1 18.1ì¥?l# ?é ì¥?l ì¥?é + y¥ì μK× 18.20ìa ?Xa ìaì] ? 0ì?l# ?Y ?Xa ìaì] ? ? E?c ìD× 2 ?l  !} ?"d <R,+,?> ?@ <R,+>? Abel ? <R,?>?? ? ? + ? ?@s ¥ p ?| a ü 0, 1, -x, x -1 , nx, x n , x-y, L è ?ì Z,Q,R,C1? ?Y ?¥FEDeE <Z n , ⊕, ?> <M n (R), +, ?> <P(B), ⊕, ∩> ì¥?l 3 1 a0 = 0a = 0 2 (-a)b = a(-b) = -(ab) 3 (-a)(-b) = ab 4 a(b-c) = ab-ac, (b-c)a = ba-ca 5 ∑∑∑∑ ==== = ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? n i m j ji m j j n i i baba 1111 6 (na)b = a(nb) = n(ab) ì¥?é 4 ?Dìacì í ,y0ì ab=0 ? a=0 b=0 L è ?ì , Z p 1í ,y0ì? O?? p1 í ? . ? ? R ^ì R1í ,y0ì ? R?eEμh ? p . "ì  |R|>1,<R * ,?> ? ? × |R|>1, ?D¥"ì? ?? R * ?í í?μ Ií¥?ì L è ? ? ? ? ? ? ∈ ? ? ? ? ? ? ? ? ? = Rba ab ba H ,| 1"ì? ^× Z p ^× + y¥ì 5 è 1 p,q1??¥ í ?£ üí pq¨¥?ì . £L ! R1 pq ¨¥?ì 5 <R,+>1 pq¨¥ Abel ? . i p¨í a q¨í b. ?[ |a+b|=pq, <R,+>1?ì ? 7 c=a+b1 3?í . R={ 0, c, 2c, … , (pq-1)c } | x=pc, y=qc, 5 xy=(pc)(qc) = pqc 2 =0 x,y1 ,y0 .  è5 6 ?l F1× |F|μK L è Z p , p1 í ? Z p 1?ì <Z p ?{0},?>μK? ? í ,í a?h ? p <Z p ?{0},?>? Abel ? 2 ?μK¥?ì? ^× μK×¥ +? F1μK× 1 <F,+>?¥¨1× F¥+? . Z p ¥+?1 p. μK× 7 ! F1μK×5i í ? p P¤ |F|=p n , £ ü ±X : A=<1>={ 0, 1, … , p?1 } Ax 1 = { 0, x 1 , 2x 1 , …, (p?1)x 1 } x 1 ∈F * |Ax 1 | = p ? F=Ax 1 52 ? ?5 ?x 2 ∈F?Ax 1 , x 2 ≠0, Ax 1 +Ax 2 ={ a 1 x 1 +a 2 x 2 | a 1 ,a 2 ∈A} V[£ ü Ax 1 +Ax 2 ?¥í í  ?] yN |Ax 1 +Ax 2 |=p 2 , vN) ? |Ax 1 +Ax 2 +Ax 3 |=p 3 , °? kD ?μ¥í í μK×¥?é 8 Fermatl? ?  ?T n1 í ?5 ?μ¥?? ? a ≠ 0(modn) μ a n ? 1 ≡1(mod n) ? k í ?¥ ?E 7 a=2, _? a n ? 1 ≡1(mod n)? ?Tís “ ^ ” { “ í ? ” ?5 { “? ? ”. s HW T(n)=O(log 3 n) ù5 ? ?Eo a=2é?? k , ?T n1? ? O {1 “ í ? ”5? n1 2à í ? . è ? 341 ?@  ?Hq? ^ 341 ^? ? . μK×?¨ ---- í ?? kù5 9 í ?? k¥ ? ?E ?éZE ?ê | 2--n-2?¥ ?é?? k . è ? | a=35 3 340 (mod 341) ≡ 56 341? ^ í ? . ?ù5 Fermat l? ?¥Hqo ^A1Hq ?@Hq¥ V ? ^? ? .  ?μD n o í¥?? ? a? ?@  ?Hq¥? ? n ?1 Carmichael ? ? 561 1105 1729 2465 ? . Carmichael ?dè l? 10 8 ¥oμ 255? . V[£ ü ?T n1? ??? ^ Carmichael ??¨ ? ê | 2—n-2 ?¥ ?é?? k? k n 1? ?¥à qà 1 1/2. ? ^?? ?E? ?3 % Carmichael ?¥ù5 . 10 í ?? k¥ 6B?Hq ? ? 2 ?T n1 í ?5Z? x 2 ≡ 1(mod n)¥?oμ ? ' x=1 x=?1  x=n?1 £ ü x 2 (mod n)≡1 ? x 2 ?1≡0(modn) ? (x+1)(x?1)≡0(modn) ? x+1≡0  x?1≡0  ×? àμ ,y0 ? x=?1  x=1 ? x±≠1¥?1d üO¥ . ? ? ? 2 ?TZ?μd üO¥?5 n1? ? . è ? : x 2 (mod 5) ≡ 1 ? x=1  x=4 x 2 (mod 12) ≡1 ? x=1  x=5  x=7  x=11 5? 7 ^d üO¥? . 11 Miller-Rabin ?E ! n1  í ?i q,m P¤ n?1=2 q m, (q≥1). ?  ¥KaB[1 a n ? 1 (mod n), O ?B[ ^ - ?B[¥ üZ . ? ?i i i=0,1,…q?1 , ? ^?1 1? n?1, O ?¥aB[ ^?1 1. ?T a[1 1?'[??? 1? n?1, 5 ?ü ^ d üO¥?V7?? n? ^ í ? . )(mod 2 na m i )(mod,...),(mod),(mod),(mod 242 nananana mmmm q 12 è ? n=561, n-1=560=2 4 ? 35, L ! a=7, /¥? 1 1)561(mod7)561(mod7 ,67)561(mod7)561(mod7 ,166)561(mod7)561(mod7 ,298)561(mod7)561(mod7 ,241)561(mod7 560352 280352 140352 70352 35 4 3 2 1 == == == == = V[ ?? n1? ? . ?ê4?? ? a∈{2,3,…, n-1}, ?aé?  ?? k . V [£ ü? ?E ?Q? kp¥à qà1 1/2. ×ˉ? kQ V[|pà q??à 2 ?k . Miller-Rabin ?E ? 13   18.20ìa ?Xa ìaì] ? ?0ì 0ì?l 0ì ?Y ? ?X ? ì ?ì] ?# ?é 14 0ì?l#  ?Y ?l : d b0"1?ì? ? +,? ?ì . L è nZ ^ <Z,+,?>¥ 0ì 0ìü ^0} ? üO0ìi ?Y0F ? ?Y +? ? ?Y 0?ì a0"ì a0× 15 ?l  ! D ^ì <R,+,?>¥d b0" ? (1) <D,+>? Abel ? (2) ?r∈R, rD?D, Dr?D 5? <D,+,?> ^ì R¥ ?X . a ü P ?X (o ?@ rD?D)D· ?X D= ? ? ? ? ? ? ∈ ? ? ? ? ? ? ? ? Rba b a ,| 0 0 1 M 2 (R)¥ P ?X ? ^ · ?X . ?X ^ R¥0ì? ^0ì?B? ^ ?X . <Z,+,?> ^ <R,+,?>¥0ì?? ^ ?X . üO ?X  {0}, R1 & . ?X 16 è 1 R1?Dì 1∈R, O 1≠0, 5 R1×? O?? Roc μ üO ?X . £ “?” ! D1 ?X D≠{0} ?x∈D, x≠0 ? x ?1 ∈R ? 1= x ?1 x∈D ? ?r∈R, r= r?1∈D, R=D “?” ?x≠0, x∈R, 7 Rx = { rx | r∈R }. ?r 1 x, r 2 x ∈Rx, r 1 x?r 2 x = (r 1 ?r 2 )x∈Rx yN <Rx,+>? Abel ? . ?r 1 x∈Rx, r 2 ∈R (r 1 x)r 2 = (r 1 r 2 )x ∈Rx , r 2 (r 1 x) = (r 2 r 1 )x∈Rx, Rx ^ ?XyN Rx=R, i y P¤ yx=1, xμ Ií . è5 17 ?l D1 R¥ ?X ?x∈R, yxyx yxyx RxxDR DdxdxDx ?=? +=+ ∈= ∈+=+= }|{/ }|{ ? <R/D,+,?>?ì1 R1? D¥ ì . ? ?l£ yxxyxyd xyydxddd ydxdyx ydyxdxyyxx ?==+= +++= ++=? +=+=?== 1221 21 21 ))(('' ','','  ì 18 L è  <Z 6 ,⊕,?> ?X {0}, {0,2,4}, {0,3}, Z 6 ì Z 6 /{0} = { {0}, {1}, {2}, {3}, {4}, {5} } Z 6 /Z 6 = { Z 6 } Z 6 /{0,3} = { {0,3}, {1,4}, {2,5} } Z 6 /{0,2,4} = { {0,2,4}, {1,3,5} } ì¥ L è 19 ì] ? f:R 1 →R 2 f(x+y) = f(x) + f(y) f(xy) = f(x) f(y) ] ?? kerf ={ x | x∈R 1 , f(x)=0 } L è f c :Z→Z, f c (x) = cx c1? ? kerf c = cZ ì] ? 20 ì] ?¥?é 1. f(0)=0, f(1)=1 f(?x)=?f(x), f(x ?1 ) = f(x) ?1 2 (1) S ^ R 1 ¥0ì5 f(S) ^ R 2 ¥0ì (2) T ^ R 2 ¥0ì5 f ?1 (T) ^ R 1 ¥0ì (3) D ^ R 1 ¥ ?X5 f(D) ^ f(R 1 )¥ ?X (4) I ^ R 2 ¥ ?X5 f ?1 (I) ^ R 1 ¥ ?X 3 kerf = {x|x∈R 1 ,f(x)=0}5 kerf ^ R 1 ¥ ?X 4] ?'? ? ì R¥ ?? ì R/D ^ R¥] ?^ ? R~R’, 5 R’ ? R/kerf 21 £ 2. (2) f ?1 (T)d b ?x,y∈f ?1 (T) ?a,b∈T P¤ f(x)=a, f(y)=b, f(x?y)=f(x) ?f(y) = a?b∈T, x?y∈f ?1 (T) f(xy) = f(x)f(y) = ab ∈T, xy∈f ?1 (T) (3) f(D) ^ f(R 1 )¥0F ? O1 Abel ? . ?x∈f(D), r∈f(R 1 ), ?a∈D, P¤ f(a)=x, ?b∈R 1 , f(b)=r, xr = f(a)f(b) = f(ab)∈f(D) ] ? rx∈f(D) ?饣 ü 22 3 kerf = { x | x∈R 1 , f(x)=0 } £ kerf ^ R 1 ¥ ?X kerf ^ <R 1 ,+>¥??0 ? . ?x∈kerf, r∈R 1 , f(xr) = f(x)f(r)= 0 f(r) =0 xr∈kerf] ? rx∈kerf ?é£ ü ? 23 T< ?ˉ1? ì¥?l + yì¥ ?Y μK×¥í í ? ?@ I 1?é ì¥?l ì] ?¥?é ? ? ?T< 5 E? 4, 5, 6, 7, 33, ?1DμK× ¥[ Tì