5 ?
?
15
??Qf
?p?E5
? ¨?l£
ü b (cos ) sinxx′ =?
£ ??
2
sin)
2
sin(2cos)cos(
xx
xxxx
??
+?=??+
? ¥ ????sin x sin( ) ( 0)
22
xx
x
??
?→~ V?
000
sin
cos( ) cos
2
lim lim sin( ) lim sin
2
2
xxx
x
xx x x
x x
x
x
?→ ?→ ?→
?
+? ? ?
=? + ? =?
?
?
b
2. £
ü
ò xxx csccot)(csc ?=
′
ó xx
2
csc)(cot ?=′
?
(arccos )x
x
′=?
?
1
1
2
?
2
1
1
)cot(arc
x
x
+
?=′
?
(ch )
?
′ =
?
1
2
1
1
x
x
× (th ) (cth )
??
′ = ′ =
?
11
2
1
1
xx
x
3
1 xx
x
x
x
x
x
x csccot
sin
cos
sin
)'(sin
sin
1
)'(csc
22
'
?=?=?=
?
?
?
?
?
?
= b
2 x
xx
x
x
x
x
x
2
22
2
2
'
csc
sin
1
tan
sec
tan
)'(tan
tan
1
)(cot ?=?=?=?=
?
?
?
?
?
?
=′ b
3
2
1
1
)'arcsin
2
()(arccos
x
xx
?
?=?=′
π
b
4
2
1
1
)'arctan
2
()cot(arc
x
xx
+
?=?=′
π
b
5
1
22
11 1 1
(ch )
(ch )' sh
ch 1 1
x
yy
yx
?
′=== =
? ?
b
6
1
22
11 11
(th ) =
(th )' sech 1 th 1
x
yyy
?
′== =
2
x? ?
64
1
22
11 1
(cth )
(cth )' csch cth 1 1
x
yyy
?
′==?=? =
2
x? ?
b
3. p/
f
?¥?f
?
ò xxxxf ?+= lnsin3)( ó 3cos)(
2
++= xxxxf
? fx x x x() ( )sin=+?
2
75 ? )sec2tan3()(
2
xxxxf +=
?
fx x x
x
x
() esin cos=?+4
3
×
fx
xx
x
x
()
sin
=
+ ?22
2
3
? fx
x x
()
cos
=
+
1
ù
fx
xx
x
()
sin ln
=
x?
+
2
1
ú
x
xx
xf
ln
cot
)(
3
+
= ? fx
xx x
x x x
()
sin cos
sin cos
=
+
?
ü fx x x
x
( ) (e log )arcsin=+
3
Y xxxxxf sh)ln3(csc)(
2
?=
T fx
xx
x x
()
sec
csc
=
+
?
?
x
xx
xf
tanarc
sin
)(
+
=
3
1
x
x
xxxxxf
2
11
cos3)'()'(ln)'sin3()(' ?+=?+= b
2 b xxxxxxxxxxf 2sincos)'3()'()'(coscos')('
2
+?=+++=
3 )')(sin57(sin)'57()('
22
xxxxxxxf ?++?+=
xxxxx cos)57(sin)72(
2
?+++= b
4 )'sec2tan3()sec2tan3()'()('
22
xxxxxxxf +++=
)sectan2sec3()sec2tan3(2
22
xxxxxxx +++= b
5 )'
3
()'cos4()'(sinsin)'()('
x
xxexexf
xx
+?+=
3
2
3
(sin cos ) 4sin
2
x
ex x xx
?
=++? b
6 )')(2sin2()'2sin2()('
3
2
3
2
??
?++?+= xxxxxxxf
xx
65
3
5
3
2
)2sin2(
3
2
)2ln2cos21(
??
?+??+= xxxxx
xx
b
7
22
)cos(
1sin
)cos(
)'cos(
)('
xx
x
xx
xx
xf
+
?
=
+
+
?= b
8
2
)1(
)'1)(ln2sin()1()'ln2sin(
)('
+
+??+?
=
x
xxxxxxxx
xf
2
2
)1(2
)ln2sin()1)(2cossin(2
+
??+?+
=
xx
xxxxxxxxx
b
9
33
2
(cot)'ln(cot)(ln)
'( )
ln
'x xxx xx
fx
x
+?+
=
22 3
2
(3 csc ) ln cot
ln
x xx x x x
xx
??
= b
10 )'
cossin
cos2
1()('
xxx
x
xf
?
+=
2
)cossin(
)'cossin(cos2)cossin()'cos2(
xxx
xxxxxxxx
?
???
=
2
)cossin(
)cossin(2
xxx
xxx
?
+?
= b
11 )')(arcsinlog(arcsin)'log()('
33
xxexxexf
xx
+++=
2
1
1
)
3ln
ln
(arcsin)
3ln
1
(
x
x
ex
x
e
xx
?
+++= b
12
22
'( ) (csc 3ln )' sh (csc 3ln )( )'shf xxxxxxxx=? +? x
2
(csc 3ln ) (sh ) 'x xx x+?
xxxxxxxxxx
x
xx ch)ln3(cscsh)2)(ln3(cscsh)
3
csc(cot
22
?+?++?=
)chsh2)(ln3(cscsh)3csccot(
2
xxxxxxxxxxx +?++?= b
13
2
)csc(
)'csc)(sec()csc()'sec(
)('
xx
xxxxxxxx
xf
?
?+??+
=
2
)csc(
)csccot1)(sec()csc)(sectan1(
xx
xxxxxxxx
?
++??+
= b
66
14
x
xxxxxx
xf
2
arctan
)')(arctansin(arctan)'sin(
)('
+?+
=
xx
xxxxx
22
2
arctan)1(
)sin(arctan)cos1)(1(
+
+?++
= b
4. pwL (e )¥MLZ??ELZ? b yx= ln , )1
3 y1
ex
ey
ex
11
)(' ==
=
MLZ?1
1
()1
x
yxe
ee
=?+=,
ELZ?1
2
()1 (yexe exe=? ? + =? + +1) b
5. ? |?′
H°La y x= ?DwL yx
a
= log MMM?' ú$
3
!M?1 ? ?),(
00
xx xy =
^ () log
a
yfx x= = ¥ML |
q1 1
?[ 1
ln
1
)('
0
0
==
ax
xf #
a
x
ln
1
0
= b? ?
0
00
ln
()log
ln
a
x
0
f xx
a
x= ==¤ ?
1ln
0
=x ' ex =
0
V7 M?1 b
1?
=
e
ea ),( ee
6 pwL
n
V? (, ¥MLDyx=
+
∈Nn )11 xà¥??¥?US
ipK b
x
n
lim ( )
n
n
yx
→∞
3 y1 nxny
x
n
==
=
?
1
1
)1('
?[V? ¥ML1(, )11 1)1( +?= xny
? D
xà??¥?US1
1
n
n
x
n
?
= yN
en
n
xy
n
n
n
n
1
)
1
(lim)(lim =
?
=
∞→∞→
b
7. ??tL
!"? yax bxc=++
2
}),(|),{(S
1
ML V[T??tL¥
HV yxyx=
S{(,)|(,)
2
= xy xyV o V[T??tL¥BHML }
S {(, )| (, ) }
3
= xy xyV ??T??tL¥ML
hsYp???"??¥í
í
?
?@¥Hq b
67
3 ?^
! ?tL 7 g_
bV V[T??tL 0≠a 0>a ),( yx
HML?O?? ??tL¥/Z ' b] ?? ),( yx cbxaxy ++<
2
0<a
H , yN cbxaxy ++>
2
{ }0)(|),(
2
1
>?++= ycbxaxayxS b
V o V[T??tLBHML?O?? ??tL
),( yx ),( yx
?[
{ }0|),(
2
2
=?++= ycbxaxyxS b
?N¤?
{ }0)(|),()(
2
213
<?++== ycbxaxayxSSS
C
∪ b
8. ò
! ) V? fx() xx=
0
gx() xx=
0
)? V?£
ü
cf x cgx
12
() )+(
2
(0c ≠ )xx=
0
)9? V? b
ó
! D )?? V? , ???
)B? V?B?? V?$
fx() gx() xx=
0
))(
21
xgcxfc (+
xx=
0
3
1: ))()(
21
xgcxfcxh (+= ? 0
2
≠c
H ?T ) V?
5
)(xh xx=
0
21
/)]()([)( cxfcxhxg ?= xx=
0
)9 V?V7á
3
± b
2 ? ?? b ? )()( xfxg = x= ?
21
cc ?=
H ))(
21
xgcxfc (+
)
^ V?¥ ?
H
0=x
21
cc ?≠ ))(
21
xgcxfc (+ 0=x )? V? b
9.
5¥Hq/)
? fxgx()() xx=
0
)¥ V?f ? b
3 f
? ) V ? ()fx c= 0x= () | |gx x= 0x= )? V? 5
?
H ) V??
fxgx()()
0c = 0x= 0c ≠
H 0x= )? V? b
f
? () () | |fx gx x== 0x= )?? V??
2
()()f xgx x= ) V
? b f
?
0x=
() () sgn| |fx gx x== 0x= )?? V? ()() sgn| |fxgx x= 0x=
68
)9? V? b
10
!
1]BuW
¥ V?f
?£
ü )(xf
ij
nji ,,2,1, null=
∑
=
′′′=
n
k
nnnn
knkk
n
nnnn
n
n
xfxfxf
xfxfxf
xfxfxf
xfxfxf
xfxfxf
xfxfxf
dx
d
1
21
21
11211
21
22221
11211
)()()(
)()()(
)()()(
)()()(
)()()(
)()()(
null
nullnullnull
null
nullnullnull
null
null
nullnullnull
null
null
b
£ ? ?
T¥?l
11 12 1
21 22 2
12
() () ()
() () ()
() () ()
n
n
nn n
f xfx fx
f xfx fx
d
dx
f xfx fx
null
null
nullnull null
null
12
12
()
(1) () () ()
n
n
Nkk k
kk k
d
f xf x f x
dx
=?
∑
null
null
12
12 12
12
()
12
(1) [ () () () () () ()
() () ()]
n
nn
n
Nkk k
k k nk k k nk
kk k
fxfx fxfxfx fx
fxfx fx
′′=? + +
′+
∑
null
nullnull
null
null
11 12 1
21 22 2
12
'() '() '()
() () ()
() () ()
n
n
nn n
f xfx fx
fx fx fx
fx fx fx
=+
null
null
nullnull null
null
11 12 1
21 22 2
12
() () ()
'() '() '()
() () ()
n
n
nn n
fx fx fx
fxfx fx
fx fx fx
+
null
null
null
nullnull null
null
11 12 1
21 22 2
12
() () ()
() () ()
'() '() '()
n
n
nn n
f xfx fx
f xfx fx
f xf x fx
+
null
null
nullnull null
null
11 12 1
12
1
12
() () ()
() () ()
() () ()
n
n
kk kn
k
nn n
f xfx fx
f xfx fx
f xfx fx
=
′′ ′=
∑
null
nullnull null
null
nullnull null
null
b
69