a38a223a74a76a70a85a217a155a250a251a70a71a133a141a82a71a220a201a72a76a233a75a72a73a74a217a155
a215a216a61a162
a85
a239a240a70a71a133
a143
a63a71a220a201a72a76a233a75a217a155
a190a191
a85a70a71a133
a143
a63a71a220a201a72a76a233a85
a75
a69a76a86a76a77a75
a174a175
a85a74a217
a21
a70a71a133a78a141a71a220a201a72a76a233a240a22a85a25a39a76a86a76a77a85a10a240a70a71a133a159a160a71a220a201a72a76a233a75
a1456.4
a79w1a77a70a71
d2w
dz2 + p(z)
dw
dz + q(z)w = 0 (6.3)
a72a76a85a133a71a220G1a201a76a86a75a80 tildewidew1a77w1a133a71a220G2a201a72a76a86a76a77a85a179
§6.2 a10a11a7a176a252a253a254a12a16 a186a19
w1 ≡ tildewidew1, z ∈ G1 intersectiontextG2, (6.4)
a81
a190a191a153
tildewidew1
a82
a77a70a71(6.3)a72a76a75
a83
a79
d2 tildewidew1
dz2 + p(z)
dtildewidew1
dz + q(z)tildewidew1 = g(z),
g(z)a133G2 a201a76a86a75
a174
a69w1a77a70a71(6.3)a133a71a220G1 a201a72a76a85
a84
a133a85a71a220 G1 intersectiontextG2 a201a85
a82a86a87
a70a71
d2w1
dz2 + p(z)
dw1
dz + q(z)w1 = 0.
a43a133
a175
a85a71a220a201a85w1(z) ≡ tildewidew1(z)a85
a84
d2 tildewidew1
dz2 + p(z)
dtildewidew1
dz + q(z)tildewidew1 = 0, z ∈ G1
intersectiontextG
2,
a179g(z) ≡ 0, z ∈ G1 intersectiontextG2a75
a215a216
a76a86a12a74a72a211a141a87a85a88a179
a190
a250
g(z) ≡ 0, z ∈ G2,
a89
a179 tildewidew1a133G2 a201
a86a87
a70a71
d2 tildewidew1
dz2 + p(z)
dtildewidew1
dz + q(z)tildewidew1 = 0. square
a145 6.5
a79 w1 a67 w2
a161
a77a70a71 (6.3) a72a152a142a20a87
a165
a11a76a85a213a242a133a71a220 G1 a201a76a86a75a80
tildewidew1a67 tildewidew2a205a84a77w1a67w2a133a71a220 G2 a201a72a76a86a76a77a85a179a133z ∈ G1 intersectiontextG2 a137
w1 ≡ tildewidew1, w2 ≡ tildewidew2.
a81
a190a153
tildewidew1a67 tildewidew2
a82
a20a87
a165
a11a75
a83
a80a526.4a90a85 tildewidew1a67 tildewidew2
a82
a77a70a71(a133G2 a201)a72a76a75
a174
a69w1a67w2 a20a87
a165
a11a85
?[w1,w2] ≡
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
w1 w2
wprime1 wprime2
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle negationslash= 0, z ∈ G1.
a79
?[tildewidew1, tildewidew2] ≡
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
tildewidew1 tildewidew2
tildewidewprime1 tildewidewprime2
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle = g(z),
g(z)a133G2 a201a76a86a75a80a41a133z ∈ G1 intersectiontextG2 a137a85
w1 ≡ tildewidew1, w2 ≡ tildewidew2,
a84g(z) negationslash= 0, z ∈ G
1
intersectiontextG
2a75a82
a225a215a216
a76a86a12a74a72a211a141a87a85a238
a190
a250
g(z) negationslash= 0, z ∈ G2.
a154a155a85 tildewidew1a67 tildewidew2(a133G2 a201)
a82
a20a87
a165
a11a75square
a0a1a2 a3a4a5a6a7a8a9a10a11a12a13a14a15a16a17 a187
a19
§6.3 a60a61a91a92a30a182a183a184a185a62a186
a34a93a94a95
a134
a87a72a144
a134
a75
a70a71a72a144
a134
a217a96a63a64a74a77a76a72a144
a134
a75
a143a97
a217a96a77a76a72a95
a134
a69
a44
a87a144
a134
a85
a98
a217a96a77a76a72a99
a134
a75
a169a69a133a70a71
a228
a135a144
a134
a219a220a201a239a76a72a67
a216
a85a100a37
a143a189a190a191a192a193a194a101
a141a142a82a197
a153
a198a1996.2
a131a132z0a77a70a71
d2w
dz2 + p(z)
dw
dz + q(z)w = 0
a72a144
a134
a85a135a133p(z)a67q(z)
a161
a76a86a72a102a232a71a2200 < |z ?z0| < Ra201a85a70a71a72a152a142a20a87
a165
a11a76a77
w1(z) =(z ?z0)ρ1
∞summationdisplay
k=?∞
ck(z ?z0)k,
w2(z) =gw1(z)ln(z ?z0) + (z ?z0)ρ2
∞summationdisplay
k=?∞
dk(z ?z0)k,
a159a137ρ1, ρ2a67g
a161
a77a136a74a75
star a131a132ρ1 a69ρ2a77
a248
a74a85a213g = 0a85a135z0
a134
a69a70a71a72a76a72a95
a134
a69
a44
a87a144
a134
a75
star a131a132ρ1 a69ρ2
a143
a77
a248
a74a85a69 g negationslash= 0a85a135a70a71a72a76a69a103a203a12a74a85z0
a134
a69a159a99
a134
a75
a104
a117a129a105a106a107a108a109a110
a101a91a127a111a112a96a97
a85a113a114a115a116a117
a99a100a116a90a118a119a101a120a121a122a116
a85a123a124
a114
a92a125a126a116a90a101a127a128a129a130a127
a75a131a132a133
a98a101a89a90a91a134
a85
a105a135a125a136
a85
a137a138a114a115a139a140a141a142a143a144a145
a142a143
a85a146a147a148
a88a120a121a122a116a149a150a151a114a152a153
a75
a131a132a223a74a76a137a34a140a140a149a142a154a38a155a85a214a64a156a217a155a157
a248
a66
a48
a72ρa203a85a158a250a223a74a76a137a159a140a154a38a155a85
w1(z) = (z ?z0)ρ1
∞summationdisplay
k=0
ck(z ?z0)k,
w2(z) = gw1(z)ln(z ?z0) + (z ?z0)ρ2
∞summationdisplay
k=0
dk(z ?z0)k.
a41a77a85a6a7a8a243a9a10a11a73a238a217a155a239a250a73a74a72a56a57
a244a58
a233a75a47
a225
a85
a98
a167a168
a162
a82a240ρa203a75
a133a160
a126a127a101a91a161
a132
a91a92a186
a75a162g negationslash= 0
a98
a85w2(z)
a101a126a127a144 w
1(z)a163a164(a165
a138a166a90a143)
a85
a131a167a168
a95a169a125a91
a75a162g = 0a98a85w2(z)a101a129a130a127a134a163a165
a166a90a143
a85a170
a140a91a101a126a127a171
a164a75
a69a157a172a240a70a71a144
a134
a219a220a201a173a133
a228
a135a76a72a180a181a85
a143a174
a188
a18
w(z) = (z ?z0)ρ
∞summationdisplay
k=0
ck(z ?z0)k,
§6.3 a10a11a175a176a178a176a252a253a254a12a16 a188a19
a63a64a218p(z)a67q(z)a74a1330 < |z ?z0| < R a201a169Laurenta221a222
p(z) =(z ?z0)?m
∞summationdisplay
k=0
ak(z ?z0)k,
q(z) =(z ?z0)?n
∞summationdisplay
k=0
bk(z ?z0)k.
a80a41z = z0
a134
a77a70a71a72a95
a134
a87a144
a134
a85
a84m, n
a167a69
a248
a74a85a213a138a139a140a141a142a69a154
a248
a74a75
a231w(z)
a155a177p(z)
a67q(z)a72a223a74
a244a58
a233a234a235a70a71a85a212a178a179
a174
a85 (z ?z0)ρ?2a85a238a250a251
∞summationdisplay
k=0
ck(k + ρ)(k + ρ?1)(z ?z0)k
+(z ?z0)1?m
∞summationdisplay
l=0
al(z ?z0)l
∞summationdisplay
k=0
ck(k + ρ)(z ?z0)k
+(z ?z0)2?n
∞summationdisplay
l=0
bl(z ?z0)l
∞summationdisplay
k=0
ck(z ?z0)k = 0.
a180a181a182
a109
a125
a85a183a184a109
a127
a170a185a186a187
a142a101a116a90
a85a129a105a117
a125a126 ρ
a188a189a190
a116a90 c
k
a101a127a128a129a130
a127
a85a106a107
a120a125a126a122a141
a182
a91w(z)
a75
a191a169a103
a85a132
a122a192a125a99
a170
a140a141
a182
a91
a85
a193a194
a162a116
a103a195a196a125a126
a170
a140ρ
a188a85a197ρa195a196a103a198a187a96a97a101a91a75
a72a73a199a200a141
a195
a26
a196
a250a251a72a201a233a75a133a201a233a202a203a204a140
a65
a155a85a205a73a72a59a206a37a38a155a205a84a69
c0ρ(ρ?1)(z ?z0)0,
c0a0ρ(z ?z0)1?m,
c0b0(z ?z0)2?n.
a174a175
a85a69a157
a162
a96a239a250a152a142ρa203a85a214a142a201a233a202a203a72a59a206a37a38a141a82a770a37a38a85a179
1?m ≥ 0, 2?n ≥ 0.
a173a207a208
a241a85z0 a48a49a77
p(z)a72
a143
a146a39a141a209a72a95
a134
a85 a179 (z ?z0)p(z)a133z0
a134
a76a86a19
q(z)a72
a143
a146a39a210a209a72a95
a134
a85 a179 (z ?z0)2q(z)a133z0
a134
a76a86a75
a214a211a144
a134
a68a69a70a71a72
a91a92a30a182
a85a212a135a85a68a69a213
a91a92a30a182
a75
a214a255
a27
a40a85a133a70a71a72
a228
a135a144
a134
a72a219a220a201a85a152a142a76a217a96
a161
a77
a228
a135a76a75a214a215a26
a196
a72a205a86
a98
a143
a78a79(a216a93a94a35a45a74a155a72
a228
a135a76a72a217a232)a85
a97
a77a85a214a142a218a94a219a77
a228a220
a72a75
a221
a195a196
a72a82a197
(
a143a190
)a75
a198a1996.3
a70a71
d2w
dz2 + p(z)
dw
dz + q(z)w = 0,
a0a1a2 a3a4a5a6a7a8a9a10a11a12a13a14a15a16a17 a189
a19
a133a205a72a144
a134
z0a72a219a2200 < |z ?z0| < Ra140a152a142
a228
a135a76
w1(z) =(z ?z0)ρ1
∞summationdisplay
k=0
ck(z ?z0)k, c0 negationslash= 0, (6.5)
w2(z) =gw1(z)ln(z ?z0) (6.6)
+ (z ?z0)ρ2
∞summationdisplay
k=0
dk(z ?z0)k, ga69d0 negationslash= 0 (6.7)
a72a222
a162
a180a181a77z0a69a70a71a72
a228
a135a144
a134
a75
ρ1a67ρ2a68a69
a228
a135a76a72a223
a63
a75
a224
a60a61a91a92a30a182a183a184a185a225a186a226a227
a153
? a231
a228
a135a76w1(z)a69w2(z)a234a235a70a71
? a25a39a236a237a73a74a85a239a240a46a228a67a9a10a11a73
? a229a43a239a240a73a74a72a56a57
a244a58
a233
a51a230a72a239a76a39a71a85a156a77
a188a231w
1(z)a232a233a72a76a234a235a70a71a85
star a131a132a96a231a63a64a239a250a152a142a20a87
a165
a11a76a85a47
a225
a209a232a233a234a78
a15
a85a159a140a167
a162
a100
a231w
2(z)a232a233a72
a76a234a235a70a71a75
star a131a132a214a64a34a96a239a250a141a142a76(a52a131ρ1 = ρ2 a64)a85
a235a236
a85a238
a98
a167a168a100
a231w
2(z)a232a233a72a76(a214
a64a72ga141a82
a143
a690)a234a235a70a71a239a76a75
a215a216
a136a204a205a70a71a72a56a57a197a94a85a45a41a141a142a210a209a20a87a136a204a205a70a71
d2w
dz2 + p(z)
dw
dz + q(z)w = 0,
a131a132a237a238a239a240a157a141a142a76w1(z)a85
a235a236
a85a156a217a155a25a39a239a205
w2(z) = Aw1(z)
integraldisplay z braceleftbigg 1
[w1(z)]2 exp
bracketleftbigg
?
integraldisplay z
p(ζ)dζ
bracketrightbiggbracerightbigg
dz
a40a239a240a240a210a76a75a214a77
a174
a69a214a152a142a76
a161a86a87
a70a71
d2w1
dz2 + p(z)
dw1
dz + q(z)w1 =0,
d2w2
dz2 + p(z)
dw2
dz + q(z)w2 =0.
a243w2(z)a67w1(z)a205a84a241a214a152a142a70a71a85a100a66a242a85a233a217a250a251
w1d
2w2
dz2 ?w2
d2w1
dz2 + p(z)
parenleftbigg
w1dw2dz ?w2dw1dz
parenrightbigg
= 0,
a179
d
dz
parenleftbigg
w1dw2dz ?w2dw1dz
parenrightbigg
+ p(z)
parenleftbigg
w1dw2dz ?w2dw1dz
parenrightbigg
= 0.
§6.3 a10a11a175a176a178a176a252a253a254a12a16 a1810a19
a239a205a85a217a250
w1dw2dz ?w2dw1dz = Aexp
bracketleftbigg
?
integraldisplay z
p(ζ)dζ
bracketrightbigg
.
a152a203a156a155w21 a85a243a217a155a250a251
d
dz
parenleftbiggw
2
w1
parenrightbigg
= Aw2
1
exp
bracketleftbigg
?
integraldisplay z
p(ζ)dζ
bracketrightbigg
. (6.8)
a100a239a205a141a37a85a238a250a251a26
a196
a72a218a132a75
a1456.4 a224a225
a85z = 0a67z = 1
a161
a77a146a147a148a70a71
z(1?z)d
2w
dz2 + [γ ?(1 + α + β)z]
dw
dz ?αβw = 0
a72
a228
a135a144
a134
a19 x = ±1a74
a161
a77Legendrea70a71
parenleftbig1?x2parenrightbig d2y
dx2 ?2x
dy
dx + l(l + 1)y = 0
a72
a228
a135a144
a134
a75
a69a157
a163a164a165a166
a150
a134
a77a212a69
a228
a135a144
a134
a85a63a255
a162
a169
a171a173z = 1/t
a85a131a132t = 0a77
a171a173
a60a72a70a71a72
a228
a135a144
a134
a85a179t = 0
a134
a77
a171a173
a60a72a70a71a72a144
a134
a85a213
t
bracketleftbigg2
t ?
1
t2p
parenleftbigg1
t
parenrightbiggbracketrightbigg
= 2? 1tp
parenleftbigg1
t
parenrightbigg
a67
t2 · 1t4q
parenleftbigg1
t
parenrightbigg
= 1t2q
parenleftbigg1
t
parenrightbigg
a133t = 0
a134
a76a86a85
a89
a179z = ∞
a134
a77
a171a173a244
a70a71a72a144
a134
a85a213zp(z)a67z2q(z)a133z = ∞
a134
a76a86a85a135a68
z = ∞
a134
a77
a171a173a244
a72a70a71a72
a228
a135a144
a134
a75a154a155a85
a165a166
a150
a134
z = ∞a74
a161
a77a146a147a148a70a71a67Legendrea70a71
a72
a228
a135a144
a134
a75
a1456.5
a239Legendrea70a71
parenleftbig1?x2parenrightbig d2y
dx2 ?2x
dy
dx + l(l + 1)y = 0
a133x = 1a219a220a201a72a140a245a76a75
a186
a174x = 1
a77Legendrea70a71a72
a228
a135a144
a134
a85
a84a48
a79
y(x) = (x?1)ρ
∞summationdisplay
n=0
cn(x?1)n.
a234a235a70a71a85a238a140
∞summationdisplay
n=0
cnbracketleftbig(n + ρ)(n + ρ+ 1)?l(l + 1)bracketrightbig(x?1)n+1 + 2
∞summationdisplay
n=0
cn(n + ρ)2(x?1)n = 0.
a80
a175
a217a155a250a251a46a228a70a71
ρ(ρ?1) + ρ = 0
a0a1a2 a3a4a5a6a7a8a9a10a11a12a13a14a15a16a17 a1811
a19
a67a9a10a11a73
cn = ?n(n?1)?l(l + 1)2n2 cn?1.
a46a228a70a71a72a76a77
ρ1 = ρ2 = 0.
a133
a125a246Legendrea96a97
a117x = 1a108a109a110a111a101a247a105a91a248a249a109
a103
a117a250
a110|x?1| < 2a111a91a118a101
a85
a162a116a117x = 1
a108a138a251
a19a167
a247a198a91
a182
a105a107
a165
a138a166a90a143
a85a189x = 1(a144x = ?1)a132a252
a108
a85a131a167
a117x = 1(a144x = ?1)a108a253a254a75a255a0a168
a125a247a105a91
a75
a80a9a10a11a73a85a217a155a239a240Legendrea70a71a133x = 1
a134
a219a220a201a240a141a76a72a73a74a72a25a155a1a233
cn = (l + n)(l + 1?n)2n2 cn?1
= (l + n)(l + 1?n)2n2 (l + n?1)(l + 2?n)2(n?1)2 cn?2
= ······
= (l + n)(l + 1?n)2n2 (l + n?1)(l + 2?n)2(n?1)2 ··· (l + 1)l2·12 c0
= 1(n!)2 Γ(l + n + 1)Γ(l?n + 1)
parenleftbigg1
2
parenrightbiggn
c0.
a18c0 = 1a85a238a239a240a157Legendrea70a71a72a240a141a76
Pl(x) =
∞summationdisplay
n=0
1
(n!)2
Γ(l + n + 1)
Γ(l?n + 1)
parenleftbiggx?1
2
parenrightbiggn
,
a68a69la37a240a141a2 Legendrea12a74a75
a131a132
a162a3a4
a239a240a210a76a85a135
a48
a79
y2(x) = gPl(x)ln(x?1)+
∞summationdisplay
n=0
dn(x?1)n
= g
∞summationdisplay
n=0
1
(n!)2
Γ(l + n + 1)
Γ(l?n + 1)
parenleftbiggx?1
2
parenrightbiggn
ln(x?1)+
∞summationdisplay
n=0
dn(x?1)n.
a5a6
a136a204a205a70a71a223a74a76a70a72a228a7a54a55a85a82a240a73a74g(a141a82
a143
a690)a67dna179a217a75
a8
a51a243a72a9a70a77
a215a216
a240a210a76
a227
a240a141a76a0a1a72a11a73a85
a14
a240
y2(x) = gPl(x)
integraldisplay xbraceleftBigg 1
[Pl(ξ)]2 exp
bracketleftBiggintegraldisplay ξ
2ζ
1?ζ2dζ
bracketrightBiggbracerightBigg
dξ
= gPl(x)
integraldisplay x 1
[Pl(ξ)]2
dξ
1?ξ2
= gPl(x)
integraldisplay x dξ
1?ξ2 + gPl(x)
integraldisplay xbraceleftbigg 1
[Pl(ξ)]2 ?1
bracerightbigg dξ
1?ξ2,
§6.3 a10a11
a175a176a12a13a14a15a16a17a18 a1912
a20
a21a22a23a24a25a26a27a28a29a30|x?1| < 2
a31a32a33a34a35a36a37a38a39
a27a28
a32a40a41
y2(x) = g2Pl(x)ln x + 1x?1 +
∞summationdisplay
n=0
dn(x?1)n.
a42g = 1
a34a43a44a45dn a34a46a47a48a37a38a49a45 Legendrea50a51a52
a27a28
a32
Ql(x) = 12Pl(x)
bracketleftbigg
ln x + 1x?1 ?2γ ?2ψ(l + 1)
bracketrightbigg
+
∞summationdisplay
n=0
1
(n!)2
Γ(l + n + 1)
Γ(l?n + 1)
parenleftbigg
1 + 12 +···+ 1n
parenrightbiggparenleftbiggx?1
2
parenrightbiggn
,
a53
a41la54
a27a28a55Legendre
a56a57a34
a58a59γ
a60Eulera57a34ψ(z)a60Γa56a57a52a61a57a62a63a64
a65a66
a56a57Pl(x)(a67
a68a69a70a71a72
a47a34a73a60a38 x = ?1 a74 x = ∞a41a75a76a52a77a78a56a57) a74 Ql(x) a52a77a78a79a80a81a82a44a79a52a83
a44a34a84a85a86a87a88a89a90a91a92a64
a93a72a94a95a96a93
a49a97a62a98a50a51
d2w
dz2 + p(z)
dw
dz + q(z)w = 0
a30a99a100a101
a76a102a103a31a52a32a52
a96a104a105a106
a34a107a86a108a109a110
a30a111a112a113a114a93
a34a50a51a52
a27a28
a32a115a116a61a57
a29a117a30a111
a112a113a114a93
a34a50a51a52
a27a28
a32a37a118a116a61a57
a29a117a30a111a112a113a114a93
a34a50a51a52
a27a28
a32
a96
a44a116a61a57
a29
a64
a119 a120
a121
a83a44a50a51
a30a99a100a101
a76a122a52a123a124a125a126 Reρ1 ≥ Reρ2 a34
a100
a127ρ
1 ?ρ2 negationslash=a128a57a86a34
a27a28
a32
a96
a44a115a116a61a57
a29a117
a127ρ
1 = ρ2a86a34
a27a28
a32
a96
a44a116a61a57
a29a117
a127ρ
1 ?ρ2 =
a99
a128a57a86a34
a27a28
a32a37a118a116a61a57
a29
a64
a41a129a130a131a132a133a34a115a134a135a40 z = 0a76a60a73a52
a99a100a101
a76a64
a66
a60a34
a30 z = 0
a76a52a102a103a31a34a37a39a50a51a52
a136
a57a137Laurenta138a139
p(z) =
∞summationdisplay
l=0
alzl?1, q(z) =
∞summationdisplay
l=0
blzl?2.
a40a32a41
w(z) = zρ
∞summationdisplay
k=0
ckzk.
a140a141
a50a51a34a48a81
∞summationdisplay
k=0
ck(k + ρ)(k + ρ?1)zk+ρ?2
+
∞summationdisplay
l=0
alzl?1
∞summationdisplay
k=0
ck(k + ρ)zk+ρ?1 +
∞summationdisplay
l=0
blzl?2
∞summationdisplay
k=0
ckzk+ρ = 0,
a142a143a144 a145a146a147a148a149a150a151a152
a11
a17a153a154a155a18a156 a1913
a20
a157
∞summationdisplay
k=0
ck(k + ρ)(k + ρ?1)zk+ρ?2
+
∞summationdisplay
k=0
ksummationdisplay
l=0
bracketleftbiga
l(k + ρ?l)+ bl
bracketrightbigc
k?lzk = 0.
a158a159a160a161
a123
a26
a46a162a54a163a34
a157 z0
a52
a136
a57a34a37a164
c0 [ρ(ρ?1)+ a0ρ+ b0] = 0.
a65a66c
0 negationslash= 0a34a165a38
ρ(ρ?1)+ a0ρ+ b0 = 0.
a166
a48a60a125a126a50a51a34a91a92
a58a59
a52 a0 a74b0 a41
a0 = limz→0zp(z), b0 = limz→0z2q(z).
a167a168
a125a126a50a51a37a38a49a45a123a124a125a126a34 ρ1 a74ρ2 a64 a169a170
Reρ1 ≥ Reρ2 a64
a171a158a159zn
a52
a136
a57a34a164
(n + ρ)(n + ρ?1)cn +
nsummationdisplay
l=0
bracketleftbiga
l(n + ρ?l)+ bl
bracketrightbigc
n?l = 0,
a157
bracketleftbig(n + ρ)(n + ρ?1)+ a
0(n + ρ)+ b0
bracketrightbigc
n
+
nsummationdisplay
l=1
bracketleftbiga
l(n + ρ?l)+ bl
bracketrightbigc
n?l = 0.
a166a172a173
a164a45a129
a136
a57a174a175a52a176a177a178
a136
a64
a179a180a181a182a183a184a185a186
a34a187a188a189a190a191
a186a192 c
n a193a194a195a196a197a198
a64a199a200a34a201 cn
a193a196a197a198a202a203
a170
a204a205ρ
a64
a182ρ = ρ
1 a206a207
a34a208a188a190a191a209 w1(z)a64a210
a182ρ = ρ
2 a206a207
a34a211a188a190a191a209 w2(z)a64a199
ρ1 ?ρ2 negationslash= a212
a192a213
a34a187a214a215a216
a217a218
a193
(a219a220a221a222a223
a185
a193
) a224a209a64
a127ρ
1 = ρ2 a86a34a225a226
a166a172a227
a118a164
a69
a107
a96
a124a32a64a165a38a34
a166
a86
a27a28
a32
a96
a44a116a61a57
a29
a64
a127ρ
1 ?ρ2 =
a99
a128a57ma86a34a61
a66a27a28
a32a52
a136
a57 c(2)m a34a81
bracketleftbig(m+ ρ
2)(m + ρ2 ?1)+ a0(m + ρ2) + b0
bracketrightbigc(2)
m
+
msummationdisplay
l=1
bracketleftbiga
l(m + ρ2 ?l)+ bl
bracketrightbigc(2)
m?l = 0.
§6.3 a152a228a229a230a12a13a14a15a16a17a18 a1914a20
a91a92m + ρ2 = ρ1 a34a165a38a81
0·c(2)m +
msummationdisplay
l=1
bracketleftBig
al(ρ1 ?l)+ bl
bracketrightBig
c(2)m?l = 0.
a35a36
a127
msummationdisplay
l=1
bracketleftBig
al(ρ1 ?l)+ bl
bracketrightBig
c(2)m?l negationslash= 0a86a34 c(2)m
a231
a32
a117
a127
msummationdisplay
l=1
bracketleftBig
al(ρ1 ?l)+ bl
bracketrightBig
c(2)m?l = 0a86a34 c(2)m
a232
a92a64
star a61
a66a27a96a233a113a234
a34a50a51a52
a27a28
a32a235
a96
a44a116a61a57
a29
a64
star a61
a66a27a28a233a113a234
a34a50a51a52
a27a28
a32
a96
a44a115a116a61a57
a29
a34
a127
a226a236a118a237a238a49a32a64
a227
a60
a166
a86a38a47a52a239
a29
a136
a57c(2)n (n > m)a240a107a86a241a242
a66 c
0(2)a74c
(2)
m a64
a27a28
a32w2(z)a173a81a123
a29
a34
a96a29a99a158a66 c(2)
0 a34
a96
a29a99a158a66c(2)
m a64
a171a243a244
a98a33
a96a93
a34a48a240a245a246a34c(2)m+n a74c(2)m a174a175a52a178
a136a247c(1)
n a74c
(1)
0 a174a175a52
a178
a136a248a70a96a172
a34a35a36a34
a247c(2)
m a249
a99a158
a52
a29a99a250
a48a60
a27a96
a32 (a46a77a37a118a251
a96
a124a97a57a252a57)a34a35a253
a115a134
a42c(2)
m = 0a64
a142a143a144 a145a146a147a148a149a150a151a152a228a17a153a154a155a18a156 a1915
a20
§6.4 Bessel a254a255a0a1
Bessela50a51
d2w
dz2 +
1
z
dw
dz +
parenleftbigg
1? ν
2
z2
parenrightbigg
w = 0
a60a97a133a52a97a62a98a50a51a174
a96
a34
a58a59ν
a60a97a57a34Reν ≥ 0a64
a21a22a23a24
a34z = 0a60a50a51a52
a99a100a101
a76a34z = ∞
a60a50a51a52a2
a99a100a101
a76a64
a3a4a5a6Bessel
a50a51
a30z = 0
a76a52a102a103|z| > 0 a31a52a32a64a40
w(z) = zρ
∞summationdisplay
k=0
ckzk, c0 negationslash= 0,
a140a141Bessel
a50a51a34a164
∞summationdisplay
k=0
ck(k+ρ)(k+ρ?1)zk+ρ?2+
∞summationdisplay
k=0
ck(k+ρ)zk+ρ?2+
∞summationdisplay
k=0
ckzk+ρ?ν2
∞summationdisplay
k=0
ckzk+ρ?2=0,
a82a7zρ?2 a34
a157
a164
∞summationdisplay
k=0
ck bracketleftbig(k + ρ)2 ?ν2bracketrightbigzk +
∞summationdisplay
k=0
ckzk+2 = 0.
a167a168a8
a57a138a139a52a9
a96
a79a34
a157
a37
a158a159a136
a57a64
a65
a46a162a54a163 z
0 a29
a52
a136
a57a34a10a35a41 c0 negationslash= 0a34a48a164
a69a11a12a13a14
a34
ρ2 ?ν2 = 0.
a35a253a49a164
ρ1 = ν, ρ2 = ?ν.
a35a41Reν ≥ 0a34a165a38Reρ1 ≥ Reρ2 a64
a65z1
a52
a136
a57a34a164
c1 bracketleftbig(ρ+ 1)2 ?ν2bracketrightbig = 0 a157 c1(2ρ+ 1) = 0.
a35a36
c1 = 0, a127ρ negationslash= ?1/2; (6.9a)
c1
a232
a92,
a127ρ = ?1/2. (6.9b)
a38a47a39a15
a69
a34
a157
a84 ρ = ?1/2a34a16a37a38
a42c
1 = 0a64
a65zn
a52
a136
a57a34a164
cnbracketleftbig(ρ+ n)2 ?ν2bracketrightbig+ cn?2 = 0 a157 cnn(2ρ+ n)+ cn?2 = 0,
a35a36a34a164
a69a17a18a19a20
cn = ? 1n(n + 2ρ)cn?2.
a21a22a23
a85a176a177a178
a136
a34a48a37a38a49a164
c2n = ? 1n(n + ρ) 122c2n?2
§6.4 Bessela152a228a17a18 a1916a20
= (?)2 1n(n?1)(n + ρ)(n + ρ?1) 124c2n?4
= ···
= (?)
n
n!
1
(ρ + 1)n
1
22nc0, (6.10)
c2n+1 = ? 1(n + 1/2)(n + ρ+ 1/2) 122c2n?1
= (?)
2
(n + 1/2)(n?1/2)(n + ρ+ 1/2)(n+ ρ?1/2)
1
24c2n?3
= ···
= (?)n 1(3/2)
n
1
(ρ+ 3/2)n
1
22nc1
= 0. (6.11)
a85ρ1 = ν a140a141a34
a157
a164
w1(z) = c0zν
∞summationdisplay
k=0
(?)k
k!(ν + 1)k
parenleftBigz
2
parenrightBig2k
.
a42c
0 =
1
2νΓ(ν + 1) a34a48a81a32
Jν(z) =
∞summationdisplay
k=0
(?)k
k!Γ(k + ν + 1)
parenleftBigz
2
parenrightBig2k+ν
. (6.12)
a85ρ2 = ?ν a140a141a34a81
w2(z) = c0z?ν
∞summationdisplay
k=0
(?)k
k!(?ν + 1)k
parenleftBigz
2
parenrightBig2k
,
a127ν negationslash=(a99)
a128a57a86a34a235a37
a42 c
0 = 2ν/Γ(?ν + 1)a34a24a164
J?ν(z) =
∞summationdisplay
k=0
(?)k
k!Γ(k ?ν + 1)
parenleftBigz
2
parenrightBig2k?ν
. (6.13)
a246
a30a25a26a5a6a96a93 ρ = ?1/2
a52
a113a234
a64a27
a72a28a29a30a69
a34
a166
a86a16a226a37a38
a42 c
1 = 0 a64a35a41a31a32
c1 negationslash= 0a34
a100
c2n+1 = (?)
n
(3/2)n(1)n
1
22nc1,
a91a92
a69(1)
n = n!a34
a166a172a30w
2(z)
a59a227
a115a33a60
a171a34a35a96a29
z?1/2
∞summationdisplay
n=0
c2n+1z2n+1 = c1
∞summationdisplay
n=0
(?)n
n!Γ(n + 3/2)
parenleftBigz
2
parenrightBig2n+1/2
·
radicalbiggpi
2 = c1
radicalbiggpi
2J1/2(z).
a157a30w
2(z)
a59a227
a115a33a60
a171a36a35a37a27a96
a32a64
a38a21a22
a38a41a246
a30
a80
a29a248
a249
a129a49a32 Bessela50a51a52
a232a39
a34a35a41
a37a72
a52a40a49a45a129a123a124a125a126a34a43a10a61
a41a66a42a96
a124a125a126a34a235a43a49a45a129a44
a41
a52a32a64
a127ν negationslash=
a128a57a86a52a40a31a36a34a35a41
a166
a86a49a45a52a123a124a32Jν(x)a74
a142a143a144 a145a146a147a148a149a150a151a152a228a17a153a154a155a18a156 a1917
a20
J?ν(x)a45a79
a231
a178a64a46a60a34
a96
a124a47a225a52a48a49a60a110
a127 ν = 0
a86a34
a37a72
a52a49a32a33a51
a227
a60a50a45a129a107
a96
a124a32
J0(x) =
∞summationdisplay
k=0
(?)k
k!k!
parenleftBigx
2
parenrightBig2k
.
a166a51
a47a34
a166
a86a52
a27a28
a32
a41a52
a116a81a61a57
a29
a34
a157
y2(x) = gJ0(x)lnx+
∞summationdisplay
k=0
dkxk, g negationslash= 0.
a115a53a31a36a34
a127 ν = n, n = 1,2,3,···
a86a34a27
a72
a16a226
a227
a60a49a45a129
a96
a124a32a34a54
a96
a15a55a34a52a40a56a57a81
a76a58a32a64
a166
a60a35a41a34a27
a72a59a60
a52a40a49a45a129a123a124a115a107a52a125a126a78a34a253a10a34a235a52a40a49a45a129a123a124
a234a161
a15a55
a43a115a44a107a52a32a64a46a60a34a48a49a43a2a31a36a64
star a61
a203
a34a199ν = n, n = 1,2,3,···a213a34a62
a192
a209
J?n(x) =
∞summationdisplay
k=0
(?)k
k!Γ(k?n + 1)
parenleftBigx
2
parenrightBig2k?n
a202a63
k = 0,1,···,n?1a64a65
a193
a186a192a66a67 0
a34a68a69a70
a67z =
0,?1,?2,···a71a69Γa72
a192
a193a203a73a74a75
a64a76a189
J?n(x) =
∞summationdisplay
k=n
(?)k
k!Γ(k?n + 1)
parenleftBigx
2
parenrightBig2k?n
.
a77k?n = l
a34a187
a205
J?n(x) =
∞summationdisplay
l=0
(?)n+l
(n + l)!Γ(l + 1)
parenleftBigx
2
parenrightBig2(n+l)?n
= (?)n
∞summationdisplay
l=0
(?)l
l!Γ(n + l + 1)
parenleftBigx
2
parenrightBig2l+n
= (?)nJn(x),
a78
a61
a203
a209Jn(x)a221a222a79
a185
a64
star a61a80a34a201a62
a192
a209a81
a202
a34
a82a83a84
a69a85a200a86a87
a170
a62
a192
a209
a193a88
a65
a186a192a89a670
a34
a90a91
a201a92a201a223a93
a202a94
a179
a216a68a220a87
a170
a110a201a95a215J?ν(x) (ν = 1,2,3,···)a213a34
a96c
0 = 2ν/Γ(1?ν)a34
a97a97
a169a170
a216c0 = 0a64
star a61a98a34a99a100a199a200a188a189a101a102a103a68a220
a89a104a105
a193
a169a170
a34a106a190 y2(x)
a193
a62
a192
a202a63a107
k = 0,1,···,n?1
a108
a65
a193
a186a192a89a67 0
a34
a90
a68a109a110a95a111a112 k = na65a113a114
a186a192a66a115a67
a223a116a64a68a117a188a189a112
a183a184a185a186
c2k = ? 1k(k?ν) 122c2k?2
a118
a215a64a199ν = na213a34a119a200c2n a223a93a120a34a70a121a189a122a64a65
a186a192
a117a71a123a124a93a120a64
a38
a37
a52a98a33a125a47a34
a127 ν = n, n = 1,2,3,···
a86a34Bessela50a51
d2y
dx2 +
1
x
dy
dx +
parenleftbigg
1? n
2
x2
parenrightbigg
y = 0
§6.4 Bessela152a228a17a18 a1918a20
a52
a27a28
a32a235
a96
a44a116a81a61a57
a29
a34
a157
y2(x) = gJn(x)lnx+
∞summationdisplay
k=0
dkxk?n, g negationslash= 0.
a126a100a37
a39y2(x)a140a141Bessela50a51a34
a157
a37a44a45
a136
a57a64
a93a72a127a128
a49 Bessela50a51
a27a28
a32a52a129
a96a233
a50a130a64a41a36a34a131a132a133 Jν(z)a74 J?ν(z) a52Wronskia134a135
a161
a38a98a33a73
a60
a52a45a79a44a178a79a64a136a137
a69 Bessel
a50a51a52
a136
a57p(z) = 1/z a34a138(6.8)a161a48a37a38a164
a69
W [Jν(z), J?ν(z)] ≡
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle
Jν(z) J?ν(z)
Jprimeν(z) Jprime?ν(z)
vextendsinglevextendsingle
vextendsinglevextendsingle
vextendsingle = Aexp
bracketleftbigg
?
integraldisplay z dζ
ζ
bracketrightbigg
= Az .
a41a129a44a45a139a98a97a57 Aa34
a227
a87a39Jν(z)a74J?ν(z)a52
a8
a57a32(6.12)a74(6.13)a140a141a34a140a45
W [Jν(z), J?ν(z)] ≡ Jν(z)Jprime?ν(z)?J?ν(z)Jprimeν(z)
a59z?1 a29
a52
a136
a57
a157
a37a64
a166a227
a55a141a239
a8
a57
a59
a52
a27a96a29
a64a35a36a34
A = 1Γ(1 + ν) 12ν 1Γ(1?ν) ?ν2?ν ? 1Γ(1?ν) 12ν 1Γ(1 + ν) ν2ν
= ? 2νΓ(1 + ν)Γ(1?ν) = ? 2Γ(ν)Γ(1?ν) = ?2pisinpiν.
a166a172
a48a164
a69
W [Jν(z), J?ν(z)] = ? 2piz sinpiν. (6.14)
a37a72
a52a132a133
a59
a85
a69
a129 Γa56a57a52a79a142
Γ(ν)Γ(1?ν) = pisinpiν.
(6.14)a161a171a54a51a47a34a127ν = n, n = 0,1,2,···a86Jν(z)a74J?ν(z)a45a79a44a178a64a46a60a31a32a39Bessela50
a51a52
a27a28
a32
a42
a41 Jν(z)a74J?ν(z)a52a45a79a143a144a34
w2(z) = c1Jν(z)+ c2J?ν(z),
a227
a88a145a146a147
a127
a52a143a144
a136
a57a34a84a164W [Jν(z), w2(z)]a61
a232a148
ν a149a115a410a34
a166a172
a52w2(z)a48
a96
a44(a61
a232a148
ν a149)a247 Jν(z)a45a79
a231
a178a64a41a36a34
a59a60
a48
a42a27a28
a32a41
w2(z) = cJν(z)?J?ν(z)sinpiν ,
a166a172a173
a81
W [Jν(z), w2(z)] = 2piz.
a41a129a150a151
a166a172
a44a152a52 w2(z) a81a92a152 (sinnpi = 0 a34a98a153a41 0) a34a43a91a92
a69 J
?n(z) = (?)nJn(z)a34
a59a60
a173a41a127a154a96a105
a145
a42a136
a57 ca34a84a164w2(z) a59a52a98a155
a30 ν = n
a86a235a410a34a156a31
a42c = cospiν a157
a37a64
a166a172
a164
a69Bessel
a50a51a52
a27a28
a32
a173
a60
Nν(z) = cospiνJν(z)?J?ν(z)sinpiν , (6.15)
a53
a41ν a157Neumanna56a57a64
a127ν = n, n = 0,1,2,···
a86a34(6.15)a161a41a115a44
a161
a34a37a158l’hospitala130
a100
a49a159
a160
a34
Nn(z) = limν→nNν(z) = limν→n cosνpiJν(z)?J?ν(z)sinνpi = 1pi
bracketleftbigg?J
ν(z)
?ν ?(?)
n?J?ν(z)
?ν
bracketrightbigg
ν=n
a142a143a144 a145a146a147a148a149a150a151a152a228a17a153a154a155a18a156 a1919
a20
= 2piJn(z)ln z2 ? 1pi
n?1summationdisplay
k=0
(n?k?1)!
k!
parenleftBigz
2
parenrightBig2k?n
? 1pi
∞summationdisplay
k=0
(?)k
k!(n + k)!
bracketleftbigψ(n + k + 1) +ψ(k + 1)bracketrightbigparenleftBigz
2
parenrightBig2k+n
, |argz| < pi, (6.16)
a58a59ψ(ζ)
a60Γa56a57a52a61a57a62a63a34
ψ(ζ) ≡ dlnΓ(ζ)dζ = Γ
prime(ζ)
Γ(ζ).
a43a10a82a44a34
a127 n = 0
a86
a41a127
a7a161(6.16)a161a25a26a27a28a29a52a81
a160
a74a64
?§6.5 ν = n, n = 0,1,2,3, · · ·
a162a163Bessela152a228a17a142a145a18 a1920a20
?§6.5 ν = n, n = 0,1,2,3,···
a164a165 Bessel a254a255a0a166a167a1
a127ν = n, n = 0,1,2,3,···
a86a34Bessela50a51
d2y
dx2 +
1
x
dy
dx +
parenleftbigg
1? n
2
x2
parenrightbigg
y = 0
a52
a27a28
a32
a96
a44a116a81a61a57
a29
a34
a157
y2(x) = gJn(x)lnx+
∞summationdisplay
k=0
dkxk?n, g negationslash= 0.
a127ν = 0
a86a34
y2(x) = gJ0(x)lnx+
∞summationdisplay
k=0
dkxk, g negationslash= 0.
a49a62a63a34a164
dy2(x)
dx = g
dJ0(x)
dx lnx+ gJ0(x)·
1
x +
∞summationdisplay
k=0
dkkxk?1,
d2y2(x)
dx2 = g
d2J0(x)
dx2 lnx + 2g
dJ0(x)
dx ·
1
x
?gJ0(x)· 1x2 +
∞summationdisplay
k=0
dkk(k?1)xk?2.
a140a141a168
a157Bessela50a51
d2y
dx2 +
1
x
dy
dx + y = 0,
a157
a164
g
bracketleftbiggd2J
0(x)
dx2 +
1
x
dJ0(x)
dx + J0(x)
bracketrightbigg
lnx + g
∞summationdisplay
k=0
(?)kk
k!k!
parenleftBigx
2
parenrightBig2k?2
+
∞summationdisplay
k=0
dkk(k ?1)xk?2 +
∞summationdisplay
k=0
dkkxk?2 +
∞summationdisplay
k=0
dkxk = 0.
a91a92J0(x)a235a60
a168
a157Bessela50a51a52a32a34
a37a161a27a96
a134
a59lnx
a27a50a169a170a31a171
a29
a174a74
a41
a41 0a34a165a38
g
∞summationdisplay
k=0
(?)k
k!k!
k
22k?2x
2k +
∞summationdisplay
k=0
dkk2xk +
∞summationdisplay
k=0
dkxk+2 = 0.
a166a172
a80
a29a140a141
a129 J0(x)a52
a8
a57
a51a173a161
a64
a246
a30a158a159
a239
a29
a52
a136
a57a64a61
a66 x0 a29
a34a81g ·0 + d0 ·0 = 0a34a165a38
g
a232
a92, d0
a232
a92.
a171a158a159x1 a29
a52
a136
a57a34a164
d1 = 0.
a65x2 a29
a52
a136
a57a34a37a38a49a164?g + 4d2 + d0 = 0a34a165a38
d2 = ?14d0 + 14g.
a142a143a144 a145a146a147a148a149a150a151a152a228a17a153a154a155a18a156 a1921
a20
a31a36a237a238a34a48a37a38a98a90a164
a69a174
a54a163
a29
a74
a101
a54a163
a29
a52
a136
a57a64
a158a159 x2k a29
a52
a136
a57a34a164
g · (?)
k
k!k!
2k
22k?1 + d2k(2k)
2 + d2k?2 = 0,
a66
a60a164
a69
d2k = ? 1(2k)2d2k?2 ? (?)
k
k!k!
1
22k
1
kg
= ? 1(2k)2
bracketleftbigg
? 1(2k?2)2d2k?4 ? (?)
k?1
(k ?1)!(k?1)!
1
22k?2
1
k ?1g
bracketrightbigg
? (?)
k
k!k!
1
22k
1
kg
= (?)
2
k2(k?1)2
1
24d2k?4 ?
(?)k
k!k!
g
22k
bracketleftbigg1
k +
1
k?1
bracketrightbigg
= ···
= (?)
k
k!k!
1
22kd0 ?
(?)k
k!k!
g
22k
bracketleftbigg1
k +
1
k?1 +···+ 1
bracketrightbigg
.
a158a159x2k+1 a29
a52
a136
a57a34a24a164
a69
(2k + 1)2d2k+1 + d2k?1 = 0,
a65a66d
1 = 0a34a35a36a34
d2k+1 = 0.
a46a47a34a48a49a45a129 ν = 0a86a52
a27a28
a32
y2(x) = gJ0(x)lnx + d0
∞summationdisplay
k=0
(?)k
k!k!
parenleftBigx
2
parenrightBig2k
?g
∞summationdisplay
k=1
(?)k
k!k!
parenleftbigg1
k +
1
k?1 +···+ 1
parenrightbiggparenleftBigx
2
parenrightBig2k
.
a175
a134a52a176a130a60
a42
g = 2pi, d0 = ?2pibracketleftbigln2 +ψ(1)bracketrightbig,
a58a59
a52ψa56a57a48a60Γa56a57a52a61a57a62a63a64
a65Γ
a56a57a52a79a142 Γ(z + 1) = zΓ(z)a34
a21a22
a151a47
ψ(z + n) =ψ(z)+ 1z + 1z + 1 +···+ 1z + n?1,
a166a172
a164
a69
a52a32 (a177a41N0(x))a48a37a38a178
a249
N0(x) = 2piJ0(x)ln x2 ? 2pi
∞summationdisplay
k=0
(?)k
k!k!ψ(k + 1)
parenleftBigx
2
parenrightBig2k
.
a171a5a6n = 1,2,3,···
a52
a113a234
a64a39y2(x)a140a141na157Bessela50a51a34
a157
a164
g
bracketleftbiggd2J
n(x)
dx2 +
1
x
dJn(x)
dx +
parenleftbigg
1? n
2
x2
parenrightbigg
Jn(x)
bracketrightbigg
lnx
?§6.5 ν = n, n = 0,1,2,3, · · ·
a162a163Bessela152a228a17a142a145a18 a1922a20
+ g2
∞summationdisplay
k=0
(?)k(2k + n)
k!(k + n)!
parenleftBigx
2
parenrightBig2k+n?2
+
∞summationdisplay
k=0
dk(k?n)(k ?n?1)xk?n?2
+
∞summationdisplay
k=0
dk(k?n)xk?n?2 +
parenleftbigg
1? n
2
x2
parenrightbigg ∞summationdisplay
k=0
dkxk?n = 0.
a91a92Jn(x)a235a60na157Bessela50a51a52a32a34
a37a161a27a96
a134
a59lnx
a27a50a169a170a31a171
a29
a174a74
a41
a41 0a34a165a38
g
∞summationdisplay
k=0
(?)k
k!(k + n)!
2k + n
22k+n?1x
2k+n?2
+
∞summationdisplay
k=0
dk[(k?n)2 ?n2]xk?n?2 +
∞summationdisplay
k=0
dkxk?n = 0,
a179a180
a178
a249
g
∞summationdisplay
k=0
(?)k
k!(k + n)!
2k + n
22k+n?1x
2k+2n
+
∞summationdisplay
k=0
dkk(k ?2n)xk +
∞summationdisplay
k=0
dkxk+2 = 0.
a246
a30
a55
a158a159a160a161
a123
a26
a239
a29
a52
a136
a57a64
a65x0 a29
a52
a136
a57a34a164 d0 ·0 = 0a34a165a38
d0
a232
a92.
a65x1 a29
a52
a136
a57a34 d1(1?2n) = 0a34a165a38
d1 = 0.
a65x2k+1 a29
a52
a136
a57a34a81
d2k+1(2k + 1)(2k?2n + 1)+ d2k?1 = 0,
a165a38
d2k+1 = ? 1(2k + 1)(2k?2n + 1)d2k?1 = ··· = 0.
a61
a66x2k
a52
a136
a57a34a87a88a181a90 k < n, k = n, k > na182
a233a113a234
a64
star a127k < na86a34
d2k2k(2k?2n) + d2k?2 = 0.
a165a38
d2k = 1k(n?k) 122d2k?2
= 1k(k ?1)(n?k)(n?k + 1) 124d2k?4
a142a143a144 a145a146a147a148a149a150a151a152a228a17a153a154a155a18a156 a1923
a20
= ···
= (n?k?1)!k!(n?1)! 122kd0.
a89a90a60
d2n?2 = 1[(n?1)!]2 122(n?1)d0.
star a127k = na86a34
1
2n?1(n?1)!g + d2n ·0 + d2n?2 = 0.
a165a38
d2n
a232
a92,
g = ?2n?1(n?1)!d2n?2 = ? 12n?1(n?1)!d0.
star a127k > na86a34
(?)k?n
(k ?n)!k!
2k?n
22k?n?1g + d2k2k(2k?2n)+ d2k?2 = 0.
a165a38
d2k = ? 1k(k?n) 122d2k?2 ? (?)
k?n
k!(k?n)!
2k?n
22k?n?1
1
4k(k?n)g
= ? 1k(k?n) 122d2k?2 ? (?)
k?n
k! (k ?n)!
parenleftbigg1
k +
1
k ?n
parenrightbigg 1
22k?n+1g
= (?)
2
k(k?1)(k?n)(k ?n?1)
1
24d2k?4
? (?)
k?n
k!(k?n)!
parenleftbigg1
k +
1
k?1 +
1
k?n +
1
k ?n?1
parenrightbigg 1
22k?n+1g
= ···
= (?)
k?nn!
k!(k?n)!
1
22k?2nd2n ?
(?)k?n
k!(k?n)!
parenleftBig1
k +
1
k ?1 +···+
1
n + 1
+ 1k?n + 1k?n?1 +···+ 11
parenrightBig 1
22k?n+1g.
a35a36
y2(x) =gJn(x)lnx +
∞summationdisplay
k=0
d2kx2k?n
=gJn(x)lnx? g2
n?1summationdisplay
k=0
(n?k?1)!
k!
parenleftBigx
2
parenrightBig2k?n
?§6.5 ν = n, n = 0,1,2,3, · · ·
a162a163Bessela152a228a17a142a145a18 a1924a20
+ d2n
∞summationdisplay
k=n
(?)k?n2nn!
k!(k?n)!
parenleftBigx
2
parenrightBig2k?n
? g2
∞summationdisplay
k=n+1
(?)k?n
k!(k?n)!
parenleftBig1
k +
1
k?1 +···+
1
n + 1
+ 1k?n + 1k ?n?1 +···+ 1
parenrightBigparenleftBigx
2
parenrightBig2k?n
=gJn(x)lnx? g2
n?1summationdisplay
k=0
(n?k?1)!
k!
parenleftBigx
2
parenrightBig2k?n
+ d2n2nn!
∞summationdisplay
k=0
(?)k
k!(k + n)!
parenleftBigx
2
parenrightBig2k+n
? g2
∞summationdisplay
k=1
(?)k
k!(k + n)!
parenleftBig 1
k + n +
1
k + n?1 +···+
1
n + 1
+ 1k + 1k?1 +···+ 1
parenrightBigparenleftBigx
2
parenrightBig2k+n
.
a183
a97
a42
g = 2pi, d2n = ? 12npin!bracketleftbig2ln2 +ψ(n + 1)+ψ(1)bracketrightbig.
a166a172a173
a81
Nn(x) = 2piJn(x)ln x2 ? 1pi
n?1summationdisplay
k=0
(n?k ?1)!
k!
parenleftBigx
2
parenrightBig2k?n
? 1pi
∞summationdisplay
k=0
(?)k
k!(k + n)!
bracketleftbigψ(n + k + 1)
+ψ(k + 1)bracketrightbig
parenleftBigx
2
parenrightBig2k+n
, n = 1,2,3,···.
a158a159a96a93
a27
a72
a164
a69
a52N0(x)a52
a51a173a161
a34a37a38a15a45a34
a166a172
a52 Nn(x)a235a147a85
a66n = 0
a34
a227
a88a184a32a41
a166
a86
a185
a7a161
a27a28a29
a52a81
a160
a74a64
a142a143a144 a145a146a147a148a149a150a151a152a228a17a153a154a155a18a156 a1925
a20
?§6.6
a254a255a186a187a188a189a190a191a192a0a1
a27
a72a5a6
a129
a30
a50a51
a99a100a101
a76a102a103a31a52a32a64
a59a60a193a194
a34a50a51
d2w
dz2 + p(z)
dw
dz + q(z)w = 0
a30a99a100a101
a76a52a102a103a31a52a123a124a32a43a60
a99a100
a32a64a31a32a50a51a52
a101
a76 z = z0 a60a2
a99a100a101
a76a34
a100a30a52
a76a52a102
a1030 < |z ?z0| < R a31a46a77
a227
a118a81
a96
a124
a99a100
a32a64a39p(z)a74q(z)a300 < |z ?z0| < R a31a52Laurenta138a139
p(z) = (z ?z0)?m
∞summationdisplay
k=0
ak(z ?z0)k, q(z) = (z ?z0)?n
∞summationdisplay
k=0
bk(z ?z0)k
a195a99a100
a32(6.5)a140a141a50a51a34
a100a127
a10a53
a127 m
a74na196a197
m > 1,a43a10m ≥ n?1
a86a34a164
a69
a52a125a126a50a51a41
a96
a54a50a51a64
a166
a86a37a38a198a199
a99a100a101
a76a122a52a49a32
a105a106
a49a32a34a115
a171a200a201
a64
a31a32
a231a202a203
a76z = ∞a60a2
a99a100a101
a76a34
a126a100a37a41a127
a137a204a205 z = 1/ta34a226a47
a30t = 0
a76a52a102a103a31
a5
a6a157
a37a64a46a60a34a235a37a38a206a207a208
w(z) = zρ
∞summationdisplay
k=0
ckz?k
a107a86a39p(z)a74q(z)a30z = ∞a76a52a102a103a31a137 Laurenta138a139
p(z) = zm
∞summationdisplay
k=0
akz?k, q(z) = zn
∞summationdisplay
k=0
bkz?k.
a140a141
a62a98a50a51a34
a100
a164
a69
∞summationdisplay
k=0
ck(k?ρ)(k?ρ?1)z?k+z1+m
∞summationdisplay
l=0
alz?l
∞summationdisplay
k=0
ck(k?ρ)z?k+z2+n
∞summationdisplay
l=0
blz?l
∞summationdisplay
k=0
ckz?k=0.
a165a38a34a50a51
a227
a81
a96
a124
a99a100
a32a52a209a210a60
m ≥ 0,a43a10m ≥ n + 1, (6.17)
a157a30z = ∞
a76p(z)a52a157a211
a66q(z)
a52a157a64a91a92a34a50a51
a227
a81
a96
a124
a99a100
a32a52a209a210a34a61
a66
a81
a160
a203
a122a74
a231a202
a203
a76a34
a30a234a161a37
a81a165a115a107a64
a246
a30a5a6
a129
a96a233a113a234
a34
a157
a50a51a2
a99a100a101
a76a102a103a31a115a212
a30a99a100
a32a34
a179
a50a51a81
a96
a124
a99a100
a32a34a46
a59
a60
a88a49
a166
a124
a99a100
a32a174a213a52a129
a96
a32a64
a166
a86a34 z = z0 a41a52a60a32a52
a3
a79
a101
a76 (a127a226a236a37a118a60a75a76) a64a41a129
a214
a178a32
a30z = z
0 a76a52
a166a233a101a215
a79a34a115a134a135a40
w(z) = eQ(z)v(z), (6.18)
a84a164z = z0 a60eQ(z) a52
a3
a79
a101
a76a34a253 v(z)a37a38a178
a249
a99a100
a32a52
a234a161
v(z) = (z ?z0)ρ
∞summationdisplay
k=0
ck(z ?z0)k, c0 negationslash= 0.
a166a233a234a161
a52a32
a53
a41a97a83a32a64a216
a166a233
a32
a140a141
a50a51a34
a100
a164 v(z)a52a50a51
d2v
dz2 + p
?(z)dv
dz + q
?(z)v = 0.
?§6.6 a152a228a217a229a230a218a219a220a221a17a18 a1926
a20
a58a59
p?(z) = p(z)+ 2Qprime(z), q?(z) = q(z) + p(z)Qprime(z)+ Qprimeprime(z)+ [Qprime(z)]2 . (6.19)
a171a167a168
a50a51a81
a99a100
a32a52a88a49a34a48a81a37a118a222
a127a223
a145a146 Q(z)a34a43
a154
a253a49a45a32 w(z)a64
a93a72a171
a55
a5a6 Bessel
a50a51
d2w
dz2 +
1
z
dw
dz +
parenleftbigg
1? ν
2
z2
parenrightbigg
w = 0.
a21a22
a15a45a34
a30
a2
a99a100a101
a76z = ∞a122a34m = ?1, n = 0a34a115a196a197a50a51a81
a99a100
a32a52a88a49(6.17)a34a35a253
a30
z = ∞a52a102a103a31a34a50a51a46a77
a227
a118a81a97a83a32a64a35a36a137a204a205 (6.18)a34
a100
a50a51(6.19) a59a52
a136
a57a41
p?(z) = 1z + 2Qprime(z), (6.20)
q?(z) = 1? ν
2
z2 +
Qprime(z)
z + Q
primeprime(z) + [Qprime(z)]2 . (6.21)
a41a129a150a151z = ∞a60eQ(z) a52
a3
a79
a101
a76a34a37
a42Q(z)
a41za52a77
a29a161
a34
a166
a235a107a86a196a197a129p?(z)a52a157m ≥ 0
a52a88a49
a117a171a154a96a105
a34a41a129a84a164 p?(z)a52a157a211
a66q?(z)
a52a157a34
a100a224a185a42
Q(z) = λz a43a10 1 + λ2 = 0,
a157λ = ±i
a64
a166a172
a34v(z)a165a196a197a52a50a51a48a60
d2v
dz2 +
parenleftbigg1
z + 2λ
parenrightbigg dv
dz +
parenleftbiggλ
z ?
ν2
z2
parenrightbigg
v = 0.
a40
v(z) = zρ
∞summationdisplay
l=0
clz?l,
a100
a81
∞summationdisplay
l=0
bracketleftbig(ρ?l)2 ?ν2bracketrightbigc
lz?l + λ
∞summationdisplay
l=0
bracketleftbig(2ρ+ 1)?2lbracketrightbigc
lz?l+1 = 0. (6.22)
a158a159z1 a29
a52
a136
a57a34
a157
a164
2ρ+ 1 = 0 a157 ρ = ?1/2.
a165a38a34a31a32
a227a42a69
a32a52a225
a29
a34
a100a30
a231a202a203
a76 z = ∞a226a227a34Bessela50a51a52a32
a173
a37a178
a249
w(z) = c0e±iz
radicalbigg
1
z [1 +···].
a41a129a49a45a128a124a32a34a37a39 ρ = ?1/2a140a141(6.22)a161a34
a171a158a159z?k+1 a29
a52
a136
a57a34a48a164
a69
a176a177a178
a136
ck = ?4ν
2 ?(2k?1)2
22k
1
2λck?1.
a21a22a23
a85a176a177a178
a136
a34a48a37a38a164
a69a136
a57 ck a52a228a229
a51a173a161
a110
ck = (ν, k)(?2λ)kc0,
a58a59(ν, 0) = 1
a34
(ν, k) =
bracketleftbig4ν2?(2k?1)2bracketrightbigbracketleftbig4ν2?(2k?3)2bracketrightbig···bracketleftbig4ν2?32bracketrightbigbracketleftbig4ν2?12bracketrightbig
22kk! .
a142a143a144 a145a146a147a148a149a150a151a152a228a17a153a154a155a18a156 a1927
a20
a183
a97a208
c0 =
radicalbigg2
piexp
bracketleftBig
?λ
parenleftBigνpi
2 +
pi
4
parenrightBigbracketrightBig
,
a66
a60a48a37a38a49a164 Bessela50a51
a30
a231a202a203
a76 z = ∞a102a103a31a52a32a64
a46a60a34
a21a22a23a24
a34
a166
a124
a8
a57a32a52a230a231a232a233
R = lim
k→∞
vextendsinglevextendsingle
vextendsinglevextendsingleck?1
ck
vextendsinglevextendsingle
vextendsinglevextendsingle = 0.
a166
a125a47a34
a30a96a104a113a114a93
a34
a166a172
a164
a69
a52
a8
a57a32a60a245a234a52a34
a235
a2 ν a60a232
a101
a57a34
a157 ν = n +1/2
a34
a166
a86a138
z?n?1 a29a132a34a239a29a52a136a57a149a41 0a34
a8
a57a236
a24
a41a77
a29a161
a34
w(z) =
radicalbigg 2
piz exp
bracketleftbigg
λ
parenleftbigg
z ? n + 12 pi
parenrightbiggbracketrightbigg nsummationdisplay
k=0
(n + 1/2, k)
(?2λz)k .
a39λ = ±ia140a141a34a48a164
a69 Bessel
a50a51a52a123a124a32
w1(z) = (?i)n+1
radicalbigg
2
pize
iz
nsummationdisplay
k=0
(?)k(n + 1/2, k)
(2iz)k , (6.23)
w2(z) = in+1
radicalbigg 2
pize
?iz
nsummationdisplay
k=0
(n + 1/2, k)
(2iz)k . (6.24)
a31a32νa115a60a232
a101
a57a34a164
a69
a52
a8
a57a49a237
a37
a60Bessela50a51a52a32(a48a49
a37
a34a60Hankela56a57)a127|z|→∞
a86a52a238a227a138a139a34
H(1)ν (z) ~
radicalbigg 2
piz exp
bracketleftBig
i
parenleftBig
z ? νpi2 ? pi4
parenrightBigbracketrightBig ∞summationdisplay
k=0
(?)k(ν, k)
(2iz)k
H(2)ν (z) ~
radicalbigg 2
piz exp
bracketleftBig
?i
parenleftBig
z ? νpi2 ? pi4
parenrightBigbracketrightBig ∞summationdisplay
k=0
(ν, k)
(2iz)k
(?2pi< argz <pi).
a216a73
a60a239a240
a137a45a79a143a144a34a236a37a38a164
a69 Bessel
a56a57a74Neumanna56a57
a30|z|→∞, ?pi< argz <pi
a86a52
a238a227a138a139a34
Jν(z) = H
(1)
ν (z)+ H
(2)
ν (z)
2
~
radicalbigg
2
piz
bracketleftbigg
cos
parenleftBig
z?νpi2 ?pi4
parenrightBig ∞summationdisplay
k=0
(?)k(ν,2k)
(2z)2k ?sin
parenleftBig
z?νpi2 ?pi4
parenrightBig ∞summationdisplay
k=0
(?)k(ν,2k+1)
(2z)2k+1
bracketrightbigg
,
Nν(z) = H
(1)
ν (z)?H
(2)
ν (z)
2i
~
radicalbigg 2
piz
bracketleftbigg
sin
parenleftBig
z?νpi2 ?pi4
parenrightBig ∞summationdisplay
k=0
(?)k(ν,2k)
(2z)2k +cos
parenleftBig
z?νpi2 ?pi4
parenrightBig ∞summationdisplay
k=0
(?)k(ν,2k+1)
(2z)2k+1
bracketrightbigg
.