1
第六节 极限的存在准则与两个重要极限
习题 1-6
1,计算下列极限,
(1)
0
sin
lim ( 0)
tan
x
x
x
α
β
β
→
≠ ; (2)
0
lim cot
x
x x
→
+;
(3)
π
lim 3 sin
3
n
n
n→∞; (4)
0
1cos2
lim
sin
x
x
x x
→;
(5)
0
lim
1cos
x
x
x
+
→; (6)
sin
lim
2cos
x
x x
x x
→∞
+
,
解 (1) 若0α ≠,
00 0
sin sin sin
lim lim cos lim
tan sin sin
xx x
xx xx
x
x
α ααβα
β
β βαβ
→→ →
=?==;
若0α =,易知
0
sin
lim 0
tan
x
x
x
α α
β β
→
==,
(2)
00 00
lim cot lim cos lim lim cos 1
sin sin
xx xx
xx
xx x x
→→ →→
=?=?=
++++
,
(3)
π
sin
π
3
lim 3 sin lim ππ
π
3
3
n
n
n
nn
n
→∞ →∞
=?=,
(4)
2
00
1cos2 2sin
lim lim 2
sin sin
xx
xx
xx xx
→→
==,
(5)
000
2
lim lim lim 2 2
1cos
2 sin sin
22
xxx
x
xx
xx
x
+++
→→→
==?=
,
(6)
sin
1
sin 1
lim lim
cos
2cos 2
2
xx
x
xx
x
x
xx
x
→∞ →∞
==?
+
+
,
2,计算下列极限,
(1)
0
lim(1 ) (,0)
b
x
x
ax a b
→
+ > ; (2)
1
lim ( )
1
x
x
x
x
→∞
+;
2
(3)
0
lim 1 2
x
x
x
→; (4)
2sec
π
2
lim (1 cos )
x
x
x
→
+ ;
(5)
1
lim (1 )
kn
n
n
→∞
( k为正整数); (6)
1
lim ( )
1
n
n
n
n
→∞
+
,
解 (1)
1
00
lim(1 ) lim(1 ) e
b
ab
ab
xax
xx
ax ax
→→
+=+ =,
(2)
12
()()
2
21
12
lim ( ) lim (1 ) e
11
xx
x
x
xx
x
+
+
→∞ →∞
=? =
++
,
(3)
1
()(2)
2
2
00
lim 1 2 lim(1 2 ) e
x
x
xx
xx
→→
=? =,
(4)
2
2sec 2
cos
ππ
22
lim(1 cos ) lim (1 cos ) e
x
x
xx
xx
→→
+ =+ =,
(5)
11
lim (1 ) lim[(1 ) ] e
kn n k k
nn
nn
→∞ →∞
=? =,
(6)
12
2
21
12
lim ( ) lim (1 ) e
11
nn
n
n
nn
n
→∞ →∞
+
=+ =
,
3,利用夹逼准则证明下列极限,
(1)
22 2
11 1
lim ( ) 1
12
n
nn nn
→∞
+++ =
++ +