Solution: 7.9.6.5
For the system of Figure 1 wehave
Σ
G
C
G
P
+
R
C
Figure 1: Cascade Compensation with UnityFeedback
G
p
(s)=
1
(s +1)(s+2)(s+20)
and G
c
(s)=
K
c
(s + 2)(s + z
1
)
s(s + 40)
:
Part a.
Wehave
G
c
G
p
=
K
c
(s + z
1
)
s(s + 1)(s +20)(s+40)
Wehavetond the crossing pointoftheline of constantdamping furthest
from the origin. Todosowe use the MATLAB dialogue
EDU>gcgp = zpk([-1.5],[0 -1 -20 -40],1)
Zero/pole/gain:
(s+1.5)
---------------------
s(s+1) (s+20) (s+40)
EDU>rlocus(gcgp)
EDU>print -deps rl7965a.eps
EDU>
to generate the root locus shown in Figure 2. Then wehavetondthepoint
where the equation
;
1
;
2
;
3
;
4
= ;180
is satised alomg the raycorresponding to a damping ratio of =1=
p
2, as
shown in Fig. 3. Wedothisbytrial and error, as summarized in the Table 1
1
-50 -40 -30 -20 -10 0 10
-25
-20
-15
-10
-5
0
5
10
15
20
25
Real Axis
Imag Axis
x x x
Figure 2: Root locus with zero as s = ;1:5
Im(s)
-40 -20 -1.5 -1
θ
2
θ
1θ
3
θ
4 α
Re(s)
Figure 3: Satisfaction of Angle Condition alomg Line of ConstantDamping
2
s -6.5 + j6.5 -7 + j7 -7.5 + j7.5 -7.33 + j7.33
6
G
c
G
p
;174:4
;177:7
;181:2
;180
Table 1:
Thus the maximum damped frequency is 7.33 rad/s. The gain required to
place the closed loop poles at s = ;7:33 j7:33 is
K
c
=
jsjjs +20jjs+40j
js +1:5j
s=;7:33+j7:33
=5253:6:
The following MATLAB dialogue nds and save the step response shown in
Figure 4.
EDU>gcgp = zpk([-1.5],[0 -1 -20 -40],5253.6)
Zero/pole/gain:
5253.6 (s+1.5)
---------------------
s(s+1) (s+20) (s+40)
EDU>tc = feedback(gcgp,1)
Zero/pole/gain:
5253.6 (s+1.5)
-----------------------------------------
(s+44.7) (s+1.641) (s^2 + 14.66s + 107.4)
EDU>step(tc,4)
EDU>print -deps sr7965a.eps
EDU>
The unit step response is
c(t)=[1+0:1218e
;1:641t
;0:0813e
;44:7t
+1:8328e
07:33t
cos(7:33t;2:17455)]1(t):
part(b)
The same as part (a) except wemove the free zero close to the origin at
s = ;0:1. The following MATLAB dialogue creates the root loucs shown
in Figure 5 Then the root locus crosses the line of constant damping for
3
Time (sec.)
Step Response
0.5 1 1.5 2 2.5 3 3.5 4
0.2
0.4
0.6
0.8
1
1.2
1.4
Figure 4: Step response with zero at s = ;1:5
-50 -40 -30 -20 -10 0 10
-25
-20
-15
-10
-5
0
5
10
15
20
25
Real Axis
Imag Axis
x x
Figure 5: Root locus with zero as s = ;1:5
4
s = ;8:1+j8:1foragain of K
c
=5134:8.
The following MATLAB dialogue generates the step response shown in
Figure 6.
EDU>gcgp = zpk([-0.1],[0 -1 -20 -40],5134.8)
Zero/pole/gain:
5134.8 (s+0.1)
---------------------
s(s+1) (s+20) (s+40)
EDU>tc = feedback(gcgp,1)
Zero/pole/gain:
5134.8 (s+0.1)
------------------------------------------
(s+44.74) (s+0.08763) (s^2 + 16.18s + 131)
EDU>step(tc,40)
EDU>print -deps sr7965b.eps
EDU>
The time response in this case is
c(t)=[1;0:1253e
;0:0876t
;0:08146e
;44:74t
+1:475e
8:1t
cos(8:1t;2:13852)]1(t):
The responses are remarably dierent, emphasizing the point that puttting
the zero of the PI compensator close to the origin is not generally a good
choice.
5
Time (sec.)
Step Response
5 10 15 20 25 30 35 40
0.2
0.4
0.6
0.8
1
1.2
1.4
Figure 6: Root locus with zero as s = ;0:1
6