Solution 2.9.6.4
R
i(t)
Switch closes at t = 0
e(t) C
v
C
(0)
Figure 1: Series RC circuit
For the circuit of Figure 1, weassume v
c
(0) = 0. Kircho's law yields
e(t)=
1
C
Z
t
0
i()d + v
c
(0)+ i(t)R:
Applying the Laplace transform weobtain
E(s) =
1
Cs
I(s)+
v
c
(0)
s
+ I(s)R
This can be rearranged as
I(s)=
1
R
sE(s) ; v
c
(0)
s +1=RC
For
e(t)=Asin!t;;
E(s)=
A!
s
2
+ !
2
:
Then for v
c
(0)=0,wehave
I(s)=
A!
R
1
(s ; j!)(s+ j!)(s+1=RC)
:
Then
i(t)=
A!
R
M
s ; j!
+
M
s + j!
+
B
s +1=RC
:
1
Then
M =
1
(s + j!)(s+1=RC)
j
s=j!
=
1
j2!)(j!+1=RC)
;j!+1=RC
;j!+1=RC
=
1=RC ; j!
j2!)((!
2
+(1=RC)
2
)
=
6
; =2
2!
p
!
2
+(1=RC)
2
;;
where = ;tan
;1
(!RC). We next nd
B =
1
(s ; j!)(s+ j!)
s=;1=RC
=
1
(1=RC)
2
+ !
2
=
R
2
C
2
1+R
2
C
2
!
2
:
Then
i(t) =
"
A!
R
cos(!t; =2+)
!
p
!
2
+(1=RC)
2
+
R
2
C
2
e
;t=RC
1+R
2
C
2
!
2
!#
1(t):
2