Solution 7.9.6.9
R
+
C
G
c
G
p
Σ
-
For the system shown abovewehave
G
p
(s)=
6
(s +2)(s +3)
and G
c
(s)=
K
c
(s + z
1
)(s + z
2
)
(s + p
1
)(s +15)
:
To meet the accuracy requirement one of the poles of the compensator
must be at s =0.Tohaveaclosed loop transfer function with three poles,
one of the poles of the plantmust be cancelled. There are thus twochoices
for the compensator, either
(a) G
c
(s)=
K
c
(s + 2)(s+ a)
s(s + 15)
;; or (b) G
c
(s)=
K
c
(s + 3)(s+ a)
s(s +15)
:
In either case, the location of the zero can be found bysatisfying the angle
condition at s = ;4 j2, as shown in Figure 1.
For case (a), the analysis is identical, with
= [180
;tan
;1
(2=4)]+ [180
;tan
;1
(2=1)]+ tan
;1
(2=11);180
= 153:43
+116:6
+17:99
;180
= 100:05
:
-a-15 -4
j 2
θ
1
θ
2
θ
3
α
Re(s)
j Im(s)
-2 or -3
Figure 1: Satisfaction of Angle Condition at s = ;4+j2
1
Hence
a = 4;
2
tan(180
;100:05
)
= 4;
2
tan(79:95
)
= 3:636:
The gain to place the poles at s = ;4j2isthen
K
c
=
jsjjs+3jjs+15j
6js +3:636j
j
s=;4+j2
=
p
2
2
+4
2
p
2
2
+1
2
p
2
2
+11
2
6
p
2
2
+0:364
2
= 9:167
The following MATLAB dialogue veries these calculations and plots
the unit step response shown in Figure 2.
EDU>gcgp = zpk([-3.636],[0 -3 -15],55)
Zero/pole/gain:
55 (s+3.636)
--------------
s(s+3) (s+15)
EDU>tc = feedback(gcgp,1)
Zero/pole/gain:
55 (s+3.636)
-----------------------------
(s+9.999) (s^2 + 8.001s + 20)
EDU>step(tc,4)
EDU>print -deps sr7969a.eps
EDU>
The unit step response is
c(t)=[1+0:875e
;10t
+1:9764e
;4t
cos(2t;2:8198)]1(t):
2
Time (sec.)
Amplitude
Step Response
0 0.5 1 1.5 2 2.5 3 3.5 4
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Figure 2: Unit step response for case(a)
For case (b), satisfaction of the angle condition of the root locus at
s = ;4 j2 requires that
= [180
;tan
;1
(2=4)]+ [180
;tan
;1
(2=2)]+ tan
;1
(2=11);180
= 153:43
+135
+10:3
;180
= 118:74
:
Hence
a = 4;
2
tan(180
;118:74
)
= 4;
2
tan(61:26
)
= 2:903
The gain to place the poles at s = ;4j2isthen
K
c
=
jsjjs+2jjs+15j
6js +2:903j
j
s=;4+j2
=
p
2
2
+4
2
p
2
2
+2
2
p
2
2
+11
2
6
p
2
2
+1:097
2
= 10:333
3
Time (sec.)
Amplitude
Step Response
0 0.5 1 1.5 2 2.5 3 3.5 4
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Figure 3: Unit step response for case(b)
The following MATLAB dialogue veries these calculations and plots the
unit step response shown in Figure 3.
EDU>gcgp = zpk([-2.903],[0 -2 -15],62)
Zero/pole/gain:
62 (s+2.903)
--------------
s(s+2) (s+15)
EDU>tc = feedback(gcgp,1)
Zero/pole/gain:
62 (s+2.903)
---------------------
(s+9) (s^2 + 8s + 20)
EDU>step(tc,4)
EDU>print -deps sr7969b.eps
EDU>
4