Solution 2.9.6.2
R
i(t)
Switch closes at t = 0
e(t)
L
i
L
(0)
Figure 1: Series R;L circuit
For the circuit of Figure 1, the dening dierential equation is
e(t)=i(t)R+ L
di(t)
dt
:
Applying the Laplace transform weobtain
E(s) = I(s)R+ L[sI(s);i
L
(0)]
This can be rearranged as
I(s)=
1
L
E(s);Li
L
(0)
s + R=L
For
e(t)=Acos!t;;
E(s)=
As
s
2
+ !
2
:
Then for i
L
(0) = 0, wehave
I(s)=
As=L
(s
2
+ !
2
)(s + R=L)
;;
In partial fraction form
I(s)=
M
s;j!
+
M
s + j!
+
B
s + R=L
:
1
Then
M = (s;j!)I(s)
s=j!
=
As=L
(s + j!)(s+ R=L)
s=j!
=
jA!=L
(j2!)(j!+ R=L)
=
A=2L
(j!+ R=L)
;j!+ R=L
;j!+ R=L
=
A(R=L;j!)
2L(!
2
+(R=L)
2
)
=
A
2L
p
!
2
+(R=L)
2
6
;;
= ;tan
;1
(!L=R).
B = (s + R=L)I(s)
s=;R=L
=
As=L
(s;j!)(s+ j!)
s=;R=L
=
;AR=L
2
(R=L)
2
+ !
2
=
;AR
R
2
+ L
2
!
2
Then
i(t) =
"
A
L
p
!
2
+(R=L)
2
!
cos(!t+ );
AR
R
2
+ L
2
!
2
e
;Rt=L
#
1(t):
2