Solution 5.8.6.5
The loop transfer function is
GH(s)=
K(s+3)
s(s+ 1)(s+15)
To nd the closed loop poles with real part of ;2wemust searchalong the
horizontal line through s = ;j5until we nd where the root locus crosses
this line. The point where the root locus crosses the vertical line is the point
where the angle condition is satised. Referring to Figure 1 we see that we
Im(s)
Re(s)XX
X
-1
-3-15
s + 1 s
s + 2
s + 15
α
θ
1
θ
3
θ
2
5
-x
Figure 1: Satisfying angle condition
must nd s = ;x+j5suchthat
;
1
;
2
;
3
= ;180
:
The MATLAB program
z=3;;
p1 = 0;;
p2 =1;;
p3 = 15;;
s=-1.5 + j*5
ang = (angle(s + z) -angle(s +p1)-angle(s+p2)-angle(s +p3) )*180/pi
s=-3+j*5
ang = (angle(s + z) -angle(s +p1)-angle(s+p2)-angle(s +p3) )*180/pi
s=-4+j*5
ang = (angle(s + z) -angle(s +p1)-angle(s+p2)-angle(s +p3) )*180/pi
s=-5+j*5
1
x 3 5 5.5 5.3 5.325
6
GH ;165:4
;178:4
;180:9
;179:93
;180:05
Table 1: Searchfor satisfaction of angle condition
s ;13 ;10 ;5 ;5:5 ;5:47 ;5:46 ;5:465 ;5:467
K 31.2 64.29 100 94.05 94.34 94.4367 94.3877 94.3682
Table 2: Searchfor third closed loop pole
ang = (angle(s + z) -angle(s +p1)-angle(s+p2)-angle(s +p3) )*180/pi
s=-5.5 + j*5
ang = (angle(s + z) -angle(s +p1)-angle(s+p2)-angle(s +p3) )*180/pi
s=-5.2 + j*5
ang = (angle(s + z) -angle(s +p1)-angle(s+p2)-angle(s +p3) )*180/pi
s=-5.3 + j*5
ang = (angle(s + z) -angle(s +p1)-angle(s+p2)-angle(s +p3) )*180/pi
s=-5.35 + j*5
ang = (angle(s + z) -angle(s +p1)-angle(s+p2)-angle(s +p3) )*180/pi
s=-5.325 + j*5
ang = (angle(s + z) -angle(s +p1)-angle(s+p2)-angle(s +p3) )*180/pi
generates the Table 1. Thus the root locus crosses the horizontal line for
s = ;5:325 + j5. The gain that places twoofthe closed loop poles at
s = ;5:325 j5is
K =
jsjjs+1jjs+15j
js+3j
j
s=;5:325+j5
= 95:375
To nd the third closed loop pole wesearchalong the real axis to the right
of s = ;15 looking for this same value of gain. The calculation is exactly the
same, weare just using dierenct values of s Table 2 summarizes this search.
Thus the third pole is at s = ;5:467, and the characteristic polynomial is
p(s)=(s+5:467)(s+5:325; j5)(s+5:325+ j5)
Wecancheck this result with the MATLAB dialogue
2
EDU>g = zpk([-3],[0 -1 -15],94.3682)
Zero/pole/gain:
94.3682 (s+3)
--------------
s(s+1) (s+15)
EDU>tc = feedback(g,1)
Zero/pole/gain:
94.3682 (s+3)
--------------------------------
(s+5.467) (s^2 + 10.53s + 51.78)
EDU>p=[1 10.53 51.78];;
EDU>roots(p)
ans =
-5.2650+ 4.9051i
-5.2650- 4.9051i
EDU>
and weseethat weare reasonably close.
3