1
??? > uW
 ??f
¥?é
5 1-9
1,£
üZ?
4
410xx=à
μB??o? 1 2-W,
£
7
4
() 4 1f xx x=,^?f
 [1,2]
 ??,?
4
(1) 1 4 1 1 4 0f =?×?=?<,
4
(2) 2 4 2 1 7 0f =?×?=>,
' (1)f D (2)f s|,?
^,?
,?? ?,à
iB? (1,2)ξ∈,
P¤ () 0f ξ =,
'Z?
4
410xx=à
μB??o? 1 2-W,
2,£
üZ? e0
x
x+ =  uW (1,1)?
=μ·B¥?,
£
7 () e
x
fx x= +,^?f
 [1,1]?
 ??,?
1
(1) 1 e 0f
=?+ <,(1) 1 e 0f =+>,' (1)f? D (1)f s|,?
^,?
,?? ?,à
iB? (1,1)ξ∈?,
P¤ () 0f ξ =,? () e
x
fx x= +  (1,1)?
???9,#
@
() 0f ξ = ¥ ξ
^·B¥,'Z? e0
x
x+= uW (1,1)?
=i·B¥?,
3,£
ü, ? ()f x  (,)?∞ +∞
= ??, O lim ( )
x
f x
→∞
i,5 ()f x A (,)?∞ +∞
=μ?,
£
7 lim ( )
x
f xA
→∞
=,5ó?¥ 0ε >,0X? >,o1 x X>,üμ
()fx A ε?<,' ()AfxAε ε? <<+,?y1 ()f x  [,]XX?
 ??,? μ??
? ?,i
1
0M >,
P¤
1
()f xM≤,[,]x XX∈?, |
1
max{,,}MMAAε ε=?+,
5 ()f xM≤,(,)x∈?∞ +∞,' ()f x  (,)?∞+∞
=μ?,
4,
! ()f x  7 uW (,)ab
= ??, O lim ( )
xa
fx
+

=?∞,lim ( )
xb
fx

=+∞,£
ü
(,)abξ?∈,
P () 0.f ξ =
2
£ ? lim ( )
xa
fx
+

=?∞,?ó?¥ 0M >,
1
0δ? >,?
1
0 xaδ<?<
H,
()f xM<?,#
1
() 0
2
fa M
δ
+ <? <,
? lim ( )
xb
fx

=+∞,?

0M >,
2
0δ? >,?
2
0 bxδ<?<
H,( )f xM>,#
2
() 0
2
fb M
δ
>>,
I
n uW
12
[,]
22
ab
δ δ
+?,^?f
()f x N uW
= ??, O
1
()0
2
fa
δ
+<,
2
()0
2
fb
δ
>,?
,?? ?,
12
(,)(,)
22
ab ab
δ δ
ξ?∈ +,
P¤ () 0.f ξ =
5,
! ()f x,( )g x ?
^> uW [,]ab
¥ ??f
,i O
() (),() ()f agafbgb><,
£
üà
iB? (,)abξ∈,
P () ()fgξ ξ=,
£/f
() () ()Fx fx gx=?,^?f
()Fx [,]ab
 ??, O
() () () 0Fa fa ga=?>,() () () 0Fb fb gb=?<,?
,?? ?,i (,)abξ∈,
P¤
() 0F ξ =,' () ()fgξ ξ=,
6,L
!f
()f x  uW I
 ??,£
ü, ?Tf
àμ
,?,
*
1f
()f x
 uW I
1
1))1?,1
1))1μ,
£ ?^
! ()f x  uW I
μ?μμ,1 ? () 0fa>,( ) 0fb<,( )ab<,
(? ab>
H ?
V£ ),[,]ab I?,# ()f x  [,]ab
 ??,?
,?? ?,à
iB
? [,]ab Iξ∈?,
P¤ () 0f ξ =,?D ()f x  uW I

àμ
,?
±,# ()f x  uW
I
1
1))1?,1
1))1μ,