1
?
1? K¥'?é
5 1-4
1,£
ü
 1,0,1,0," ¥K?i,
£ ¨ {}
n
u V
UN
,5^??
¥0

21
{}
n
u
+
l ?? 0,
2
{}
n
u
l ??
1,?
l ?
D 0
-W¥1"?,?
¥K?i,
2,
k£
ü
0
x x→
Hf
K¥ ?μ??? ?,
£
!
0
lim ( )
xx
f xA

=,5?K?l,0ε? >,0δ? >,
P¤?
0
0 x x<?
δ<,μ ()fx A ε?<,' ()AfxAε ε?< <+,' ()f x 
0
(,)Uxδ
D
=μ?,
3,£
ü x→∞
Hf
K¥ ? |?, ? lim ( )
x
f xA
→∞
=, O 0A> (0A< ),
5i 0X >,? x X>
H,( ) 0fx> (() 0fx< ),
£ [ 0A> 1 è£-,0A<
Hg ?,
? lim ( )
x
f xA
→∞
=,5?K?l, 0
2
A
ε = >,0X? >,? x X>
H,üμ
()
2
A
fx A ε?<=,'
3
0()
22
A
f xA<< <,¤£,
4,?
 { }
n
x, ?
21
()
k
xak
→→∞,
2
()
k
xak→→∞,£
ü,
n
x a→ (n
)→∞,
£ ?
21
()
k
xak
→→∞,# 0ε?>,
1
0K? >,
P¤?
1
kK>
H,μ
21k
xaε
<;
2
()
k
xak→→∞,#

0ε >,
2
0K? >,
P¤?
2
kK>
H,μ
2k
xaε?<,
|
12
max{2 1,2 }NKK=?,? nN>
H,μ
n
xaε? <,'
n
x a→ ()n→∞,
2
5,£
ü,? 0x→
H,
π
sin
x
àμK,
£
7
1
n
x
n
=,
2
41
n
y
n
=
+
(1,2,)n= ",5 lim 0
n
n
x
→∞
=,lim 0
n
n
y
→∞
=,?
ππ
lim sin 0 lim sin 1
nn
nn
xy
→∞ →∞
=≠ =,
[
π
lim sin
n
x
→∞
?i,
6,£
ü,? x→+∞
H,sin x
àμK,
£
7
2
(2 π)
n
x n=,
2
1
[(2 )π]
2
n
yn=+ (1,2,)n= ",5 lim
n
n
x
→∞
=+∞,lim
n
n
y
→∞
=
+∞,?
lim sin 0 lim sin 1
nn
nn
xy
→∞ →∞
=≠ =,
[ lim sin
n
x
→∞
?i,