Solution 7.9.6.6
For the system of Figure 1 wehave
R
+ C
G
c
G
p
Σ
-
Figure 1: Cascade Compensation with UnityFeedback
G
p
=
1
(s +1)
2
and G
c
(s)=
K
c
(s +1)(s+ z
1
)
s(s +20)
Part a.
G
c
(s)G
p
(s) =
K
c
(s + z
1
)
s(s +1)(s +20)
Satisfaction of the angle condition is shown in Fig. 2 The angle equation
that must be solved at s = ;5+j4is
6
s + z
1
;
6
s;
6
s +1;
6
s +20=;180
or
6
s + z
1
=
6
s +
6
s +1+
6
s +20;180
= 141:3
+135
+14:9
;180
= 111:3
Then
z
1
=5;
4
tan(68:7
)
=5;1:55 = 3:44:
Then, asshown in the gure,
K
c
=
jsjjs +1jjs +20j
js +3:44j
s=;5+j4
=
p
41
p
32
p
241
p
18:425
= 131
1
Im(s)
-20 -z
1
-1
-5
4
θ
3
θ
2
θ
1
α
s + 20 s + 1
s
s + z
1
Figure 2: Satisfaction of Angle Condition
Thus
G
c
(s)=
131(s+1)(s+3:44)
s(s +20)
:
The unit step response is
c(t)=[1+1:731e
;11t
+3:0445e
;5t
cos(4t +2:6836)]1(t):
The following MATLAB dialogue generates the unit step response shown in
Figure 3.
EDU>gcgp = zpk([-3.44],[0 -1 -20],131)
Zero/pole/gain:
131 (s+3.44)
--------------
s(s+1) (s+20)
EDU>tc = feedback(gcgp,1)
Zero/pole/gain:
131 (s+3.44)
--------------------------------
(s+10.99) (s^2 + 10.01s + 40.99)
EDU>step(tc,4)
2
EDU>print -deps sr7966.eps
EDU>
Time (sec.)
Amplitude
Step Response
0 0.5 1 1.5 2 2.5 3 3.5 4
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Figure 3: Step response of compensated system
3