Solution 6.8.1.13
The root locus is shown in Figure 1. Eventually two limbs of the root locus
-35 -30 -25 -20 -15 -10 -5 0 5
-20
-15
-10
-5
0
5
10
15
20
Real Axis
I
mag
A
x
i
s
Figure 1: Root locus
will cross into the righthalf plane. Indeed, for !
d
=15twopoles are in the
right half plane. The MATLAB program
p1 =0
p2 = 1
p3 = 30
omegad = 15
x=linspace(2.6,2.8,400);;
s=x+j*omegad;;
ang = (angle(s + p1)+angle(s+p2)+angle(s+p3))*180/pi;;
plot(x,ang)
print -deps 68113a.eps
creates the plot shown in Figure 2. Then s =2:7719 + j15. Indeed, at
s =2:7719+ j15 the net angle is 180:00
.
Then the gain to place closed loop poles at s =2:7719+ j15 is
K = jsjjs+1js +30jj
s=2:7719+j15
=8503:4:
1
2.6 2.65 2.7 2.75 2.8 2.85
179.6
179.8
180
180.2
180.4
180.6
180.8
181
181.2
181.4
181.6
Figure 2: Angle versus real part of s
The natural frequency of the closed loop poles is
!
n
=
p
2:7719
2
+15
2
=15:254:
The MATLAB program
p1 =0
p2 = 1
p3 = 30
omegad = 15
x=linspace(2.6,2.8,400);;
s=x+j*omegad;;
ang = (angle(s + p1)+angle(s+p2)+angle(s+p3))*180/pi;;
plot(x,ang)
print -deps 68113a.eps
s=x(344) + j*omegad
K=abs(s + p1)*abs(s+p2)*abs(s+p3)
omegan = abs(s)
tn2 = zpk([],[s conj(s)],omegan^2)
g=zpk([],[-p1 -p2 -p3],K)
tc = feedback(g,1)
T=linspace(0,1,100);;
[Yn2,T] = step(tn2,T);;
2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-10
-5
0
5
10
15
20
Figure 3: Comparison of step responses of T
c
and T
N2
for =0:4
[Ytc,T] = step(tc,T);;
plot(T,Yn2,'k-',T,Ytc,'k--')
print -deps sr68113.eps
Prints and plots the step responses of T
c
(t) and T
N2
(t) shown in Figure 3
3