Solution: 7.9.6.8
R
+
C
G
c
G
p
Σ
-
For the system shown abovewehave
G
p
(s)=
10
(s +1)(s +2)
and G
c
(s)=
K
c
(s + z
1
)(s + z
2
)
(s + p
1
)(s +15)
:
To meet the accuracy requirement one of the poles of the compensator
must be at s =0.Tohaveaclosed loop transfer function with three poles,
one of the poles of the plantmust be cancelled. There are thus twochoices
for the compensator, either
(a) G
c
(s)=
K
c
(s + 1)(s+ a)
s(s + 15)
;; or (b) G
c
(s)=
K
c
(s + 2)(s+ a)
s(s +15)
:
In either case, the location of the zero can be found bysatisfying the angle
condition at s = ;4 j2, as shown in Figure 1.
For case (a), satisfaction of the angle condition of the root locus at
s = ;4 j2 requires that
= [180
;tan
;1
(2=4)]+ [180
;tan
;1
(2=2)]+ tan
;1
(2=11);180
= 153:43
+135
+10:3
;180
= 118:73:
-1 or -2
-a
-15 -4
j 2
θ
1
θ
2
θ
3
α
Re(s)
j Im(s)
Figure 1: Satisfaction of Angle Condition at s = ;4+j2
1
Hence
a = 4;
2
tan(180
;118:73
)
= 4;
2
tan(61:27
)
= 4;1:096 = 2:903:
The gain to place the poles at s = ;4j2isthen
K
c
=
jsjjs+2jjs+15j
10js+2:903j
s=;4+j2
=
p
2
2
+4
2
p
2
2
+2
2
p
2
2
+11
2
10
p
2
2
+1:1
2
= 6:2
The following MATLAB dialogue veries these calculations and nds the
unit step response shown in Figure 2.
EDU>gcgp = zpk([-2.903],[0 -2 -15],62)
Zero/pole/gain:
62 (s+2.903)
--------------
s(s+2) (s+15)
EDU>tc = feedback(gcgp,1)
Zero/pole/gain:
62 (s+2.903)
---------------------
(s+9) (s^2 + 8s + 20)
EDU>step(tc,4)
EDU>print -deps sr7968a.eps
EDU>
The unit step response is
c(t)=[1+1:4483e
;9t
+2:9361e
;4t
cos(2t; 2:5568)]1(t):
2
Time (sec.)
Amplitude
Step Response
0 0.5 1 1.5 2 2.5 3 3.5 4
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Figure 2: Unit step response for case (a)
For case (b), the analysis is identical, with
= [180
;tan
;1
(2=4)]+ [180
;tan
;1
(2=3)]+ tan
;1
(2=11);180
= 153:43
+146:31
+10:3
;180
= 130:05:
Hence
a = 4;
2
tan(180
;130:05
)
= 4;
2
tan(49:95
)
= 4;1:68 = 2:319:
The gain to place the poles at s = ;4j2isthen
K
c
=
jsjjs+1jjs+15j
10js+2:319j
s=;4+j2
=
p
2
2
+4
2
p
2
2
+3
2
p
2
2
+11
2
10
p
2
2
+1:68
2
= 6:9
3
Time (sec.)
Amplitude
Step Response
0 0.5 1 1.5 2 2.5 3 3.5 4
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Figure 3: Unit step response for case (b)
The following MATLAB dialogue veries these calculations and plots the
unit step response shown in Figure 3.
EDU>gcgp = zpk([-2.319],[0 -1 -15],69)
Zero/pole/gain:
69 (s+2.319)
--------------
s(s+1) (s+15)
EDU>tc = feedback(gcgp,1)
Zero/pole/gain:
69 (s+2.319)
-----------------------------
(s+8.001) (s^2 + 7.999s + 20)
EDU>step(tc,4)
EDU>print -deps sr7968b.eps
EDU>
4
The unit step response is
c(t)=[1+2:45e
;8t
+4:507e
;4t
cos(2t; 2:4426)]1(t):
5