1
第一章 一元函数的极限与连续
第一节 一元函数
习题 1-1
1,求下列函数的定义域,
(1)
2
1
253
y
xx
=
+?; (2) sin cosyxx=?;
(3) ln( 1)yx=+; (4)
1
1
e
x
y
=,
解 (1) 由
2
2530xx+?≠且
2
2530xx+?≥得函数定义域为(,3)?∞? ∪
1
(,)
2
+∞,
(2) 由sin cos 0xx?≥得函数定义域为
π 5π
[2π,2π]
44
kk++,k为整数,
(3) 由10x +>得函数定义域为(1,)? +∞,
(4) 由10x?≠得函数定义域为(,1)(1,)?∞+∞∪,
2,下列函数()f x和()x?是否相同,为什么?
(1)
2
11
(),()
11
x
fx x
xx
==
+?;
(2)
2
( ) ln,( ) 2lnf xxx x?==;
(3)
22
() 1,() sec tanf xxxx?==?;
(4)
2
() 1 1,() 1fx x x x x?= +? =?,
解 (1) ( )f x定义域为{1,}xx x≠± ∈R,( )x?定义域为{1,}xx x≠? ∈R,两函数定义域不同,故为不同函数,
(2) ( )f x定义域为{0,}xx x≠∈R,( )x?定义域为{0,}xx x>∈R,两函数定义域不同,故为不同函数,
2
(3) ( )f x定义域为R,( )x?定义域为
π
{ π,}
2
xx k k≠+ ∈Z,两函数定义域不同,
故为不同函数,
(4) ( )f x定义域为[1,)+∞,( )x?定义域为(,1][1,)?∞? +∞∪,两函数定义域不同,故为不同函数,
3,已知() 2,() ln
x
f xgxxx==,求[ ( )],[ ( )],[ ( )],[ ( )]f gx g f x f f x g gx,
解
ln
[()] 2
x x
fgx= ;
[ ( )] 2 ln 2 (ln 2) 2
x xx
g fx x== ;
2
[()] 2
x
ffx= ;
[()] ln ln(ln)g gx x x x x=,
4,下列函数是由哪些简单函数复合而成的?
(1)
2
cos (1 2 )yx=+; (2)
2
ln( 1 )yx x=++;
(3)
2
sin
e
x
y = ; (4)
2
arcsin 1yx= +,
解 (1)
2
yu=,cosuv=,12vx= +,
(2)
2
ln,,1yuuxvv x= =+ =+,
(3)
2
e,,sin
u
yuvvx===,
(4)
2
arcsin,,1yuuvx= ==+,
5,求下列函数的反函数及反函数的定义域,
(1) ln( 2) 1yx=++; (2)
2
π
cos 2,[0,]
2
yxx=+∈;
(3)
2
21
x
x
y =
+; (4)
1
sin ( 0)
1
x
yx
x
= ≥
+;
(5) (0)
ax b
yadbc
cx d
+
=?≠
+; (6)
2
,1,
,1 4,
2,4,
x
xx
yx x
x
∞< <?
=≤≤
< <+∞
解 (1) 由ln( 2) 1yx=++,知y∈R,且
1
e2
y
x
=?,故反函数为:
1
e2
x
y
=?,
反函数的定义域为R,
3
(2) 由
2
π
cos 2,[0,]
2
yxx=+∈,知[2,3]y∈,且arccos 2xy=?,故反函数为,arccos 2yx=?,反函数的定义域为[2,3],
(3) 由
2
21
x
x
y =
+
,知(0,1)y∈,且
2
log
1
y
x
y
=
,故反函数为:
2
log
1
x
y
x
=
,反函数的定义域为(0,1),
(4) 0x ≥∵,
1
11
1
x
x
∴? ≤ <
+
,故
1
sin [ sin1,sin1)
1
x
y
x
=∈?
+
,又
1arcsin
1arcsin
y
x
y
+
=
,
故反函数为:
1arcsin
1arcsin
x
y
x
+
=
,反函数的定义域为[sin1,sin1)?,
(5) 当0c =时,易知反函数为
db
yx
aa
=?,反函数的定义域为R,
当0c ≠时,
ad
b
ax b a
c
y
cx d c cx d
+
==+
++
,0ad bc? ≠,知
a
y
c
≠,又
dy b
x
cy a
+
=
,故反函数为:
dx b
y
cx a
+
=
,反函数的定义域为(,)(,)
aa
cc
∞+∞∪,
(6) 当1x?∞< <时,(,1)yx=∈?∞,所以x y=,(,1)y∈?∞ ;
当14x≤≤时,
2
[1,16]yx=∈,所以x y=,[1,16]y∈ ;
当4 x<<+∞时,2 (16,)
x
y =∈ +∞,故
2
logx y=,(16,)y∈ +∞,
故反函数为
2
,1,
,116,
log,16,
xx
yx x
xx
∞< <?
=≤≤
< <+∞
6,讨论下列函数的奇偶性,
(1)
32
2yxx=?; (2) 11yxx=?+ +;
(3)
1
sinyx
x
= ; (4)
22
ee sin
xx
yx
=? +,
解 (1) 函数定义域为R,
3232
2( ) ( ) 2x xxx =∵,故函数为非奇非偶函数,
(2) 函数定义域为[1,1]?,1( ) 1( ) 1 1x xxx++?=?++∵,故函数为偶函数,
4
(3) 函数定义域为(,0)(0,)?∞ +∞∪,
11
()sin sin
()
xx
x x
=
∵,故函数为偶函数,
(4) 函数定义域为R,
(2) (2) 2 2
ee sin()(eesin)
xx xx
x x
+?=+∵,故函数为奇函数,
7,证明,
(1) 两个偶函数之和是偶函数,两个奇函数之和是奇函数;
(2) 两个偶函数之积是偶函数,两个奇函数之积是偶函数,偶函数与奇函数之积是奇函数,
证 (1) 设()f x和()g x为偶函数,则
() () () ()f xgx fxgx? +?= +,
故()f x ()g x+为偶函数;
设()f x和()g x为奇函数,则
() () () () [() ()]f xgx fxgx fxgx?+?= =? +,
故()f x ()g x+为奇函数,
(2) 设()f x和()g x为偶函数,则
()() ()()f xgx fxgx=?,
故() ()f xgx?为偶函数;
设()f x和()g x为奇函数,则
()()[ ()][()] ()()f xgx fx gx fxgx==?,
故() ()f xgx?为偶函数;
设()f x为偶函数,()g x为奇函数,则
( ) ( ) ()[ ()] () ()f xgx fx gx fxgx= =,
故() ()f xgx?为奇函数,
8,证明,若对任何x均有()()f ax fax+ =?( a为常数),则()f x关于x a=对称,
证 设点(,)P xy是函数()yfx=图像上任一点,由
() ( ( ))f xfaxa=+? (( )f axa= (2 )f ax y=?=,
知,点(2,)P axy′?也在函数图像上,而点(,)P xy与点(2,)P axy′?关于x a=对称,
故()f x关于x a=对称,
9,证明,
(1) 两个单调递增(递减)的函数之和是单调递增(递减)的;
(2) 两个单调递增(递减)的正值函数之积是单调递增(递减)的;
证 (1) 设(),()f xgx为单调递增函数,则
12
,x x?,
12
x x>,有
11 2 2
() () () ( )f xgx fx gx+>+,
故() ()f xgx+是单调递增函数,即两个单调递增函数之和是单调递增的,类似可证
5
两个单调递减函数之和是单调递减的,
(2) 设(),()f xgx为单调递增的正值函数,则
12
,x x?,
12
x x>,有
12
() () 0fx fx>>,
12
() ( ) 0gx gx>>,
故
11 2 2
() () () ()f xgx fx gx?>?,所以() ()f xgx?是单调递增函数,即两个单调递增正值函数之积是单调递增的,类似可证两个单调递减正值函数之积是单调递减的;
10,下列函数中,哪些是周期函数? 如果是,则求其最小正周期,
(1)
2
sin ;yx= (2) cosyx x= ;
(3)
2
cos ;yx= (4)
π
sin( ) ( 0)
3
yxωω= +≠,
解 (1)
2
cos 2 1 1 1
sin cos 2
22 2
x
yx x
= ==?,故为周期函数,最小正周期为π,
(2) 非周期函数,
(3)
2
cos 2 1 1 1
cos cos 2
22 2
x
yx x
+
== = +,故为周期函数,最小正周期为π,
(4) 是周期函数,最小正周期为
2π
ω
,
11,利用sinyx=的图形,作下列函数的图形,
(1) sinyx= ; (2)
1
sin
2
yx= ;
(3) sin 2yx= ; (4)
π
3sin(2 )
2
yx=+,
解 (1) 如图1.1(a),
(2) 如图1.1(b),
(3) 如图1.1(c),
(4) 如图1.1(d),
O
1
y
x
图1.1(a)
x
O
1
2
y
图1.1(b)
6
12,作下列函数的图形,
(1)
2
1yx=?; (2) ln(1 )yx=? ;
(3) sgn(sin )yx=,
解 (1) 如图1.2(a),
(2) 如图1.2(b),
(3) 如图1.2(c),
x
O
1
2π2π?
y
图1.1(c)
O
y
7π
4
9π
4
π
4
3
x
图1.1(d)
1
y
x O
图1.2(b)
y
x
O
1
2π
2π?
π?
1?
π
图1.2(c)
1
1
1?
y
x O
图1.2(a)
7
13,(1) 设
2
1
() 1 ( 0)fxx
x
=+ >,求()f x ;
(2) 设(sin ) 1 cos
2
x
f x=+,求(cos )f x,
解 (1) 由
2
1
() 1f x
x
=+,知
22
11
() 1 ( ) 1f xx
xx
= +=+,
(2)
2
(sin ) 1 cos 2 2sin
22
x x
fx=+ =?,∴
2
() 2 2f xx=?,故
(cos )f x
2
22cosx=?
2
2sin x=,
14,设
1,1,
() sgn 0,1,
1,1
x
fx x x
x
<
== =
>
及() e
x
gx=,求[()]f gx和[()]g fx,并作出两个函数的图形,
解 当0x <时,() e 1
x
gx =<; 当0x =时,() e 1
x
gx = = ; 当0x >时,()g x
e1
x
=<,故
1,0,
[ ( )] 0,0,
1,0 ;
x
fgx x
x
<?
==
>
同样易得[()]g fx
e,1,
1,1,
1
,1.
e
x
x
x
<
= =
>
图形见图1.3(a)和1.3(b),
15,证明,
(1) sh sh 2sh ch
22
x yxy
xy
+?
+= ;
(2)
1
sh ch [sh( ) sh( )]
2
x yxyxy=++?,
证 (1)
2222
ee ee
2sh ch 2
2222
x yxyxyxy
xy xy
+ +
+ +
=
O
1
1?
x
图1.3(a)
y
O 1
1?
x
1
e
1
e
图1.3(b)
y
8
ee ee ee ee
sh sh
222
xxyyxxyy
x y
+
==?=+,
故结论得证,
(2)
() ()
11ee
[sh( ) sh( )]= [ ]
2222
x yxyxyxy
xy xy
+?+
++? +
eeee
sh ch
22
xxyy
x y
+
=?=,
结论得证,