习题课
3.1 作图示各杆的扭矩图。
4kN.m
kN? m
T
2
x
kN? m
T
1
x
2
4
2
1
习题课
3.6 阶梯形圆轴d1=40mm,d2=70mm。已知轮3输入N3=30kW,
轮1输出N1=13kW,n=200r/min,[τ]=60MPa,G=80GPa,许用扭转角[θ]=2°/m。试校核轴的强度和刚度。
解 (1)作扭矩图
N1
13
m1 = 9549 ×
= 9549 ×
= 621N? m
n
200
N2
30? 13
m2 = 9549 ×
= 9549 ×
= 812 N? m
n
200
m3=m1+m2=621+812=1433Ν?m
作轴的扭矩图
2
习题课
(2)强度校核
T1
m1
621 × 16
=
=
Pa = 49.4 MPa
AC段,τ 1 =
3
WP1 WP1 π × 0.04
< [τ ]
T2
m3 1433 × 16
DB段,τ 2 =
=
=
Pa = 21.2 MPa < [τ ]
3
WP2 WP2 π × 0.07
(3)刚度校核
T
=
AD段,θ1 =
GI P
621
80 ×10 ×
9
π? 0.04
32
4
×
180
π
= 1.77° / m
< [θ ]
1433
180
T
=
×
= 0.434° / m < [θ ]
DB段,θ 2 =
GI P 80 × 109 × π × 0.07 4 π
32
各段均满足强度、刚度要求
3
习题课
3-7 图示绞车同时由两人操作,若每人加在手柄上的力都是
P=200N,已知轴的[τ]=40MPa,试按强度条件初步估算AB轴的直径,并确定最大起重量Q。
解,AB轴承受的转距为
M 1 = 0.4 P = 0.4 × 200 = 80 N? m
由平衡条件 M 2 = 2 M 1 = 2 × 80 = 160 N? m
Μ2
Μ1
Μ1
由强度条件 τ max
T
80
=
=
≤ [τ ]
π3
WP
d
16
16 × 80
d ≥3
m = 21.7mm ≈ 22mm
6
π × 40 ×10
4
习题课设传动时齿轮间的切向力为F
ΑΒ轴:
∑M
F
F
AB
0
= 0,.2 F? 2 × 0.4 P = 0
2 × 0.4 P 2 × 80
F=
=
= 800N
0.2
0.2
鼓轮轴:
∑M
x
= 0,0.25Q -0.35F=0
0.35F 0.35 × 800
=
N = 1120 N
最大起重量 Q =
0.25
0.25
5
习题课
3-11 传动轴n=500 r/min,轮1输入P1=368kW,轮2、3分别输出
P2=147kW,P3=221kW。已知[τ]=70 MPa,[?]=1°/m,G=80
GPa。试:
(1)确定AB段的直径d1和BC段的直径d2。
(2)若AB和BC两段选用同一直径,试确定直径d。
(3)主动轮和从动轮如何安排才比较合理?
P1
P2
P3
解:
首先计算外力偶矩
P3
221
M 3 = 9549 = 9549 ×
= 4210N? m
n
500
P2
147
M 2 = 9549 = 9549 ×
= 2810 N? m
n
500
M 1 = M 2 + M 3 = 2810 + 4210 = 7020 N? m
作轴的扭矩图
6
习题课
(1)试确定AB段的直径d1和BC段的直径d2。
AB段,τ AB
TAB 16TAB
16TAB 3 16 × 7020
=
m = 79.9mm
=
=
≤ [τ ],d1 ≥ 3
6
3
70 × 10 × π
π [τ ]
WP
πd1
TAB 180 32TAB 180
=
×
=
×
≤ [? ]
4
π
GI P π
Gπd
θ AB
180TAB × 32 4 180 × 7020 × 32
=
m = 84.6mm
d1 ≥ 4
2
9
2
80 ×10 × π ×1
Gπ [? ]
取d1=85 mm
BC段,d 2 ≥ 3
16TBC
π [τ ]
16 × 4210
=3
m = 67.4mm
6
70 × 10 × π
32TBC ×180 4 32 × 4210 ×180
=
m = 74.4mm 取d2=75 mm
d2 ≥ 4
2
9
2
80 ×10 × π ×1
Gπ [? ]
(2)若AB和BC段选用同一直径,轴的直径取d = 85 mm。
习题课
1、图示等截面圆轴,已知d=10cm,L=50cm,M1=8kN.m,
=10c
L=50c
M2=3kN.m,轴材料为钢,G=82GPa,试求:
(1)轴的最大剪应力;
(2)截面B和C的扭转角;
(3)若要求BC段的单位扭转角与AB段的相等,则在BC段钻孔的直径应为多大?
8
习题课
1)求τmax
τ max
TAB 16TAB 16 × 5 × 106
=
=
=
= 25.46MPa
3
3
Wt
πd
π ×100
kN? m
T
5
x
2)求?B,?C
TABl
=
B =? AB =
GI ρ
5 ×106 × 500
= 3.11×10?3 rad
4
3 π?100
82 ×10 ×
32
3
C =? AC =? AB +?BC
3×106 × 500
= 3.11×10?3 +
= 1.25×10?3 rad
π?1004
82×103 ×
32
9
习题课
3)若θBC= θΑB求在BC段钻孔的直径d1
θΑΒ =θBC
kN? m
TBC
TAB
=
GI ρ1 GI ρ 2
T
5
x
Iρ2 3
5
3
=
=
I ρ1 I ρ 2
I ρ1 5
d1? 3
1 =
d? 5
4
3
2
2
4
d1 = d ×
= 100 ×
= 79.5mm
5
5
4
10
习题课
2、一阶梯圆轴受力如图,已知D1=120mm,D2=100mm,
=120m
=100m
G=80GPa,M2=15kN.m,若要使AC两截面间的相对扭转角
AC=0,试求:① B处的外力偶矩M1; ②画出轴的扭矩图;③
求轴内的最大剪应力;
11
习题课
1)若?AC= 0,求Μ1
AC
M 2? 500 (M 1? M 2 )? 500
=
+
=0
GI ρ 2
GI ρ1
M 2? I ρ 1 = (M 1? M 2 )? I ρ 2
kN? m
4
M 2? D14 = (M 1? M 2 )? D2
4
M 2? D14 + D2 15? 1204 + 1004
=
= 46.1kN? m
M1 =
4
4
D2
100
T
31.1
x
(
)
(
)
15
2)画出轴的扭矩图
31,1 × 10 6
T AB
TBC
3)求τmax AB,τ max =
=
=
= 91,7 MPa
3
3
πD 2
π × 100
Wt
16
16
TBC TBC
15 ×106
=
=
= 76.4MPa
BC:τ max =
3
3
πD2 π ×100
Wt
16
16
12
习题课
3,一刚性杆ΑΒ,被固定在直径20mm的铝轴末端,若加载前刚性杆与支座D的间隙为10mm,求加载后铝轴内的最大剪应力。已知G =28GN/m2。
解:轴上加载100N.m,刚杆Α点与支座D
100
接触,Α点约束力对轴端作用力偶ΜΑ,
固定端力偶MC,画出轴的计算简图。一次静不定。
D
列补充方程
0.01
A =
= 0.05
0.2
M A × 0.5 (100? M A ) × 0.5
A =?AD +?CD =
+
= 0.05
GIρ
GIρ
MC
100Ν.m
100? 2 M A = 0.1GI ρ
MA
1?
π × 0.024?
= 28N? m
100? 0.1× 28×109 ×
MA =?
2?
32?
τ max
Tmax
16 × 72
6
=
=
= 45.8 ×10 Pa = 45.8MPa
3
Wt
π × 0.02
习题课
3,一刚性杆ΑΒ,被固定在直径20mm的铝轴末端,若加载前刚性杆与支座D的间隙为10mm,求加载后铝轴内的最大剪应力。已知G =28GN/m2。
解:用能量法列补充方程
0.01
A =
= 0.05
0.2
(? M A )
U=
2
× 0.5
2GI ρ
(100? M A ) × 0.5
+
2GI ρ
2
U
M A? 50
A =
=
=?0.05
M A
GI ρ
MC
100Ν.m
MA
M A = 50? 0.05× 28×109 ×
π × 0.024
32
= 28N? m
τ max
Tmax
16 × 72
6
=
=
= 45.8 ×10 Pa = 45.8MPa
3
Wt
π × 0.02
14