Solution: 7.9.6.7
For the system of Figure 1 wehave
R
+
C
G
c
G
p
Σ
-
Figure 1: Cascade Compensation with UnityFeedback
G
p
=
1
(s +1)
2
and G
c
(s)=
K
c
(s +1)(s+ z
1
)
s(s +20)
:
Part a.
G
c
(s)G
p
(s) =
K
c
(s + z
1
)
s(s +1)(s +20)
Satisfaction of the angle condition is shown in Fig. 2 The angle equation
that must be solved at s = ;8+j6is
6
s + z
1
;
6
s;
6
s +1;
6
s +20=;180
or
6
(s + z
1
) =
6
(s)+
6
(s +1)+
6
(s +20);180
= 143:1
+139:4
+26:6
;180
= 129:1
Im(s)
-20 -z
1
-1
-8
6
θ
3 θ
2
θ
1
α
s + 20 s + 1
s
s + z
1
Figure 2: Satisfaction of Angle Condition
1
Then
z
1
=8;
6
tan(51
)
=3:125:
Then, asshown in the gure,
K
c
=
jsjjs +1jjs +20j
js +3:125j
s=;8+j4
=
p
100
p
85
p
180
p
59:77
= 160
Thus
C
c
(s)=
160(s+ 1)(s+3:125)
s(s +20)
:
The unit step response is
c(t)=[1+1:333e
;5t
+3:0732e
;8t
cos(6t; 2:433)]1(t):
The following MATLAB dialogue validates these results and plots the unit
step response shown in Figure 3
EDU>gcgp = zpk([-3.125],[0 -1 -20],160)
Zero/pole/gain:
160 (s+3.125)
--------------
s(s+1) (s+20)
EDU>tc = feedback(gcgp,1)
Zero/pole/gain:
160 (s+3.125)
-----------------------
(s+5) (s^2 + 16s + 100)
EDU>step(tc,4)
EDU>print -deps sr7967.eps
EDU>
2
Time (sec.)
Amplitude
Step Response
0 0.5 1 1.5 2 2.5 3 3.5 4
0
0.2
0.4
0.6
0.8
1
1.2
1.4
Figure 3: Unit step response of compensated system
3