习题课
1(15分)图示结构,刚性梁CD,铰接于C点,AB为一钢杆,
直径d=30mm,E=200GPa,L=1m,若AB杆材料许用应力
[σ]=160MPa,求结构的许用载荷P及此时D点的位移。
A
L
C
L
B
L
P
D
解,1)求结构的许用载荷P
CB杆平衡条件:
∑M
C
= 0,N? L? P? 2 L = 0,? N = 2 P
N
FCx C
FCy
B
ΔlAB
P
D
N
σ
AB杆强度条件,= ≤ [σ ]
A
2
2P × 4
≤ 160,? P ≤ 160π × 30 = 56.55kN
πd 2
8
δD
2)求D点的位移
δ D = 2Δl AB
N?l
2 × 56.55 ×103 ×1×103 × 4
= 2×
= 2×
= 1.6mm 1
3
2
EA
200 × 10 × π × 30
习题课
2(15分)刚性梁由铰支座及两根等截面钢杆支承。已知q =
30kN/m,①杆A1 = 400mm2,②杆A2 = 200mm2,钢杆的许用应力[σ]=170MPa,l2=2l1,试校核钢杆的强度。
解:取AB杆为对象
q
②
3
平衡条件,M A = 0,3N2 + N1? 30 × 3× = 0 (1)
∑
2
A
1m
①
B
2m
变形协调方程:
N1l1 N 2l2
=
,3 N1 = 4 N 2
3Δl1 = Δl2,3
EA1 EA2
(2)
N1 = 41.5kN,N 2 = 31.13kN
FAx
FAy
N1 41.5 × 103
σ
Pa = 103.8MPa < [σ ] = 170MPa
1杆,1 = =
6
A1 400 × 10
N 2 31.13×103
2杆,2 = =
σ
Pa = 155.6MPa < [σ ] = 170MPa
6
A2 200 ×10
满足强度要求。
2
习题课
3(20分)圆轴AB受外力偶作用,MA=4kN·m,MB=8kN·m,
MC=12KN·m,L1=300 mm,L2=700 mm,材料剪切弹性模量
G=80GPa,[τ]=50MPa,[θ]=0.25o/m。 1)画扭矩图,2)求轴的直径; 3)计算A、B两截面之间的相对扭转角。
MA
MC
MB
解:1)画扭矩图
A
L1
C
L2
B
2)求轴的直径
τ max
TBC 16TBC
=
=
≤ [τ ]
3
πd1
WP
16TBC
d ≥3
π [τ ]
16 × 8 ×106
=3
= 93.4mm = 0.093m
π × 50
TBC 180 32TBC 180
θmax =
×
=
×
≤ [θ ]
4
π
GIP π Gπd
180TBC × 32 4 180 × 8 × 103 × 32
d ≥4
=
= 0.124m
2
9
2
Gπ [θ ]
80 × 10 × π × 0.25
经比较轴的直径取d = 124mm
3
习题课
3)计算A、B两截面之间的相对扭转角
MA
MC
MB
AB
TAC l1 TBC l2
=
+
GI ρ
GI ρ
32
=
4 × 106 × 300 + 8 ×106 × 700
80 × 103 πd 4
A
L1
C
L2
B
(
)
32 ×108
(? 12 + 56)
=
9
2
80 ×10 × π × 0.25
= 2.4 × 10 rad
3
4
4 (25分)T字形截面梁。试确定其最大拉伸及最大压缩弯曲应力,并确定它们产生在何处。
解:1、求支座力
∑MA = 0
RA
x
R B? 3? q × 4,2 × 2,1 = 0
RB
RB = 412kN
R A + R B? 4,2 q = 0
2、作M图
RA = 176kN
FS ( x ) = 176? 140 x = 0? x = 1,26 m
2
1.26
MC = 176×1.26? 140×
= 111kN? m
2
M B =?140×1.2 × 0.6 =?101kN? m 5
1(15分)图示结构,刚性梁CD,铰接于C点,AB为一钢杆,
直径d=30mm,E=200GPa,L=1m,若AB杆材料许用应力
[σ]=160MPa,求结构的许用载荷P及此时D点的位移。
A
L
C
L
B
L
P
D
解,1)求结构的许用载荷P
CB杆平衡条件:
∑M
C
= 0,N? L? P? 2 L = 0,? N = 2 P
N
FCx C
FCy
B
ΔlAB
P
D
N
σ
AB杆强度条件,= ≤ [σ ]
A
2
2P × 4
≤ 160,? P ≤ 160π × 30 = 56.55kN
πd 2
8
δD
2)求D点的位移
δ D = 2Δl AB
N?l
2 × 56.55 ×103 ×1×103 × 4
= 2×
= 2×
= 1.6mm 1
3
2
EA
200 × 10 × π × 30
习题课
2(15分)刚性梁由铰支座及两根等截面钢杆支承。已知q =
30kN/m,①杆A1 = 400mm2,②杆A2 = 200mm2,钢杆的许用应力[σ]=170MPa,l2=2l1,试校核钢杆的强度。
解:取AB杆为对象
q
②
3
平衡条件,M A = 0,3N2 + N1? 30 × 3× = 0 (1)
∑
2
A
1m
①
B
2m
变形协调方程:
N1l1 N 2l2
=
,3 N1 = 4 N 2
3Δl1 = Δl2,3
EA1 EA2
(2)
N1 = 41.5kN,N 2 = 31.13kN
FAx
FAy
N1 41.5 × 103
σ
Pa = 103.8MPa < [σ ] = 170MPa
1杆,1 = =
6
A1 400 × 10
N 2 31.13×103
2杆,2 = =
σ
Pa = 155.6MPa < [σ ] = 170MPa
6
A2 200 ×10
满足强度要求。
2
习题课
3(20分)圆轴AB受外力偶作用,MA=4kN·m,MB=8kN·m,
MC=12KN·m,L1=300 mm,L2=700 mm,材料剪切弹性模量
G=80GPa,[τ]=50MPa,[θ]=0.25o/m。 1)画扭矩图,2)求轴的直径; 3)计算A、B两截面之间的相对扭转角。
MA
MC
MB
解:1)画扭矩图
A
L1
C
L2
B
2)求轴的直径
τ max
TBC 16TBC
=
=
≤ [τ ]
3
πd1
WP
16TBC
d ≥3
π [τ ]
16 × 8 ×106
=3
= 93.4mm = 0.093m
π × 50
TBC 180 32TBC 180
θmax =
×
=
×
≤ [θ ]
4
π
GIP π Gπd
180TBC × 32 4 180 × 8 × 103 × 32
d ≥4
=
= 0.124m
2
9
2
Gπ [θ ]
80 × 10 × π × 0.25
经比较轴的直径取d = 124mm
3
习题课
3)计算A、B两截面之间的相对扭转角
MA
MC
MB
AB
TAC l1 TBC l2
=
+
GI ρ
GI ρ
32
=
4 × 106 × 300 + 8 ×106 × 700
80 × 103 πd 4
A
L1
C
L2
B
(
)
32 ×108
(? 12 + 56)
=
9
2
80 ×10 × π × 0.25
= 2.4 × 10 rad
3
4
4 (25分)T字形截面梁。试确定其最大拉伸及最大压缩弯曲应力,并确定它们产生在何处。
解:1、求支座力
∑MA = 0
RA
x
R B? 3? q × 4,2 × 2,1 = 0
RB
RB = 412kN
R A + R B? 4,2 q = 0
2、作M图
RA = 176kN
FS ( x ) = 176? 140 x = 0? x = 1,26 m
2
1.26
MC = 176×1.26? 140×
= 111kN? m
2
M B =?140×1.2 × 0.6 =?101kN? m 5