Solution 5.8.6.4
The loop transfer function is
GH(s)=
K(s +2)
s(s + 1)(s +30)
To nd the closed loop poles with real part of ;2wemust searchalong the
vertical line through s = ;2until we nd where the root locus crosses this
line. The point where the root locus crosses the vertical line is the point
where the angle condition is satised. Referring to Figure 1 we see that we
Im(s)
Re(s)XX
X
-1
-2-30
s + 1
s
s + 2s + 30
α
θ
1
θ
3
θ
2
Figure 1: Satisfying angle condition
must s = ;2+j! such that
;
1
; theta
2
;
3
= ;180
:
The MATLAB program
z=2;;
p1 = 0;;
p2 =1;;
p3 = 30;;
s=-2+j*1
ang = (angle(s + z) -angle(s +p1)-angle(s+p2)-angle(s +p3) )*180/pi
s=-2+j*1.5
ang = (angle(s + z) -angle(s +p1)-angle(s+p2)-angle(s +p3) )*180/pi
s=-2+j*1.49
ang = (angle(s + z) -angle(s +p1)-angle(s+p2)-angle(s +p3) )*180/pi
s=-2+j*1.495
1
! 1 1.5 1.49 1.495 1.496 1.4965
6
GH ;200:5
;179:9
;180:23
;180:057
;180:023
180:006
Table 1: Searchfor satisfaction of angle condition
s ;28 ;26 ;27
K 58.15 108.33 84.24
Table 2: Searchfor third closed loop pole
ang = (angle(s + z) -angle(s +p1)-angle(s+p2)-angle(s +p3) )*180/pi
s=-2+j*1.496
ang = (angle(s + z) -angle(s +p1)-angle(s+p2)-angle(s +p3) )*180/pi
s=-2+j*1.4965
ang = (angle(s + z) -angle(s +p1)-angle(s+p2)-angle(s +p3) )*180/pi
generates the Table 1. Thus the root locus crosses the vertical line for
s = ;2+j1:4965. The gain that places twoofthe closed loop poles at
s = ;2 j1:4965 is
K =
jsjjs +1jjs+30j
js +2j
j
s=;2+j1:4965
= 84:24
To nd the third closed loop pole wesearchalong the real axis to the right
of s = ;30 looking for this same value of gain. The calculation is exactly
the same, wearejust using dierenct values of s.Table 2 summarizes this
search. Thus the third pole is at s = ;27, and the characteristic polynomial
is
p(s)=(s + 27)(s+2;j1:4965)(s+2+j1:4965)
Wecancheck this result with the MATLAB dialogue
EDU>g = zpk([-2],[0 -1 -30],84.24)
Zero/pole/gain:
84.24 (s+2)
--------------
2
s(s+1) (s+30)
EDU>tc = feedback(g,1)
Zero/pole/gain:
84.24 (s+2)
------------------------
(s+27) (s^2 + 4s + 6.24)
EDU>p = [1 4 6.24];;
EDU>roots(p)
ans =
-2.0000+ 1.4967i
-2.0000- 1.4967i
EDU>
and weseethat wearevery close.
3