Solution 2.9.6.10
i(t)
C
v
C
(0)L
i
L
(0)
Figure 1: Tank Circuit
For the circuit in Figure 1 applying Kircho's voltage law yields
L
d
dt
i(t)+
1
C
Z
t
0
i(t)dt+ v
c
(0) = 0:
Applying the Laplace transform then yields
V (s)=+LsI(s)+
I(s)
Cs
+
v
c
(0)
s
=0;;
or
s
2
L +(1=C)
s
!
I(s)=
;v
c
(0)
s
;;
or nally
I(s)=
;v
c
(0)=L
(s;j=
p
LC)(s+ j=sqrtLC)
=
M
s;j=
p
LC
+
M
s + j=
p
LC
:
Then
M =
"
(s;j=
p
LC)(;v
c
(0)=L)
(s;j=
p
LC)(s + j=
p
LC)
#
s=j=
p
LC
=
(v
c
(0)=L)
6
(2=
p
LC)
6
=2
= v
c
(0)(
q
C=L=2)
6
;=2
= v
c
(0)(
q
C=L=2)
6
=2
Then,
i(t)=v
c
(0)
q
C=Lcos(t=
p
LC + =2):
1