2009-7-19 1
第五章广义傅里叶变换及其光学实现第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
2
第五章 广义傅里叶变换及其光学实现
5.1 引言
5.2 广义傅里叶变换的定义及性质
5.3 广义傅里叶变换的本征函数
5.4 用透镜系统实现广义傅里叶变换的基本光学单元
5.5 基本光学单元的组合
5.6 用自聚焦效应光波导实现广义傅里叶变换
5.7 维格纳变换第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
3
5.1 引 言二维傅里叶变换
(u,v) = F{?o}
=∞- ∞?o (x,y) exp[-i2?(ux+vy)]dxdy
可以用光学系统近似实现在本章中将研究当物体到透镜的距离
d1及输出图像到透镜的距离 d2不等于透镜的焦距 f 时透镜或透镜系统对输入图像的变换,
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
4
5.1 引 言研究表明,d1和 d2 满足一定的条件时,
输出平面上将出现?o的广义傅里叶变换:
(2)
又称为 分数阶傅里叶变换 (fractional Fourier
transform),当?=?/2时,分数阶傅里叶变换显然变为常规傅里叶变换,
-
2222
oo
d x d y
s i nf
~
)yvxu(2i
tgf
~
)vyux(i
e x p)y,x(C)}y,x({F
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
5
数学家的贡献
早在 1937年,Condon提出了广义傅里叶变换的初步概念.
到 1980年,Namias 完整地提出了广义傅里叶变换的数学定义、性质,讨论了变换的本征函数,
并用于处理谐振子的薛定谔方程、格林函数问题、在均匀磁场中的自由电子的能级、在含时间变量的均匀磁场中自由电子薛定谔方程的求解等.
1987年,McBride 和 Kerr 进一步研究了广义傅里叶变换,把变换看作是充分光滑的函数构成的向量空间 ( Frechet 空间 )中的算子,在此框架内建立了广义傅里叶变换更为严谨、完整的理论系统,这两篇文章至今仍是广义傅里叶变换的理论基础.
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
6
物理学家的贡献
直到 90年代,光学科学家和工程师开始关注广义傅里叶变换与光学的关系,与三十年前常规傅里叶变换与光学的结合产生了傅里叶光学的情况非常相似,
1993年,Ozaktas 和 Mendlovic 提出用平方折射率光波导 (GRIN)来实现广义傅里叶变换;
Lohmann,Bernardo等则用透镜系统成功地实现了这一变换;
Lohmann还设计了阶数连续可变的广义光学傅里叶变换系统;
Bernardo等认为应正确地称这一变换为广义傅里叶变换,而不是分数阶傅里叶变换,因为阶数既可以是整数,分数,还可以是复数,
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
7
广义傅里叶变换与其他变换关系
Lohmann,Mendlovic阐明了 广义傅里叶变换与维格纳变换的关系,指出可以用维格纳空间中的旋转来一般地定义广义傅里叶变换,这一定义与光波在梯度折射率介质中的传播的定义是等价的 。
Mendlovic等进一步讨论用 广义傅里叶变换 来表征信号的新方法,以及 分数阶光学相关 ;
Dorsch,Bernardo等分别提出了用光学系统实现任意阶傅里叶变换的方案;
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
8
广义傅里叶变换与其他变换关系
Ozaktas 等研究了 广义傅里叶变换与小波变换的关系,他们认为广义傅里叶变换可以表为小波变换,小波函数具有 h(x)=exp(i?x2) 的形式,然而该函数是分布在 (-∞,∞)上的振荡函数,
并不具备小波的特点,易证 h(x)的傅里叶变换
H(u)=exp(i?u),而 H(0)≠0,不符合小波变换的相容性条件,因而我们认为广义傅里叶变换只是形式上与小波变换相似,
Mendlovic等对变换的形式稍加改换,定义了广义余弦变换,该变换适用于非相干光,在数字成像,非相干光信息处理方面都有潜在的应用,众所周知,夫琅和费衍射可以实现常规的傅里叶变换,Pellat-Finet则探讨了菲涅耳衍射与广义傅里叶变换的关系,
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
9
傅里叶变换在科学技术的许多领域中有广泛的应用,因此我们可以预料广义傅里叶变换的应用领域将更为宽广,目前,
它已成为数学,量子力学中重要的应用工具,
本章将研究广义傅里叶变换的数学定义,性质及实现广义傅里叶变换的光学系统,并讨论与广义傅里叶变换有密切关系的维格纳变换,
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
10
5.2 广义傅里叶变换的定义及性质
5.2.1 广义傅里叶变换的定义仅讨论一维函数的广义傅里叶变换,有关的定义和性质可以直接推广到二维的情况,
函数 g(?)的广义傅里叶变换定义为
(1)
通常称它为 g(?)的广义傅里叶谱,记为 G(x).
)( d)(g
s i n
ix
2 t g
i
e x p
tg2
ix
e x p
s i n2
)]2/(ie x p [
)}(g{
-
2
2
F
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
11
以 -? 代替上式中的?,得到
(2)
称为广义傅里叶变换的阶,
可证明 F-?是 F?的逆变换,即,
F-?F?{ g(?)} = g(x) (4)
)( d)(g
s i n
ix
2 t g
i
e x p
tg2
ix
e x p
s i n2
)]2/(ie x p [
)}(g{
-
2
2
F
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
12
广义傅里叶变换的主值 区间为?∈ (-?,?)。
当?超出主值区间时,相应的变换可以化成在该区间内的变换。下面将证明这一点.因此 F-?(?
> 0 )实质上只是负阶数的广义傅里叶变换 。
广义傅里叶变换的一个性质,在于当?=?/2
以及? = -?/2 时化成常规的傅里叶变换及逆变换:
(5)
(6)
注意这里傅氏变换的表达式与其他各章有所不同,
d)ixe x p ()(g
2
1
)}(g{
d)ixe x p ()(g
2
1
)}(g{
2/
2/
F
F
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
13
当? = 0 时没有意义,因而 Fo也必须另行定义,
由于?≈ 0时,sin?≈?,tan?≈?,所以有
(7)
其中用到极限意义下的? 函数的定义:
(8)
从而可用上述极限过程来定义,F o{g(?)} = g(x)
用类似的方法还可定义,F?{g(?)} = g(-x)
以上两式表明,0 阶广义傅里叶变换给出输入图像本身,? 阶广义傅里叶变换则给出它的倒像,
)x(gd)(g
2i
]2i/)x(e x p [F 2
0
)x(
i
)i/xe x p (lim 2
0
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
14
虽然 广义傅里叶变换仍然是线性变换,即:
F?{Ag(?)+Bh(?)}=AF?{g(?)}+BF?{h(?)} (13)
式中 A,B为常数,但由于变换公式中出现二次相因子,所以 它的性质和常规的傅里叶变换有了很大的差别,例如,它不再满足缩放规律,
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
15
5.2.2 基本性质和运算法则
g(?) 的广义傅里叶变换谱记为 G(x),
并用 g? G 表示 变换对.
(1) 位移 (shift)
g(?+?)? exp[ i?sin?(x+?cos? /2)]G(x+?cos?)
当? =?/2 时即化为傅里叶变换的位移公式,
(2) 宗量乘积 ( multification )
设 D = d/dx为微分算符,m > 0.
F?{?m g(?)} = ( x cos? + i sin? D )m G(x)
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
16
F?{?m g(?)} = ( x cos? + i sin? D )m G(x)
例如设 m =2,有
( xcos? + i sin?D)2 = x2 cos2? + x cos? i sin? D
+ i sin?D xcos? - sin2?D2
= x2 cos2? + i x cos? sin? D + i sin?cos?
+ i x sin?cos?D - sin2?D2
= cos?( x2cos? + i sin? )+ i x sin2?D - sin2?D2
(3) 微分 (differentiation)
F?{ Dm g(?)} = ( ix sin? + cos? D )m G(x)
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
17
(4) 宗量 —微分混合积 (mixed product)
F?{(?Dm)g(?)} = [- (sin? - i x2 cos?) sin?
+ xcos 2? D + i sin? cos? D2 ]m G(x)
(5) 指数 (exponential)
F?{ei b?g(?)}=exp[-ibcos?(x-bsin?/2)]G(x-sin?)
(6) 可加性 (additivity)
F? F? { g(?)} = F? +? { g(?)} (28)
对称性,F? F? { g} = F? F? { g} = F? +? { g}
逆变换,F? F -?{g} = F -? F? { g} =F o { g} = g
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
18
(7) 周期性 (periodicity)
由于在广义傅里叶变换的定义中出现
tan?及 sin?,所以变换关于?具有周期性,
周期为 2?,这样就有以下结果:
F 2n?{ g(?)} = g(x)
F (2n+1)?{ g(?)} = g(-x)
F 2n?+?{ g(?)} = F?{ g(?)}
这样当?∈ (-?,?] 时的变换 F? 均可化为主值区间内的变换,设?=p?/2,?阶广义傅里叶变换还可表为 F(p){g},p的定义域为 (-2,
2].
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
19
图 5.1 广义傅里叶变换的周期性例如,F(1) F(1){g(?)}=F(2){g(?)}=F?{g(?)}=g(-x)
F{g(?)}即常规的傅里叶变换得到的输入图像的傅里叶谱,可用 2f系统实现;而 F(2){g(?)}则表示两次傅里叶变换,得到输入图像的倒像,可用
4f 系统实现,它们都是广义傅里叶变换的特例,
其中?=?/2 或 p= l
表示常规傅里叶变换,即 F?/2或 F1,
F 1 常简写为 F,?
= -?/2 或 p = -l 则表示常规的傅里叶逆变换,即 F -? /2
或 F -1.
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
20
5.2.3 广义傅里叶变换群变换算符 Fo具有如下性质,对于任意的 F?,有
F? Fo = Fo F? = F?
因此可称为 单位算符或恒等元,
对于 F? 存在,满足 F? F -? = F -? F?= Fo
即 F -? 是 F?的逆算符或逆元,
对于任意的实数?,?,有 F?F? = F? F? = F?+?
F?+? 依然是广义傅里叶变换算符,因此变换算符对于乘法是闭合的,
结合律,F? (F? F?) = (F?F? ) F? = F?+?+?
因而所有的广义傅里叶变换算符对于 (28)所定义的乘法构成群,可称为 广义傅里叶变换群,
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
21
5.3 广义傅里叶变换的本征函数广义傅里叶变换算符 F?的本征函数 为?n (x) = Hn(x)exp(-x2/2)
本征值 为 exp(-i n?)
其中 Hn(x)为 n 阶厄米多项式,exp(-x2/2)为高斯函数,所以?n(x)常称为高斯 -厄米型函数 (GH函数 ).
{?n (x)}构成区间 (-∞,∞)内的完备正交函数组,
因此任何平方可积的函数 g(x)都可以用它展开:
g(x) = ∑∞-∞?n?n (x) =∑∞-∞?n Hn(x)exp(-x2/2)
其中系数?n可用厄米函数的正交性得到:
(11) dx)x(g)2/xe x p ()x(H!n2 1a 2nnn
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
22
F?{g(?)}=∑∞-∞?nF?{?n(?)}=∑∞-∞?nexp(-in?)?n(x)
= ∑∞-∞?n exp(-in?) Hn(x) exp(-x2/2)
上式又称 广义傅里叶变换的级数表达式,在节 5.6
中将讨论它在渐变折射率介质光波导中的应用,
我们知道,
高斯 —厄米函数正是量子力学一维谐振子的本征函数.
图 5.2给出前几阶 GH函数的图形第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
23
5.4 用透镜系统实现广义傅里叶变换的基本光学单元
5.4.1 第一类基本光学单元由广义傅里叶变换的,可加性,可知:
连续执行 N个阶数为?n ( n=1,2,…,N)
的变换的结果,相当于执行阶数为
1 +?2 +… +?N
的一次变换,
亦即 F? = ∏F? n ( 式中?= ∑?n )
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
24
5.4 用透镜系统实现广义傅里叶变换的基本光学单元
5.4.1 第一类基本光学单元例,?=?/2的常规傅里叶变换,既可由一个焦距为 f 的透镜来实现,也可由两个相同规格的透镜构成的透镜组来实现,它们的焦距为
(3)
间距为 2d,
(4)
)4/s in (/f~f
)8/(tg f~)]4/c os (1[fd
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
25
图 5.3 用两个透镜实现傅里叶变换第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
26
几何光学的计算还可证明,N个焦距为
(5)
的透镜按图 5.3的方式串联起来,间距参数
(6)
则该系统的合成焦距,且前焦面位于第一个透镜前 d 处,后焦面位于第 N 个透镜后 d 处 。
透镜系统能否实现傅里叶变换?
必须首先证明:当单色光波通过一个透镜单元,即经过两次距离为 d 的菲涅耳衍射,并经过一次透镜相位变换,其效应相当于? =?/2N 阶广义傅里叶变换,才能通过变换的可加性得到该系统实现傅里叶变换的普遍结论,
)N2/s in (/f~f
)N4/(tgf~)]N2/c os (1[fd
f~
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
27
第一类基本光学单元广义傅氏变换与常规傅氏变换的主要差别,
不仅包含线性相位项,还包括二次相位项,
广义傅氏变换 重新记为式中? = 1/d1+1/d2-1/f (8)
其中的二次相位因子是由两次菲涅耳衍射及透镜相位变换的合成效果,
-
222
21
o
221
2121
)fdd(ik
dx dy)yvxu(2)yx(
f
d
1
dd
i
e x p)y,x(
)vu(
f
d
1
dd
ie x p
fddi
e
)v,u(
21
(7)
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
28
若 d1 = d2 = f,则即二次项消失,变成常规的傅里叶变换,
这是我们已熟知的傅里叶变换的光学实现方法.也就是说,薄透镜单元在特别的输入距离,输出距离的配置下产生了? =? / 2
的常规的傅里叶变换效应,
)},({
fi
e
d x d y)yvxu(
f
2
ie x p)y,x(
fi
e
)v,u(
o2
kf2i
-
o2
kf2i
F
(10)
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
29
-
222
21
o
221
2121
)fdd(ik
dx dy)yvxu(2)yx(
f
d
1
dd
i
e x p)y,x(
)vu(
f
d
1
dd
ie x p
fddi
e
)v,u(
21
设想 d1和 d2 不等于 f,看看在这种情况下有没有可能产生广义傅里叶变换,其阶数?≠?/2 。
将 (7)式与节 5.2(1)式比较,发现必须满足条件
d1 = d2 = d,但 d 不一定等于 f 。
)( d)(g
s i n
ix
2 t g
i
e x p
tg2
ix
e x p
s i n2
)]2/(ie x p [
)}(g{
-
2
2
F
(7)
5.2(1)
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
30
再仿照 (4)及 (3)式,设
(12)
(13)
代入? = 1/d1+1/d2-1/f,得到
)4/s in (/f~f
)8/(tgf~)]4/c os (1[fd
s inff~
)2/(tgf~)c o s1(fd
s i nf
~
s i nf)c o s1(f
)c o s1)(c o s1(f)f/1d/2(dd
22
22
(3)
(4)
把上面的结果代入 (7)式得到 (15)式引入归一化坐标(无量纲)
(16)
其中
(17)
(15)式变成 (18)式 (18)
式中常数 (19)
-
2222
o2
)fd2(ik
d x d y
s i nf~
)yvxu(2i
tgf~
)vyux(ie x p)y,x(
f~i
e)v,u(
,vv~,uu~,yy~,xx~
s i nf/2f~/2
-
2222
o y
~dx~d
s i n
)v~y~u~x~(i
tg2
)v~y~u~x~(ie x p)y~,x~(C)v~,u~(
f~i/)]fd2(ike x p[C 2
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
32
)( d)(g
s i n
ix
2 t g
i
e x p
tg2
ix
e x p
s i n2
)]2/(ie x p [
)}(g{
-
2
2
F
-
2222
o y
~dx~d
s i n
)v~y~u~x~(i
tg2
)v~y~u~x~(ie x p)y~,x~(C)v~,u~(
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
33
正透镜实现广义傅里叶变换将 (18)式与节 5.2(1)式相比较,发现除积分号前的常数因子外,它就是二维? 阶广义傅里叶变换,
即 (20)
式中 Co和 C 有所不同,
)}y~,x~({FC)v~,u~( oo
在条件 (12)及 (13)
式成立时,薄透镜在单色光的照射下,将透镜前面 d 处的输入图像?o 变成它的广义傅里叶谱,形成在透镜后 d 处,正透镜第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
34
称为 族参数,d称为 间距参数,
光学广义傅里叶变换表达式与变换的数学定义式的最大 差别在于光学系统中存在族参数 。
很明显,只有族参数相同的光学广义傅里叶变换才能组成群,不同族参数的变换不具备可加性。
族参数仅取决于?及 f,然而在? 确定后,透镜的焦距就确定了,这对光学单元按可加性组合带来许多限制。
f~
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
35
在 用透镜系统实现广义傅里叶变换 时,我们仍用公式 (15),即 定义
(21)
其中积分号前的系数
(22)
与数学定义中的归一化系数并不相同,但由于我们只能探测光强的分布,因此这一差别并不带来实质性的影响,
-
2222
oo d x d y
s i nf
~
)yvxu(2i
tgf
~
)vyux(i
e x p)y,x(C)}y,x({F
s i nf~i
)]2/(tgf~k2ie x p [
s i nf~i
)kd2ie x p (C
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
36
广义傅里叶的阶数另一种定义,在光学中常常使用,令 p = 2? /?,则 (21)式为
(24)
(21)及 (24)式都是经常运用的.
显然,F?/2 或 F (1) 即常规的傅里叶变换,
F-?/2 或 F (-1) 即傅里叶逆变换,分别按习惯的记法,记为 F 及 F –1,常规傅里叶变换仅能用正透镜实现
-
2222
opo
)p(
d x d y
)2/ps i n (f
~
)yvxu(2i
)2/p(tgf
~
)vyux(i
e x p)y,x(C)}y,x({F
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
37
负透镜实现广义傅里叶变换在 式中,当 f < 0 时,保持
> 0,则?< 0,则得到负阶数的广义傅里叶变换,它可以用图 5.5所示的负透镜单元实现。
由,得 d < 0,
阶数? 由下式决定:
cos?= 1- d/f (25)
这里 d 和 f 都是负数,
o和?1 分别是光学中的虚物和虚像,
)2/(tgf~)c o s1(fd
f~ s inff~
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
38
5.4.2 第二类基本光学单元实现广义傅里叶变换的第二类基本光学单元如图所示,两个规格相同的正透镜焦距为 f,
间距为 d.
设在两个透镜之间光波的传播遵循菲涅耳衍射的规律,则在 ∑1面上的场
-
2222
o1 d x d yd
)yvxu(2i
fd
)vyux)(df(ie x p)y,x()v,u(
按 (25)及 (13)式设? 及 d,并规定 d 的方向从 ∑0指向 ∑1 向右为正,则有将上式与 (15)式相比较,发现只要设 (27)
(28)
则有?1 (u,v) = C F?{(?o(x,y)} (30)
亦即 第二类基本单元也能实现广义傅里叶变换,
注意两种基本光学单元的族参数的定义不相同,
-
2222
o1 d x d y)c o s1(f
)yvxu(2i
)c o s1(f
)vyux(c o sie x p)y,x()v,u(
/ 2 ) t g (f) / s i nc o s-f ( 1f~
s i nf~)c o s1(fd
-
2222
o2
)fd2(ik
d x d y
s i nf~
)yvxu(2i
tgf~
)vyux(ie x p)y,x(
f~i
e)v,u(
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
40
将图 5.6中两个正透镜均改为 负透镜,
并设 f 和? 均为负值,此 仍为正值,而间距 d < 0,说明?o在?1左面,如图所示,
它能实现负阶数的广义傅里叶变换,由此可知,用两个透镜构成的系统也能实现广义傅里叶变换,
f~
)c o s1(fd
)2/ t g (ff
~
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
41
5.5 基本光学单元的组合在讨论用透镜或透镜组实现广义傅里叶变换时,引入了族参数第一类单元,(1)
第二类单元,(2)
显然,同一类型的广义光学傅里叶算符,仅当族参数相等时才有可加性:
F (p2) F (p1) = F (p2 + p1) (3)
换言之,族参数相同的广义光学傅氏算符属于同一群,(3)式暗示同属一群的光学广义傅氏算符对应的光学单元具有互相组合成复杂系统的性能,
)2/ps i n (fs i nff~
/ 4 ) t g ( pf/ 2 ) t g (ff~
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
42
讨论,第一类光学单元的组合当 取某一常数时,p或?可取两个值:
1 =? ( p1 = p = 2? /? ) (4)
2 =? -? ( p2 = 2 - p ) (5)
由此导出两个不同的 d,
d1= f(1 - cos?)= f [1 - cos(p?/2)] (6)
d2= f(1 + cos?)= f [1 + cos(p?/2)] (7)
f~
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
43
举例,系统由两焦距均为 f 的透镜单元构成,
第一个光学单元:
d11 = d12 = d1 = f (1 - cos?) = f [1 - cos(p?/2)] (8)
第二个光学单元,
d21 = d22 = d2 = f (1 + cos?) = f [1 + cos(p?/2)] (9)
p1 = p,?1 =?,p2 = 2 – p,?1 =? -? (10)
两个透镜的问距为 d12 + d21 = d1 + d2 = 2f (11)
它们的共同族参数为 (12) )2/ps in (ff~
i
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
44
设在 ∑0平面输入图像?o(x,y),则在单色光的照射下,第一个光学单元对?o 进行阶数为 p1的广义傅里叶变换,?1=F (p1){?o};
第二个光学单元再对?1进行阶数为 p2 的广义傅里叶变换,?2 = F (p2){?1},最后在输出平面 ∑2上得到输出图像?2(x,y).
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
45
1 = F (p1){?o},?2 = F (p2){?1},
2(x,y) = F (p2) F (p1){?o(x,y)}
= F (p2+p1){?o(x,y)}= F(2){?o(x,y)}
=?o(-x,-y) (13)
表示 最终得到输入图像的倒像,当 p = 1 时得到 4f 系统,其区别在于,在上述系统中,
谱平面 ∑1上呈现输入信号的广义傅里叶谱,而在 4f 系统中,谱平面上呈现输入信号的傅里叶谱,
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
46
包含负透镜的广义傅里叶变换系统
(14)
上式成立的条件为
1 =?3 =?-?,p1 = p3 = 2 – p (? <?/2 )
2 = -?,p2 = - p
系统由 3个第一类单元构成,Ll 和
L3 为同样规格的正透镜,焦距为 f,而
L2为负透镜,焦距为 -f,它们具有共同的族参数为
) s i n f (-s i n fs i nff~ 231
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
47
对于 中间的负透镜,我们有
d21 =d22 = ( -f )(1- cos?) = -f [1- cos(p?/2)]
d21,d22 为负值,表示第二个单元的输入平面位于透镜右方 ∑1 处,而输出平面位于透镜左方 ∑2
处,关于透镜对称分布.
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
48
对于 两个正透镜,则有
di1 =di2 = f(1+cos?) = f[1+cos(p?/2)] (i=1,2,3)
第一个光学单元的输出平面为 ∑1,恰为第二个单元的输入平面;而第二个单元的输出平面为
∑2,又是第三个单元的输入平面,
由于具有共同的族参数,因此变换具有可加性:
F(p3)F(p2)F(p1){?o}=F(p3+p2+p1){?o}=F (4 - 3p) {?o }
当 p=2/3 时有 F (4 - 3p) {?o } = F (2) {?o } =?o ( - x,- y)
同样得到倒像,上例表明,正,负透镜可以适当组合,其条件是它们有共同的族参数,且正,负透镜焦距的绝对值相等,
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
49
事实上,属于同一群的广义傅里叶算符只要求族参 相同,而 f 和? 均可不同,
例如设 (21)
两个单元对应的广义傅里叶算符分别为 F?1
和 F?2,它们仍属于同一群,具有可加性:
F?1F?2 = F?1+?2 (22)
所以两个光学单元之可以串接,在条件 (21)满足时?i 有两个解,分别记为
1’ =?1,?1’’ =?-?1
2’ =?2,?2’’ =?-?2 (23)
f~
f~s in fs inf 3211
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
50
与之相应,有两组可能的 d,
d1’ = f1(1 - cos?1),d1” = f1(1 + cos?1)
d2’ = f2(1 - cos?2),d2” = f2(1 + cos?2) (24)
由上式还可得到,
di’di”= fi2(1–cos2?i) = fi2sin2?i = ( i=1,2) (25)
亦即属于同一族的 N个光学单元必须满足的条件
d1’d1” = d2’d2” = … = dN’dN”= (26)
2f~
2f~
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
51
举例,设用两个第一类光学单元构成系统,使第一个透镜的输出平面 (即系统的“谱平面” )的复振幅分布为输入图形?o 的 F?/6{?o},而系统的输出平面为?o 的常规傅里叶变换,即
27
2/f32c o s1fd
2/fs i nff~3/1p6/
1111
11111 )(
)()(
,,
28
6/f3c o s1fd
3/f3s i n/f
~
f
3/2p3/2/
1222
122
112
)(
)(
,
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
52
两个不同规格透镜组合实现常规傅氏变换几何光学的计算表明该系统的输出平面确是系统的焦平面.若要求输出图像为?o(-x,-y)(倒像 ),即要求,?1 +?2 =? (29)
则有 sin?2=sin(?-?1 )=sin?1 (30)
从而有 f1 = f2 (31)
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
53
亦即两个第一类单元串联,并要求输出图像为输入图像的倒像时,两个透镜焦距相等,但? 和
d 仍有两种不同的组合:
1’ =?,?1’’ =?-?
2’ =?-?,?2’’ =?
d1’ = f (1 - cos?),d1” = f (1 + cos?)
d2’ = f (1 + cos?),d2” = f (1 - cos?)
注意在两种情况下,透镜的间隔均为 2f.用几何光学易验证在任一情形下,输出平面与输入平面共扼,且放大率为 - l (倒像 ).由光线的回溯性定律立即可以把这一结论推广到第二种情况.
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
54
从理论上讲,N 个相同规格的第一类单元串联起来,如每个单元对应的变换为
F(1/N),则整个系统对应的变换为常规傅里叶变换。由此可见,单个薄透镜并不是能实现常规傅里叶变换的唯一光学模型。
一般来讲,∑?=?/ 2 的透镜组合均能实现常规傅里叶变换 。然而随着 N 的增大,光能损失也会变大,且杂散光的效应会变得越来越严重。
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
55
5.6 用自聚焦效应光波导实现广义傅氏变换
5.6.1 渐变折射率介质波导的自聚焦效应圆柱形渐变折射率波导的折射率形式为
n2 (r) = n12[1 - (n2/n1)g(r)] (1)
柱坐标系 r?z的 z 轴与波导的对称轴一致,又称光轴,通常只考虑平方折射率介质 ( 称为渐变折射率介质 ) 的情形,此时有
n2 (r) = n12[1 - (n2/n1)r2],r < a
n (r) ≈ 常数,r > a
其中 n1,n2是两个参数,a 是波导的半径.
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
56
5.6.1 渐变折射率介质波导的自聚焦效应图 5.11给出 n(r)随 r的变化,当 r≥a时 n
趋于常数,即波导的包层,
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
57
考虑 r << a 的近轴情况.
n (r) = n1[1 - (n2/n1)r2]1/2
≈ n1[1 - (n2/2n1)r2]= n1 - n2 r2 /2
设单色光波沿 z 轴方向穿过相距为
z 的两个平面 z = zo 及 z = zo+?z,在 z
= zo 上光波分布为?o,则在 z = zo+?z
上光波复振幅的分布为
1(x,y) =?o(x,y) exp(i2?n?z /?)
≈?o(x,y)exp(i2?n1?z /?1)
× exp(-i?n2?z(x2+y2) /?)
式中? 为光波在真空中的波长,并假定
z 很小,
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
58
1(x,y) ≈?o(x,y)exp(i2?n1?z /?1)
× exp(- i?n2?z (x2+y2) /?)
将此公式与薄透镜的相位效应公式,
tl = exp[ik(?-f)]exp[–ik(x2 + y2)/2f ]/ f (4)
相比较,发现它们都具有关于坐标的二次相位因子,而它恰恰是球面波的近轴表达式,所以 一个厚度为?z 的很薄的介质波导,相当于一个薄透镜,其等效焦距为
l/n2?z.
这样,渐变介质折射率波导应具有对平行入射光的聚焦效应,
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
59
渐变折射率自聚焦效应的证明设 A和 B是介质中的两点,它们之间的光程
(5)
根据费马原理,上式的变分为 0,且
(6)
设?r 是变分时光线的位移,则有
n =?r ·?n
dl = d?r ·lo,
式中 lo 是光线路径在给定点的单位切线向量,
n dln dl )L(BA
0)dlnn dl( )L(
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
60
代入 (6)式,运用分部积分法,得到
(9)
由于?r在两个端点 A,B处为 0,上式第三项消失,又因为 dr = lo dl (10)
所以有
(11)
因此有 (12)
rln)ln(drn d lr
rdlnn d lr
B
Ao
B
A
o
B
A
B
A
o
B
A
dl
dl
rd
n
dl
d
nr
dl
dl
rd
n
dl
d
rdl)nr(
B
A
B
A
B
A
ndl rdndld
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
61
将 n(r)的表达式代入上式右边,考虑到近轴近似,
d/dl ≈d/dz,上式化作
(dn/dz)(dr/dz) + nd2r/dz2 = -n2 r (13)
由于 n 不随 z 的变化而变化,上式左边第一项为
0.用 n1近似代替左边第二项中的 n,得到微分方程
d2r/dz2 + (n2/n1)r = 0 (14)
上式的解为
(15)
式中 ro = r(0),ro’ = r’(0)分别是 r 和 dr/dz 在端口
z = 0的值,
ndl rdndld
n (r) = n1 - n2 r2 /2 ( r << a)
)zn/ns i n (r)zn/nc o s (r)z(r 12,o12o
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
62
设一束平行于 z 轴的光照射 z = 0 端面,则 r0’= 0,
(16)
上式表明光线在渐变折射率波导中的传播路径具有周期性,如图 5.13所示.
设一个周期的长度为 2L,
则有而焦距为这就是自聚焦透镜的原理.
)zn/nc o s (r)z(r 12o?
n/nL2 12
n
n
2
L
1
2
光线在渐变折射率波导中的传播第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
63
在 5.5节中曾讲过,常规的傅里叶变换效应可以由 N个第一类光学基本单元串联而成的系统来实现,随着 N的变大,每个单元透镜的焦距 也随之变大,因此每个薄透镜也就更接近于一个平板,这样一系列接近密接的透镜组与上述自聚焦光波导薄层系列非常相似,
因此 我们可以设想一段长度为 pL 的渐变折射率光波导能够实现 p 阶广义傅里叶变换,
)N2/s in (/f~f
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
64
5.6.2光波在渐变折射率介质波导中的传播为简单起见,只讨论一维情况,其结论可以直接推广到二维情况,仅考虑 TE波,
设光波沿 z 轴方向传播,电场在 y方向振动,
用 E(x,z)表示,则它应满足亥姆霍兹方程
(?2/?x2 + kx2) E(x,z) = 0 (19)
式中 kx 是 x方向的波矢量的值,
kx2 = k2 - kz2 (20)
令 ko为真空中的 k,kz =? 称为 传播常数,n 为折射率,则有 k2 = n2 ko2 (21)
代入 (19)式,得到
2E/?x2 + (n2 ko2 -?2) E = 0 (22)
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
65
在二次渐变折射率介质中,
n(x) ≈n1 – n2 x2/2 (23)
这种情况相当于量子力学中无限深势阱中的一维谐振子,将上式代入 (22)式得到
2?/2 + (? -?2)? = 0 (24)
式中? =?2E,? =?x,
= (n12 ko2 -?2)/?2,? = (n1 n2 )1/2 ko (25)
从 (24)式解出式中 Hn为 n 阶厄米多项式,由此可见,在渐变折射率波导中传播的本征模就是 GH函数,恰恰是广义傅里叶变换的本征态,
)0,1,(n )/xe xp ()/x2(HN)x(E 22nnn
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
66
在波导中的场为式中
称光斑尺寸,
(30)
式中?为真空中的波长,
)x(En
)zie xp ()/xe xp ()/x2(HN)z,x(E n22nnn
onn
1
2
o1
n kN,n
n2/1n
kn
11nN
nnk
2
nn
21o21
2?
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
67
5.6.3 用渐变介质波导实现广义傅里叶变换引入归一化坐标
(31)
并记 En(x)为?n( x ),由于?n 是 (-∞,∞)区间的本征函数,所以任何平方可积的函数
g( x )都可以用?n( x ) 展开:
(32)
系数
~
/2~/x2x~,
)/xe x p ()/x2(Ha)x~(a)x~(g
0n
22
nn
0n
nn
!n2h
x~d)x~()x~(g
h
1
a
n
n
n
n
n
~ ~
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
68
设在 z = 0处放置由 g( x ) 表达的一维图像,则在
z = pL 处的场为
(35)
上面曾得到结论:长度为 L (p = 1)的光波导能实现光波的聚焦,我们将讨论在 p≠1时,长度为 pL
的光波导对光波的变换关系,
注意到焦距 L的表达式 (18),就有
~
)pLie x p ()/xe x p ()/x2(Ha
)pLie x p ()x~(a)pL,x~(g
0n
n
22
nn
0n
nnn
~
n]2/L)/2(nk[
)/2](2/)2/1n(Lnk[
p]2/)2/1n(Lnk[pL
1o
1o
1on
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
69
代入 (35)式,得到
(37)
将广义傅里叶变换对本征函数的变换关系式 (节
5.2 (9)式 )代入 (37),得到
(39)
(39)式表明,一段长度为 pL 的渐变折射率介质波导,也能实现广义傅里叶变换,在 z = 0 处放置图像 g,并用单色光波照射,在 z = pL 处即可得到它的广义傅里叶变换谱 F(p){g}。
)]2//Lnk2(ie x p [A
)x~()ine x p (a)pL,x~(g
1o
0n
nn
式中
)}0,
~
(g{A)}0,
~
(g{A )}
~
(g{A
)
~
(aA)}
~
({aA)pL,x~(g
( p )
0n
nn
0n
nn
FFF
FF
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
70
显然,长度为 p1L和 p2L 的两段光波导串接起来,必然能实现 p1+ p2 阶广义傅里叶变换,而变换算符的可加性及可易性是由光波导长度的可加性及可易性自然满足的。这样,我们又找到一种实现广义傅里叶变换的光学器件。
串联的透镜组只能得到 P/Q阶广义傅里叶变换,
P和 Q都是正整数,而由于技术上的原因,Q无法做到太大,所以我们只能得到阶数的步进的变化。
由于 光波导 中阶数正比于波导的长度,因此能够实现阶数的连续的变化 。
光波导的 缺点,空间带宽积比较小,也就是说它能处理的信息量比较小。
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
71
5.7 维格纳变换
5.7.1 维格纳变换的定义函数 g(x)的维格纳 (Wigner)变换定义为
(1)
如果把 x,v 分别理解为信号 g 的空间变量和空间频率变量,则 维格纳变换就是信号函数 g 的空间和频谱特征的综合表现或同时反映,因此在光学信号及其他信号的处理中有广泛的应用,
维格纳变换的 缺点,它并不是线性变换,所以将它应用到线性系统中去有一定的困难,
'dx)'x2ie x p ()2/'xx(*g)2/'xx(g),x(W
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
72
设 G(v)是 g(x)的傅里叶变换,则有
(2)
(3)
以 (2)及 (3)式代入 (1)式得到
(4)
其中的积分
(5)
代入 (4)式,经整理后得到维格纳变换在频域中的表达式
(6)
d)]2/'xx(2ie xp [)(*G)2/'xx(*g
d)]2/'xx(2ie xp [)(G)2/'xx(g
"d'Id]x)"'(2ie x p [)"(*G)'(GW
)]'2("[2'dx'x2 "'2ie x pI
'd)x'2ie x p ()2/'(*G)2/'(G),x(W
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
73
容易证明逆变换表达式
(7)
(8)
维格纳变换对于 v 和 x 的积分分别得到信号在空域和频域中的 功率密度
(9)
(10)
因而信号的 总功率 Eo可以由下面的积分来表达:
(11)
)0(*G)2(Gdx)x4ie xp (),x(W
)0(*g)x2(gd)x4ie xp (),x(W
)(Gdx),x(W
)x(gd),x(W
2
2
d x d),x(WE o
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
74
下面讨论当信号变化时其维格纳谱的相应变化.首先把 (1)式改写成更加容易处理的形式,(13)
式中?为光波的波长,f 是维格纳变换的一个特征量,以后我们会看到它相当于广义傅里叶变换中 f ;? 和 x 都具有长度量纲,分别是频域和空域中的长度坐标;? /? f 则是空间频率变量。
~
~
'd)x'f
~
2ie xp ()2/'(*G)2/'(G),x(W
'dx)f
~
/'x2ie xp ()2/'xx(*g)2/'xx(g),x(W
~
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
75
5.7.2 基本性质和运算法则
(1)反演 (inversion)
当 g(x) → g(-x) 时,相应的维格纳变换成为
(16)
),W ( - x
'dx]f
~
/'x)(2ie x p [)2/'xx(*g)2/'xx(g
"dx)f
~
/"x2ie x p ()2/"xx(*g)2/"xx(g
'x"x
令可见信号在 x 空间的反演引起维格纳变换在 (x,?)
空间的反演 (参见图 5.14):
W(A) → W(A’) (17)
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
76
上述变换可以用矩阵来表示,设 (x,?)和 (x’,?’)
分别是变化前后的维格纳空问坐标,
(18) xdc ba''x
x
x
10
01
'
'x
则反演的结果可用下式表示:
(19)
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
77
(2) 缩放 (scaling)
设 g(x) → g(x / M)
式中 M为缩放倍率,相应的维格纳谱的变化为 W(x,?) → W( x / M,M?) (21)
或
(22)
即信号坐标 x 的放大将引起维格纳空间中
x 坐标按同样倍率的放大,同时? 坐标按同样比例缩小,
M
M/x
x
M0
0M/1
'
'x
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
78
(3) 薄透镜的相位变换
g(x) → g(x)exp(-i? x2 Q/ f )
设透镜的焦距为,f = f /Q
相应的维格纳变换为
(25)
变换表达式为
(26)
在维格纳空间中表现为坐标沿平行?轴的移动 Q x.
~
~
)Qx,x(W
'dx)f
~
/'x)Qx(2ie xp [)2/'xx(*g)2/'xx(g
d x' f
~
]// 2)x'(x-/ 2)x'Q [ ( xi-e xp
)f
~
/'x2ie xp ()2/'xx(*g)2/'xx(g),x(W
22
Qxx x1Q 01''x
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
79
(4)在自由空间中的传播 ——菲涅耳衍射信号在自由空间中传播的距离为 z 时,相应傅里叶谱 G 如下变化
G(?) → G(?) exp( -iz?2) (27)
这样,我们就有
G(?+?’/2)→ G (?+?’/2)exp[ -iz(?+?’/2)2] (28)
G*(?-?’/2)→ G*(?-?’/2)exp[iz(?-?’/2)2] (29)
代入 (13)式,得到
(30)
)f
~
/zR ( ),R-W ( x
'd)')
f
~
z
x(f
~
2ie x p ()
2
'
(*G)
2
'
(G),x(W
其中第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
80
(4)在自由空间中的传播 ——菲涅耳衍射相应的矩阵变换式为
(32)
在维格纳空间中相当于坐标沿平行于 x 轴的平移,
Rx x10 R1''x
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
81
(5) 夫琅和费衍射将它代入 (12)式,得到令 R = 1 得到
(35)
(36)
dx)z/xx2ie x p ()x(g)x(g ooo
'
oo
,
o*
,
o dx]x)1R(2[
z
x2ie x p
2
x)R21(g
2
xg'W
)x,(W
dx
z
xx2
ie x p
2
x
g
2
x
g'W 'oo
,
o*
,
o
x x01 10''x
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
82
在维格纳表象中,夫琅和费衍射表示的常规傅里叶变换表示绕原点旋转? / 2,见图 5.17.
x x01 10''x
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
83
5.7.3 广义傅里叶变换的维格纳变换定义我们自然要问,当? ≠? / 2 时的旋转能否表示广义傅里叶变换?
可以证明,在维格纳空间中,广义傅里叶变换相当于坐标系旋转?角 。
从另一角度来看,由于? 阶广义傅里叶变换可以由第一类光学系统实现,它是两次菲涅耳衍射,以及在其间的透镜相位变换的结果 。
xc o ss i n s i nc o s''x
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
84
矩阵变换法证明设两次光波传播对应的距离为 z,透镜的焦距为 f,f = f /Q,z = R f
按广义傅里叶变换的参数定义,令
R = tg(?/2) = (1 - cos?)/sin? (44)
Q = sin? (45)
则信号的广义傅里叶变换对应的维格纳变换可以由矩阵变换式得到
(46)
~~
c o ss i n
s i nc o s
RQ1Q
)2QR(RRQ1
10
R1
1Q
01
10
R1
'
'x
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
85
5.7.4 维格纳变换在光学系统设计中的应用因为信号 (即光学图像 )的变化可用矩阵表示或用维格纳表象中的简单变换表示,
因而可以用维格纳变换进行光学系统的总体设计,
例如,要设计一个变焦距的光学系统,
亦即要求变换矩阵的参数 Q可变,透镜的焦距是固定的,因而这一要求只能通过透镜间距离的调节来达到,
Qxx x1Q 01''x
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
86
方案一:
前后矩阵表示常规傅里叶变换,中间的矩阵是光波在自由空间中的传播,传播距离为 z,则式中 表示生成倒像,而则表示三个矩阵的积相当于一个透镜,它的合成焦距 可以通过自由传播的距离 z
来调节,在这个例子中,参数 f 相当于单个透镜的焦距,即 f = f1 = f2
1R 0110 011R 0101 1010 R101 10
10 01
1R
01
z/f~R/f~f 2 ~
~
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
87
用第一类或第二类单元构造 ZOOM系统第一类第二类
第五章广义傅里叶变换及其光学实现第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
2
第五章 广义傅里叶变换及其光学实现
5.1 引言
5.2 广义傅里叶变换的定义及性质
5.3 广义傅里叶变换的本征函数
5.4 用透镜系统实现广义傅里叶变换的基本光学单元
5.5 基本光学单元的组合
5.6 用自聚焦效应光波导实现广义傅里叶变换
5.7 维格纳变换第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
3
5.1 引 言二维傅里叶变换
(u,v) = F{?o}
=∞- ∞?o (x,y) exp[-i2?(ux+vy)]dxdy
可以用光学系统近似实现在本章中将研究当物体到透镜的距离
d1及输出图像到透镜的距离 d2不等于透镜的焦距 f 时透镜或透镜系统对输入图像的变换,
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
4
5.1 引 言研究表明,d1和 d2 满足一定的条件时,
输出平面上将出现?o的广义傅里叶变换:
(2)
又称为 分数阶傅里叶变换 (fractional Fourier
transform),当?=?/2时,分数阶傅里叶变换显然变为常规傅里叶变换,
-
2222
oo
d x d y
s i nf
~
)yvxu(2i
tgf
~
)vyux(i
e x p)y,x(C)}y,x({F
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
5
数学家的贡献
早在 1937年,Condon提出了广义傅里叶变换的初步概念.
到 1980年,Namias 完整地提出了广义傅里叶变换的数学定义、性质,讨论了变换的本征函数,
并用于处理谐振子的薛定谔方程、格林函数问题、在均匀磁场中的自由电子的能级、在含时间变量的均匀磁场中自由电子薛定谔方程的求解等.
1987年,McBride 和 Kerr 进一步研究了广义傅里叶变换,把变换看作是充分光滑的函数构成的向量空间 ( Frechet 空间 )中的算子,在此框架内建立了广义傅里叶变换更为严谨、完整的理论系统,这两篇文章至今仍是广义傅里叶变换的理论基础.
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
6
物理学家的贡献
直到 90年代,光学科学家和工程师开始关注广义傅里叶变换与光学的关系,与三十年前常规傅里叶变换与光学的结合产生了傅里叶光学的情况非常相似,
1993年,Ozaktas 和 Mendlovic 提出用平方折射率光波导 (GRIN)来实现广义傅里叶变换;
Lohmann,Bernardo等则用透镜系统成功地实现了这一变换;
Lohmann还设计了阶数连续可变的广义光学傅里叶变换系统;
Bernardo等认为应正确地称这一变换为广义傅里叶变换,而不是分数阶傅里叶变换,因为阶数既可以是整数,分数,还可以是复数,
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
7
广义傅里叶变换与其他变换关系
Lohmann,Mendlovic阐明了 广义傅里叶变换与维格纳变换的关系,指出可以用维格纳空间中的旋转来一般地定义广义傅里叶变换,这一定义与光波在梯度折射率介质中的传播的定义是等价的 。
Mendlovic等进一步讨论用 广义傅里叶变换 来表征信号的新方法,以及 分数阶光学相关 ;
Dorsch,Bernardo等分别提出了用光学系统实现任意阶傅里叶变换的方案;
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
8
广义傅里叶变换与其他变换关系
Ozaktas 等研究了 广义傅里叶变换与小波变换的关系,他们认为广义傅里叶变换可以表为小波变换,小波函数具有 h(x)=exp(i?x2) 的形式,然而该函数是分布在 (-∞,∞)上的振荡函数,
并不具备小波的特点,易证 h(x)的傅里叶变换
H(u)=exp(i?u),而 H(0)≠0,不符合小波变换的相容性条件,因而我们认为广义傅里叶变换只是形式上与小波变换相似,
Mendlovic等对变换的形式稍加改换,定义了广义余弦变换,该变换适用于非相干光,在数字成像,非相干光信息处理方面都有潜在的应用,众所周知,夫琅和费衍射可以实现常规的傅里叶变换,Pellat-Finet则探讨了菲涅耳衍射与广义傅里叶变换的关系,
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
9
傅里叶变换在科学技术的许多领域中有广泛的应用,因此我们可以预料广义傅里叶变换的应用领域将更为宽广,目前,
它已成为数学,量子力学中重要的应用工具,
本章将研究广义傅里叶变换的数学定义,性质及实现广义傅里叶变换的光学系统,并讨论与广义傅里叶变换有密切关系的维格纳变换,
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
10
5.2 广义傅里叶变换的定义及性质
5.2.1 广义傅里叶变换的定义仅讨论一维函数的广义傅里叶变换,有关的定义和性质可以直接推广到二维的情况,
函数 g(?)的广义傅里叶变换定义为
(1)
通常称它为 g(?)的广义傅里叶谱,记为 G(x).
)( d)(g
s i n
ix
2 t g
i
e x p
tg2
ix
e x p
s i n2
)]2/(ie x p [
)}(g{
-
2
2
F
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
11
以 -? 代替上式中的?,得到
(2)
称为广义傅里叶变换的阶,
可证明 F-?是 F?的逆变换,即,
F-?F?{ g(?)} = g(x) (4)
)( d)(g
s i n
ix
2 t g
i
e x p
tg2
ix
e x p
s i n2
)]2/(ie x p [
)}(g{
-
2
2
F
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
12
广义傅里叶变换的主值 区间为?∈ (-?,?)。
当?超出主值区间时,相应的变换可以化成在该区间内的变换。下面将证明这一点.因此 F-?(?
> 0 )实质上只是负阶数的广义傅里叶变换 。
广义傅里叶变换的一个性质,在于当?=?/2
以及? = -?/2 时化成常规的傅里叶变换及逆变换:
(5)
(6)
注意这里傅氏变换的表达式与其他各章有所不同,
d)ixe x p ()(g
2
1
)}(g{
d)ixe x p ()(g
2
1
)}(g{
2/
2/
F
F
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
13
当? = 0 时没有意义,因而 Fo也必须另行定义,
由于?≈ 0时,sin?≈?,tan?≈?,所以有
(7)
其中用到极限意义下的? 函数的定义:
(8)
从而可用上述极限过程来定义,F o{g(?)} = g(x)
用类似的方法还可定义,F?{g(?)} = g(-x)
以上两式表明,0 阶广义傅里叶变换给出输入图像本身,? 阶广义傅里叶变换则给出它的倒像,
)x(gd)(g
2i
]2i/)x(e x p [F 2
0
)x(
i
)i/xe x p (lim 2
0
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
14
虽然 广义傅里叶变换仍然是线性变换,即:
F?{Ag(?)+Bh(?)}=AF?{g(?)}+BF?{h(?)} (13)
式中 A,B为常数,但由于变换公式中出现二次相因子,所以 它的性质和常规的傅里叶变换有了很大的差别,例如,它不再满足缩放规律,
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
15
5.2.2 基本性质和运算法则
g(?) 的广义傅里叶变换谱记为 G(x),
并用 g? G 表示 变换对.
(1) 位移 (shift)
g(?+?)? exp[ i?sin?(x+?cos? /2)]G(x+?cos?)
当? =?/2 时即化为傅里叶变换的位移公式,
(2) 宗量乘积 ( multification )
设 D = d/dx为微分算符,m > 0.
F?{?m g(?)} = ( x cos? + i sin? D )m G(x)
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
16
F?{?m g(?)} = ( x cos? + i sin? D )m G(x)
例如设 m =2,有
( xcos? + i sin?D)2 = x2 cos2? + x cos? i sin? D
+ i sin?D xcos? - sin2?D2
= x2 cos2? + i x cos? sin? D + i sin?cos?
+ i x sin?cos?D - sin2?D2
= cos?( x2cos? + i sin? )+ i x sin2?D - sin2?D2
(3) 微分 (differentiation)
F?{ Dm g(?)} = ( ix sin? + cos? D )m G(x)
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
17
(4) 宗量 —微分混合积 (mixed product)
F?{(?Dm)g(?)} = [- (sin? - i x2 cos?) sin?
+ xcos 2? D + i sin? cos? D2 ]m G(x)
(5) 指数 (exponential)
F?{ei b?g(?)}=exp[-ibcos?(x-bsin?/2)]G(x-sin?)
(6) 可加性 (additivity)
F? F? { g(?)} = F? +? { g(?)} (28)
对称性,F? F? { g} = F? F? { g} = F? +? { g}
逆变换,F? F -?{g} = F -? F? { g} =F o { g} = g
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
18
(7) 周期性 (periodicity)
由于在广义傅里叶变换的定义中出现
tan?及 sin?,所以变换关于?具有周期性,
周期为 2?,这样就有以下结果:
F 2n?{ g(?)} = g(x)
F (2n+1)?{ g(?)} = g(-x)
F 2n?+?{ g(?)} = F?{ g(?)}
这样当?∈ (-?,?] 时的变换 F? 均可化为主值区间内的变换,设?=p?/2,?阶广义傅里叶变换还可表为 F(p){g},p的定义域为 (-2,
2].
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
19
图 5.1 广义傅里叶变换的周期性例如,F(1) F(1){g(?)}=F(2){g(?)}=F?{g(?)}=g(-x)
F{g(?)}即常规的傅里叶变换得到的输入图像的傅里叶谱,可用 2f系统实现;而 F(2){g(?)}则表示两次傅里叶变换,得到输入图像的倒像,可用
4f 系统实现,它们都是广义傅里叶变换的特例,
其中?=?/2 或 p= l
表示常规傅里叶变换,即 F?/2或 F1,
F 1 常简写为 F,?
= -?/2 或 p = -l 则表示常规的傅里叶逆变换,即 F -? /2
或 F -1.
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
20
5.2.3 广义傅里叶变换群变换算符 Fo具有如下性质,对于任意的 F?,有
F? Fo = Fo F? = F?
因此可称为 单位算符或恒等元,
对于 F? 存在,满足 F? F -? = F -? F?= Fo
即 F -? 是 F?的逆算符或逆元,
对于任意的实数?,?,有 F?F? = F? F? = F?+?
F?+? 依然是广义傅里叶变换算符,因此变换算符对于乘法是闭合的,
结合律,F? (F? F?) = (F?F? ) F? = F?+?+?
因而所有的广义傅里叶变换算符对于 (28)所定义的乘法构成群,可称为 广义傅里叶变换群,
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
21
5.3 广义傅里叶变换的本征函数广义傅里叶变换算符 F?的本征函数 为?n (x) = Hn(x)exp(-x2/2)
本征值 为 exp(-i n?)
其中 Hn(x)为 n 阶厄米多项式,exp(-x2/2)为高斯函数,所以?n(x)常称为高斯 -厄米型函数 (GH函数 ).
{?n (x)}构成区间 (-∞,∞)内的完备正交函数组,
因此任何平方可积的函数 g(x)都可以用它展开:
g(x) = ∑∞-∞?n?n (x) =∑∞-∞?n Hn(x)exp(-x2/2)
其中系数?n可用厄米函数的正交性得到:
(11) dx)x(g)2/xe x p ()x(H!n2 1a 2nnn
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
22
F?{g(?)}=∑∞-∞?nF?{?n(?)}=∑∞-∞?nexp(-in?)?n(x)
= ∑∞-∞?n exp(-in?) Hn(x) exp(-x2/2)
上式又称 广义傅里叶变换的级数表达式,在节 5.6
中将讨论它在渐变折射率介质光波导中的应用,
我们知道,
高斯 —厄米函数正是量子力学一维谐振子的本征函数.
图 5.2给出前几阶 GH函数的图形第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
23
5.4 用透镜系统实现广义傅里叶变换的基本光学单元
5.4.1 第一类基本光学单元由广义傅里叶变换的,可加性,可知:
连续执行 N个阶数为?n ( n=1,2,…,N)
的变换的结果,相当于执行阶数为
1 +?2 +… +?N
的一次变换,
亦即 F? = ∏F? n ( 式中?= ∑?n )
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
24
5.4 用透镜系统实现广义傅里叶变换的基本光学单元
5.4.1 第一类基本光学单元例,?=?/2的常规傅里叶变换,既可由一个焦距为 f 的透镜来实现,也可由两个相同规格的透镜构成的透镜组来实现,它们的焦距为
(3)
间距为 2d,
(4)
)4/s in (/f~f
)8/(tg f~)]4/c os (1[fd
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
25
图 5.3 用两个透镜实现傅里叶变换第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
26
几何光学的计算还可证明,N个焦距为
(5)
的透镜按图 5.3的方式串联起来,间距参数
(6)
则该系统的合成焦距,且前焦面位于第一个透镜前 d 处,后焦面位于第 N 个透镜后 d 处 。
透镜系统能否实现傅里叶变换?
必须首先证明:当单色光波通过一个透镜单元,即经过两次距离为 d 的菲涅耳衍射,并经过一次透镜相位变换,其效应相当于? =?/2N 阶广义傅里叶变换,才能通过变换的可加性得到该系统实现傅里叶变换的普遍结论,
)N2/s in (/f~f
)N4/(tgf~)]N2/c os (1[fd
f~
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
27
第一类基本光学单元广义傅氏变换与常规傅氏变换的主要差别,
不仅包含线性相位项,还包括二次相位项,
广义傅氏变换 重新记为式中? = 1/d1+1/d2-1/f (8)
其中的二次相位因子是由两次菲涅耳衍射及透镜相位变换的合成效果,
-
222
21
o
221
2121
)fdd(ik
dx dy)yvxu(2)yx(
f
d
1
dd
i
e x p)y,x(
)vu(
f
d
1
dd
ie x p
fddi
e
)v,u(
21
(7)
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
28
若 d1 = d2 = f,则即二次项消失,变成常规的傅里叶变换,
这是我们已熟知的傅里叶变换的光学实现方法.也就是说,薄透镜单元在特别的输入距离,输出距离的配置下产生了? =? / 2
的常规的傅里叶变换效应,
)},({
fi
e
d x d y)yvxu(
f
2
ie x p)y,x(
fi
e
)v,u(
o2
kf2i
-
o2
kf2i
F
(10)
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
29
-
222
21
o
221
2121
)fdd(ik
dx dy)yvxu(2)yx(
f
d
1
dd
i
e x p)y,x(
)vu(
f
d
1
dd
ie x p
fddi
e
)v,u(
21
设想 d1和 d2 不等于 f,看看在这种情况下有没有可能产生广义傅里叶变换,其阶数?≠?/2 。
将 (7)式与节 5.2(1)式比较,发现必须满足条件
d1 = d2 = d,但 d 不一定等于 f 。
)( d)(g
s i n
ix
2 t g
i
e x p
tg2
ix
e x p
s i n2
)]2/(ie x p [
)}(g{
-
2
2
F
(7)
5.2(1)
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
30
再仿照 (4)及 (3)式,设
(12)
(13)
代入? = 1/d1+1/d2-1/f,得到
)4/s in (/f~f
)8/(tgf~)]4/c os (1[fd
s inff~
)2/(tgf~)c o s1(fd
s i nf
~
s i nf)c o s1(f
)c o s1)(c o s1(f)f/1d/2(dd
22
22
(3)
(4)
把上面的结果代入 (7)式得到 (15)式引入归一化坐标(无量纲)
(16)
其中
(17)
(15)式变成 (18)式 (18)
式中常数 (19)
-
2222
o2
)fd2(ik
d x d y
s i nf~
)yvxu(2i
tgf~
)vyux(ie x p)y,x(
f~i
e)v,u(
,vv~,uu~,yy~,xx~
s i nf/2f~/2
-
2222
o y
~dx~d
s i n
)v~y~u~x~(i
tg2
)v~y~u~x~(ie x p)y~,x~(C)v~,u~(
f~i/)]fd2(ike x p[C 2
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
32
)( d)(g
s i n
ix
2 t g
i
e x p
tg2
ix
e x p
s i n2
)]2/(ie x p [
)}(g{
-
2
2
F
-
2222
o y
~dx~d
s i n
)v~y~u~x~(i
tg2
)v~y~u~x~(ie x p)y~,x~(C)v~,u~(
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
33
正透镜实现广义傅里叶变换将 (18)式与节 5.2(1)式相比较,发现除积分号前的常数因子外,它就是二维? 阶广义傅里叶变换,
即 (20)
式中 Co和 C 有所不同,
)}y~,x~({FC)v~,u~( oo
在条件 (12)及 (13)
式成立时,薄透镜在单色光的照射下,将透镜前面 d 处的输入图像?o 变成它的广义傅里叶谱,形成在透镜后 d 处,正透镜第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
34
称为 族参数,d称为 间距参数,
光学广义傅里叶变换表达式与变换的数学定义式的最大 差别在于光学系统中存在族参数 。
很明显,只有族参数相同的光学广义傅里叶变换才能组成群,不同族参数的变换不具备可加性。
族参数仅取决于?及 f,然而在? 确定后,透镜的焦距就确定了,这对光学单元按可加性组合带来许多限制。
f~
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
35
在 用透镜系统实现广义傅里叶变换 时,我们仍用公式 (15),即 定义
(21)
其中积分号前的系数
(22)
与数学定义中的归一化系数并不相同,但由于我们只能探测光强的分布,因此这一差别并不带来实质性的影响,
-
2222
oo d x d y
s i nf
~
)yvxu(2i
tgf
~
)vyux(i
e x p)y,x(C)}y,x({F
s i nf~i
)]2/(tgf~k2ie x p [
s i nf~i
)kd2ie x p (C
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
36
广义傅里叶的阶数另一种定义,在光学中常常使用,令 p = 2? /?,则 (21)式为
(24)
(21)及 (24)式都是经常运用的.
显然,F?/2 或 F (1) 即常规的傅里叶变换,
F-?/2 或 F (-1) 即傅里叶逆变换,分别按习惯的记法,记为 F 及 F –1,常规傅里叶变换仅能用正透镜实现
-
2222
opo
)p(
d x d y
)2/ps i n (f
~
)yvxu(2i
)2/p(tgf
~
)vyux(i
e x p)y,x(C)}y,x({F
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
37
负透镜实现广义傅里叶变换在 式中,当 f < 0 时,保持
> 0,则?< 0,则得到负阶数的广义傅里叶变换,它可以用图 5.5所示的负透镜单元实现。
由,得 d < 0,
阶数? 由下式决定:
cos?= 1- d/f (25)
这里 d 和 f 都是负数,
o和?1 分别是光学中的虚物和虚像,
)2/(tgf~)c o s1(fd
f~ s inff~
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
38
5.4.2 第二类基本光学单元实现广义傅里叶变换的第二类基本光学单元如图所示,两个规格相同的正透镜焦距为 f,
间距为 d.
设在两个透镜之间光波的传播遵循菲涅耳衍射的规律,则在 ∑1面上的场
-
2222
o1 d x d yd
)yvxu(2i
fd
)vyux)(df(ie x p)y,x()v,u(
按 (25)及 (13)式设? 及 d,并规定 d 的方向从 ∑0指向 ∑1 向右为正,则有将上式与 (15)式相比较,发现只要设 (27)
(28)
则有?1 (u,v) = C F?{(?o(x,y)} (30)
亦即 第二类基本单元也能实现广义傅里叶变换,
注意两种基本光学单元的族参数的定义不相同,
-
2222
o1 d x d y)c o s1(f
)yvxu(2i
)c o s1(f
)vyux(c o sie x p)y,x()v,u(
/ 2 ) t g (f) / s i nc o s-f ( 1f~
s i nf~)c o s1(fd
-
2222
o2
)fd2(ik
d x d y
s i nf~
)yvxu(2i
tgf~
)vyux(ie x p)y,x(
f~i
e)v,u(
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
40
将图 5.6中两个正透镜均改为 负透镜,
并设 f 和? 均为负值,此 仍为正值,而间距 d < 0,说明?o在?1左面,如图所示,
它能实现负阶数的广义傅里叶变换,由此可知,用两个透镜构成的系统也能实现广义傅里叶变换,
f~
)c o s1(fd
)2/ t g (ff
~
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
41
5.5 基本光学单元的组合在讨论用透镜或透镜组实现广义傅里叶变换时,引入了族参数第一类单元,(1)
第二类单元,(2)
显然,同一类型的广义光学傅里叶算符,仅当族参数相等时才有可加性:
F (p2) F (p1) = F (p2 + p1) (3)
换言之,族参数相同的广义光学傅氏算符属于同一群,(3)式暗示同属一群的光学广义傅氏算符对应的光学单元具有互相组合成复杂系统的性能,
)2/ps i n (fs i nff~
/ 4 ) t g ( pf/ 2 ) t g (ff~
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
42
讨论,第一类光学单元的组合当 取某一常数时,p或?可取两个值:
1 =? ( p1 = p = 2? /? ) (4)
2 =? -? ( p2 = 2 - p ) (5)
由此导出两个不同的 d,
d1= f(1 - cos?)= f [1 - cos(p?/2)] (6)
d2= f(1 + cos?)= f [1 + cos(p?/2)] (7)
f~
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
43
举例,系统由两焦距均为 f 的透镜单元构成,
第一个光学单元:
d11 = d12 = d1 = f (1 - cos?) = f [1 - cos(p?/2)] (8)
第二个光学单元,
d21 = d22 = d2 = f (1 + cos?) = f [1 + cos(p?/2)] (9)
p1 = p,?1 =?,p2 = 2 – p,?1 =? -? (10)
两个透镜的问距为 d12 + d21 = d1 + d2 = 2f (11)
它们的共同族参数为 (12) )2/ps in (ff~
i
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
44
设在 ∑0平面输入图像?o(x,y),则在单色光的照射下,第一个光学单元对?o 进行阶数为 p1的广义傅里叶变换,?1=F (p1){?o};
第二个光学单元再对?1进行阶数为 p2 的广义傅里叶变换,?2 = F (p2){?1},最后在输出平面 ∑2上得到输出图像?2(x,y).
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
45
1 = F (p1){?o},?2 = F (p2){?1},
2(x,y) = F (p2) F (p1){?o(x,y)}
= F (p2+p1){?o(x,y)}= F(2){?o(x,y)}
=?o(-x,-y) (13)
表示 最终得到输入图像的倒像,当 p = 1 时得到 4f 系统,其区别在于,在上述系统中,
谱平面 ∑1上呈现输入信号的广义傅里叶谱,而在 4f 系统中,谱平面上呈现输入信号的傅里叶谱,
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
46
包含负透镜的广义傅里叶变换系统
(14)
上式成立的条件为
1 =?3 =?-?,p1 = p3 = 2 – p (? <?/2 )
2 = -?,p2 = - p
系统由 3个第一类单元构成,Ll 和
L3 为同样规格的正透镜,焦距为 f,而
L2为负透镜,焦距为 -f,它们具有共同的族参数为
) s i n f (-s i n fs i nff~ 231
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
47
对于 中间的负透镜,我们有
d21 =d22 = ( -f )(1- cos?) = -f [1- cos(p?/2)]
d21,d22 为负值,表示第二个单元的输入平面位于透镜右方 ∑1 处,而输出平面位于透镜左方 ∑2
处,关于透镜对称分布.
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
48
对于 两个正透镜,则有
di1 =di2 = f(1+cos?) = f[1+cos(p?/2)] (i=1,2,3)
第一个光学单元的输出平面为 ∑1,恰为第二个单元的输入平面;而第二个单元的输出平面为
∑2,又是第三个单元的输入平面,
由于具有共同的族参数,因此变换具有可加性:
F(p3)F(p2)F(p1){?o}=F(p3+p2+p1){?o}=F (4 - 3p) {?o }
当 p=2/3 时有 F (4 - 3p) {?o } = F (2) {?o } =?o ( - x,- y)
同样得到倒像,上例表明,正,负透镜可以适当组合,其条件是它们有共同的族参数,且正,负透镜焦距的绝对值相等,
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
49
事实上,属于同一群的广义傅里叶算符只要求族参 相同,而 f 和? 均可不同,
例如设 (21)
两个单元对应的广义傅里叶算符分别为 F?1
和 F?2,它们仍属于同一群,具有可加性:
F?1F?2 = F?1+?2 (22)
所以两个光学单元之可以串接,在条件 (21)满足时?i 有两个解,分别记为
1’ =?1,?1’’ =?-?1
2’ =?2,?2’’ =?-?2 (23)
f~
f~s in fs inf 3211
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
50
与之相应,有两组可能的 d,
d1’ = f1(1 - cos?1),d1” = f1(1 + cos?1)
d2’ = f2(1 - cos?2),d2” = f2(1 + cos?2) (24)
由上式还可得到,
di’di”= fi2(1–cos2?i) = fi2sin2?i = ( i=1,2) (25)
亦即属于同一族的 N个光学单元必须满足的条件
d1’d1” = d2’d2” = … = dN’dN”= (26)
2f~
2f~
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
51
举例,设用两个第一类光学单元构成系统,使第一个透镜的输出平面 (即系统的“谱平面” )的复振幅分布为输入图形?o 的 F?/6{?o},而系统的输出平面为?o 的常规傅里叶变换,即
27
2/f32c o s1fd
2/fs i nff~3/1p6/
1111
11111 )(
)()(
,,
28
6/f3c o s1fd
3/f3s i n/f
~
f
3/2p3/2/
1222
122
112
)(
)(
,
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
52
两个不同规格透镜组合实现常规傅氏变换几何光学的计算表明该系统的输出平面确是系统的焦平面.若要求输出图像为?o(-x,-y)(倒像 ),即要求,?1 +?2 =? (29)
则有 sin?2=sin(?-?1 )=sin?1 (30)
从而有 f1 = f2 (31)
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
53
亦即两个第一类单元串联,并要求输出图像为输入图像的倒像时,两个透镜焦距相等,但? 和
d 仍有两种不同的组合:
1’ =?,?1’’ =?-?
2’ =?-?,?2’’ =?
d1’ = f (1 - cos?),d1” = f (1 + cos?)
d2’ = f (1 + cos?),d2” = f (1 - cos?)
注意在两种情况下,透镜的间隔均为 2f.用几何光学易验证在任一情形下,输出平面与输入平面共扼,且放大率为 - l (倒像 ).由光线的回溯性定律立即可以把这一结论推广到第二种情况.
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
54
从理论上讲,N 个相同规格的第一类单元串联起来,如每个单元对应的变换为
F(1/N),则整个系统对应的变换为常规傅里叶变换。由此可见,单个薄透镜并不是能实现常规傅里叶变换的唯一光学模型。
一般来讲,∑?=?/ 2 的透镜组合均能实现常规傅里叶变换 。然而随着 N 的增大,光能损失也会变大,且杂散光的效应会变得越来越严重。
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
55
5.6 用自聚焦效应光波导实现广义傅氏变换
5.6.1 渐变折射率介质波导的自聚焦效应圆柱形渐变折射率波导的折射率形式为
n2 (r) = n12[1 - (n2/n1)g(r)] (1)
柱坐标系 r?z的 z 轴与波导的对称轴一致,又称光轴,通常只考虑平方折射率介质 ( 称为渐变折射率介质 ) 的情形,此时有
n2 (r) = n12[1 - (n2/n1)r2],r < a
n (r) ≈ 常数,r > a
其中 n1,n2是两个参数,a 是波导的半径.
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
56
5.6.1 渐变折射率介质波导的自聚焦效应图 5.11给出 n(r)随 r的变化,当 r≥a时 n
趋于常数,即波导的包层,
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
57
考虑 r << a 的近轴情况.
n (r) = n1[1 - (n2/n1)r2]1/2
≈ n1[1 - (n2/2n1)r2]= n1 - n2 r2 /2
设单色光波沿 z 轴方向穿过相距为
z 的两个平面 z = zo 及 z = zo+?z,在 z
= zo 上光波分布为?o,则在 z = zo+?z
上光波复振幅的分布为
1(x,y) =?o(x,y) exp(i2?n?z /?)
≈?o(x,y)exp(i2?n1?z /?1)
× exp(-i?n2?z(x2+y2) /?)
式中? 为光波在真空中的波长,并假定
z 很小,
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
58
1(x,y) ≈?o(x,y)exp(i2?n1?z /?1)
× exp(- i?n2?z (x2+y2) /?)
将此公式与薄透镜的相位效应公式,
tl = exp[ik(?-f)]exp[–ik(x2 + y2)/2f ]/ f (4)
相比较,发现它们都具有关于坐标的二次相位因子,而它恰恰是球面波的近轴表达式,所以 一个厚度为?z 的很薄的介质波导,相当于一个薄透镜,其等效焦距为
l/n2?z.
这样,渐变介质折射率波导应具有对平行入射光的聚焦效应,
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
59
渐变折射率自聚焦效应的证明设 A和 B是介质中的两点,它们之间的光程
(5)
根据费马原理,上式的变分为 0,且
(6)
设?r 是变分时光线的位移,则有
n =?r ·?n
dl = d?r ·lo,
式中 lo 是光线路径在给定点的单位切线向量,
n dln dl )L(BA
0)dlnn dl( )L(
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
60
代入 (6)式,运用分部积分法,得到
(9)
由于?r在两个端点 A,B处为 0,上式第三项消失,又因为 dr = lo dl (10)
所以有
(11)
因此有 (12)
rln)ln(drn d lr
rdlnn d lr
B
Ao
B
A
o
B
A
B
A
o
B
A
dl
dl
rd
n
dl
d
nr
dl
dl
rd
n
dl
d
rdl)nr(
B
A
B
A
B
A
ndl rdndld
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
61
将 n(r)的表达式代入上式右边,考虑到近轴近似,
d/dl ≈d/dz,上式化作
(dn/dz)(dr/dz) + nd2r/dz2 = -n2 r (13)
由于 n 不随 z 的变化而变化,上式左边第一项为
0.用 n1近似代替左边第二项中的 n,得到微分方程
d2r/dz2 + (n2/n1)r = 0 (14)
上式的解为
(15)
式中 ro = r(0),ro’ = r’(0)分别是 r 和 dr/dz 在端口
z = 0的值,
ndl rdndld
n (r) = n1 - n2 r2 /2 ( r << a)
)zn/ns i n (r)zn/nc o s (r)z(r 12,o12o
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
62
设一束平行于 z 轴的光照射 z = 0 端面,则 r0’= 0,
(16)
上式表明光线在渐变折射率波导中的传播路径具有周期性,如图 5.13所示.
设一个周期的长度为 2L,
则有而焦距为这就是自聚焦透镜的原理.
)zn/nc o s (r)z(r 12o?
n/nL2 12
n
n
2
L
1
2
光线在渐变折射率波导中的传播第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
63
在 5.5节中曾讲过,常规的傅里叶变换效应可以由 N个第一类光学基本单元串联而成的系统来实现,随着 N的变大,每个单元透镜的焦距 也随之变大,因此每个薄透镜也就更接近于一个平板,这样一系列接近密接的透镜组与上述自聚焦光波导薄层系列非常相似,
因此 我们可以设想一段长度为 pL 的渐变折射率光波导能够实现 p 阶广义傅里叶变换,
)N2/s in (/f~f
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
64
5.6.2光波在渐变折射率介质波导中的传播为简单起见,只讨论一维情况,其结论可以直接推广到二维情况,仅考虑 TE波,
设光波沿 z 轴方向传播,电场在 y方向振动,
用 E(x,z)表示,则它应满足亥姆霍兹方程
(?2/?x2 + kx2) E(x,z) = 0 (19)
式中 kx 是 x方向的波矢量的值,
kx2 = k2 - kz2 (20)
令 ko为真空中的 k,kz =? 称为 传播常数,n 为折射率,则有 k2 = n2 ko2 (21)
代入 (19)式,得到
2E/?x2 + (n2 ko2 -?2) E = 0 (22)
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
65
在二次渐变折射率介质中,
n(x) ≈n1 – n2 x2/2 (23)
这种情况相当于量子力学中无限深势阱中的一维谐振子,将上式代入 (22)式得到
2?/2 + (? -?2)? = 0 (24)
式中? =?2E,? =?x,
= (n12 ko2 -?2)/?2,? = (n1 n2 )1/2 ko (25)
从 (24)式解出式中 Hn为 n 阶厄米多项式,由此可见,在渐变折射率波导中传播的本征模就是 GH函数,恰恰是广义傅里叶变换的本征态,
)0,1,(n )/xe xp ()/x2(HN)x(E 22nnn
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
66
在波导中的场为式中
称光斑尺寸,
(30)
式中?为真空中的波长,
)x(En
)zie xp ()/xe xp ()/x2(HN)z,x(E n22nnn
onn
1
2
o1
n kN,n
n2/1n
kn
11nN
nnk
2
nn
21o21
2?
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
67
5.6.3 用渐变介质波导实现广义傅里叶变换引入归一化坐标
(31)
并记 En(x)为?n( x ),由于?n 是 (-∞,∞)区间的本征函数,所以任何平方可积的函数
g( x )都可以用?n( x ) 展开:
(32)
系数
~
/2~/x2x~,
)/xe x p ()/x2(Ha)x~(a)x~(g
0n
22
nn
0n
nn
!n2h
x~d)x~()x~(g
h
1
a
n
n
n
n
n
~ ~
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
68
设在 z = 0处放置由 g( x ) 表达的一维图像,则在
z = pL 处的场为
(35)
上面曾得到结论:长度为 L (p = 1)的光波导能实现光波的聚焦,我们将讨论在 p≠1时,长度为 pL
的光波导对光波的变换关系,
注意到焦距 L的表达式 (18),就有
~
)pLie x p ()/xe x p ()/x2(Ha
)pLie x p ()x~(a)pL,x~(g
0n
n
22
nn
0n
nnn
~
n]2/L)/2(nk[
)/2](2/)2/1n(Lnk[
p]2/)2/1n(Lnk[pL
1o
1o
1on
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
69
代入 (35)式,得到
(37)
将广义傅里叶变换对本征函数的变换关系式 (节
5.2 (9)式 )代入 (37),得到
(39)
(39)式表明,一段长度为 pL 的渐变折射率介质波导,也能实现广义傅里叶变换,在 z = 0 处放置图像 g,并用单色光波照射,在 z = pL 处即可得到它的广义傅里叶变换谱 F(p){g}。
)]2//Lnk2(ie x p [A
)x~()ine x p (a)pL,x~(g
1o
0n
nn
式中
)}0,
~
(g{A)}0,
~
(g{A )}
~
(g{A
)
~
(aA)}
~
({aA)pL,x~(g
( p )
0n
nn
0n
nn
FFF
FF
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
70
显然,长度为 p1L和 p2L 的两段光波导串接起来,必然能实现 p1+ p2 阶广义傅里叶变换,而变换算符的可加性及可易性是由光波导长度的可加性及可易性自然满足的。这样,我们又找到一种实现广义傅里叶变换的光学器件。
串联的透镜组只能得到 P/Q阶广义傅里叶变换,
P和 Q都是正整数,而由于技术上的原因,Q无法做到太大,所以我们只能得到阶数的步进的变化。
由于 光波导 中阶数正比于波导的长度,因此能够实现阶数的连续的变化 。
光波导的 缺点,空间带宽积比较小,也就是说它能处理的信息量比较小。
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
71
5.7 维格纳变换
5.7.1 维格纳变换的定义函数 g(x)的维格纳 (Wigner)变换定义为
(1)
如果把 x,v 分别理解为信号 g 的空间变量和空间频率变量,则 维格纳变换就是信号函数 g 的空间和频谱特征的综合表现或同时反映,因此在光学信号及其他信号的处理中有广泛的应用,
维格纳变换的 缺点,它并不是线性变换,所以将它应用到线性系统中去有一定的困难,
'dx)'x2ie x p ()2/'xx(*g)2/'xx(g),x(W
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
72
设 G(v)是 g(x)的傅里叶变换,则有
(2)
(3)
以 (2)及 (3)式代入 (1)式得到
(4)
其中的积分
(5)
代入 (4)式,经整理后得到维格纳变换在频域中的表达式
(6)
d)]2/'xx(2ie xp [)(*G)2/'xx(*g
d)]2/'xx(2ie xp [)(G)2/'xx(g
"d'Id]x)"'(2ie x p [)"(*G)'(GW
)]'2("[2'dx'x2 "'2ie x pI
'd)x'2ie x p ()2/'(*G)2/'(G),x(W
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
73
容易证明逆变换表达式
(7)
(8)
维格纳变换对于 v 和 x 的积分分别得到信号在空域和频域中的 功率密度
(9)
(10)
因而信号的 总功率 Eo可以由下面的积分来表达:
(11)
)0(*G)2(Gdx)x4ie xp (),x(W
)0(*g)x2(gd)x4ie xp (),x(W
)(Gdx),x(W
)x(gd),x(W
2
2
d x d),x(WE o
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
74
下面讨论当信号变化时其维格纳谱的相应变化.首先把 (1)式改写成更加容易处理的形式,(13)
式中?为光波的波长,f 是维格纳变换的一个特征量,以后我们会看到它相当于广义傅里叶变换中 f ;? 和 x 都具有长度量纲,分别是频域和空域中的长度坐标;? /? f 则是空间频率变量。
~
~
'd)x'f
~
2ie xp ()2/'(*G)2/'(G),x(W
'dx)f
~
/'x2ie xp ()2/'xx(*g)2/'xx(g),x(W
~
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
75
5.7.2 基本性质和运算法则
(1)反演 (inversion)
当 g(x) → g(-x) 时,相应的维格纳变换成为
(16)
),W ( - x
'dx]f
~
/'x)(2ie x p [)2/'xx(*g)2/'xx(g
"dx)f
~
/"x2ie x p ()2/"xx(*g)2/"xx(g
'x"x
令可见信号在 x 空间的反演引起维格纳变换在 (x,?)
空间的反演 (参见图 5.14):
W(A) → W(A’) (17)
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
76
上述变换可以用矩阵来表示,设 (x,?)和 (x’,?’)
分别是变化前后的维格纳空问坐标,
(18) xdc ba''x
x
x
10
01
'
'x
则反演的结果可用下式表示:
(19)
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
77
(2) 缩放 (scaling)
设 g(x) → g(x / M)
式中 M为缩放倍率,相应的维格纳谱的变化为 W(x,?) → W( x / M,M?) (21)
或
(22)
即信号坐标 x 的放大将引起维格纳空间中
x 坐标按同样倍率的放大,同时? 坐标按同样比例缩小,
M
M/x
x
M0
0M/1
'
'x
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
78
(3) 薄透镜的相位变换
g(x) → g(x)exp(-i? x2 Q/ f )
设透镜的焦距为,f = f /Q
相应的维格纳变换为
(25)
变换表达式为
(26)
在维格纳空间中表现为坐标沿平行?轴的移动 Q x.
~
~
)Qx,x(W
'dx)f
~
/'x)Qx(2ie xp [)2/'xx(*g)2/'xx(g
d x' f
~
]// 2)x'(x-/ 2)x'Q [ ( xi-e xp
)f
~
/'x2ie xp ()2/'xx(*g)2/'xx(g),x(W
22
Qxx x1Q 01''x
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
79
(4)在自由空间中的传播 ——菲涅耳衍射信号在自由空间中传播的距离为 z 时,相应傅里叶谱 G 如下变化
G(?) → G(?) exp( -iz?2) (27)
这样,我们就有
G(?+?’/2)→ G (?+?’/2)exp[ -iz(?+?’/2)2] (28)
G*(?-?’/2)→ G*(?-?’/2)exp[iz(?-?’/2)2] (29)
代入 (13)式,得到
(30)
)f
~
/zR ( ),R-W ( x
'd)')
f
~
z
x(f
~
2ie x p ()
2
'
(*G)
2
'
(G),x(W
其中第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
80
(4)在自由空间中的传播 ——菲涅耳衍射相应的矩阵变换式为
(32)
在维格纳空间中相当于坐标沿平行于 x 轴的平移,
Rx x10 R1''x
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
81
(5) 夫琅和费衍射将它代入 (12)式,得到令 R = 1 得到
(35)
(36)
dx)z/xx2ie x p ()x(g)x(g ooo
'
oo
,
o*
,
o dx]x)1R(2[
z
x2ie x p
2
x)R21(g
2
xg'W
)x,(W
dx
z
xx2
ie x p
2
x
g
2
x
g'W 'oo
,
o*
,
o
x x01 10''x
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
82
在维格纳表象中,夫琅和费衍射表示的常规傅里叶变换表示绕原点旋转? / 2,见图 5.17.
x x01 10''x
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
83
5.7.3 广义傅里叶变换的维格纳变换定义我们自然要问,当? ≠? / 2 时的旋转能否表示广义傅里叶变换?
可以证明,在维格纳空间中,广义傅里叶变换相当于坐标系旋转?角 。
从另一角度来看,由于? 阶广义傅里叶变换可以由第一类光学系统实现,它是两次菲涅耳衍射,以及在其间的透镜相位变换的结果 。
xc o ss i n s i nc o s''x
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
84
矩阵变换法证明设两次光波传播对应的距离为 z,透镜的焦距为 f,f = f /Q,z = R f
按广义傅里叶变换的参数定义,令
R = tg(?/2) = (1 - cos?)/sin? (44)
Q = sin? (45)
则信号的广义傅里叶变换对应的维格纳变换可以由矩阵变换式得到
(46)
~~
c o ss i n
s i nc o s
RQ1Q
)2QR(RRQ1
10
R1
1Q
01
10
R1
'
'x
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
85
5.7.4 维格纳变换在光学系统设计中的应用因为信号 (即光学图像 )的变化可用矩阵表示或用维格纳表象中的简单变换表示,
因而可以用维格纳变换进行光学系统的总体设计,
例如,要设计一个变焦距的光学系统,
亦即要求变换矩阵的参数 Q可变,透镜的焦距是固定的,因而这一要求只能通过透镜间距离的调节来达到,
Qxx x1Q 01''x
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
86
方案一:
前后矩阵表示常规傅里叶变换,中间的矩阵是光波在自由空间中的传播,传播距离为 z,则式中 表示生成倒像,而则表示三个矩阵的积相当于一个透镜,它的合成焦距 可以通过自由传播的距离 z
来调节,在这个例子中,参数 f 相当于单个透镜的焦距,即 f = f1 = f2
1R 0110 011R 0101 1010 R101 10
10 01
1R
01
z/f~R/f~f 2 ~
~
第 1节第 2节第 3节第 4节第 5节第 6节目 录第 7节第 5章
2009-7-19 光学信息处理
87
用第一类或第二类单元构造 ZOOM系统第一类第二类