调频与鉴频小结一、调 角 波的性质:
1、基本定义:数学表示式;瞬时频率;瞬时相位;最大频移;最大相移( )。
Fm
2、频谱结构:
包含载波频率分量,还包含无穷多个旁频分量,各旁频分量之间的距离是调制信号角频率?,各频率分量的幅度由贝塞尔函数 决定。)(
Fn mJ
调频波的频谱结构与调制指数 关系密切。
愈大,则具有一定幅度的旁频数目愈多,这是调频波频谱的主要特点。
Fm Fm
对于某些 值,载频分量或旁频分量的幅度是零。
Fm
频率调制是一种非线性过程,又称为非线性调制 。
各频率分量间的功率分配:调制先后总功率为常数。
调频与鉴频小结(续 1)
3、频带:
忽略了小于 0.1的分量(集中 98-99%的功率):
)(2)1(21.0 FfFmBW mF
理论上说是无穷宽的;是近似有限的。
窄带调频( ):1
Fm FBW 21.0?
宽带调频(恒定带宽调频):
mfBW 21.0
二、调频波的产生:
1、变容二极管直接调频电路:电路简单;工作频率高;易于获得较大的频偏;中心频率有偏移。
2、晶体直接调频电路:频偏小,但中心频率稳定度高。
3、间接调频:载波中心频率稳定度较好。
调频与鉴频小结(续 2)
三、调频波的解调:
1、四种解调方法:
利用锁相环路实现解调。
利用调频波的过零信息实现解调。
将调频波变换为调相 ─调频波,用相位检波器解调。
将等幅调频波变为调幅 -调频波,用幅度解调器解调
。2、五种鉴频电路:
双失谐回路鉴频器:振幅鉴频器。
集成电路正交鉴频器。
相位鉴频器。
BE1调制度测量仪鉴频电路。
锁相环鉴频电路。
笫 7章 锁相环路
7.1 概 述
7.2 PLL基本原理
7.2.1 PLL各部件的特性与数学模型
7.2.2 PLL的环路方程与相位模型
7.3 PLL的线性分析
7.4 PLL的非线性分析
7.5 集成锁相环介绍
7.6 PLL电路实例与应用举例
7.1 概 述
( 1)三种反馈控制系统分类
自动增益控制( AGC)电路,在输入信号幅度变化很大的情况下,使输出信号幅度保持恒定或仅在较小范围内变化的一种自动控制电路。
自动频率控制( AFC)电路,是一种 频率 反馈控制系统,
AFC电路控制的是信号的频率。
自动相位控制( APC)电路,又叫 锁相环路。
(Phase Locked Loop,简称 PLL),是一种相位反馈控制系统,
锁相环路控制的是信号的相位。
7.1 概 述 (续)
( 2)反馈控制系统的原理(与负反馈放大器比较)
相同点:皆是自动调节系统。
不同点:一是调节对象不同。(有频率 F与相位 P)
二是分析方法不同。
▼ 负反馈放大器有放大器与 线性反馈电路;
▼ 反馈控制系统除有放大器外,还有非线性部件,
要用非线性分析方法。
( 3)反馈控制系统的特点
AFC的特点是:误差信号是频率,所以稳定时有频差。
APC的特点是:误差信号是相位,所以稳定时只有相差。
7.2 PLL基本原理,7.2.1 PLL的方框原理图
( 1)三个基本部件组成:鉴相器,环路滤波器和压控振荡器。
( 2)基本原理:
鉴相器的输出信号 是输入信号 和压控振荡器输出信号 之间相位差的函数。
经环路滤波器滤波(也可能包括放大),滤除高频分量后,成为压控振荡器的控制电压 。
在 的作用下,压控振荡器输出信号的频率将发生相应变化并反馈到鉴相器。最后进入稳定状态。
)(tvd )(tvi
)(tvo
)(tvd
)(tvP
)(tvP
7.2.1 PLL的方框原理图(续)
(2)锁定状态 ──VCO跟踪输入信号 频率与相位的漂移或调制变化的过程。
▼ 当系统开始工作时,压控振荡器的频率将向着接近输入信号频率的方向变化,这就是 捕获状态。
▼ 当 PLL达到稳定状态后,若输入信号为一固定频率的正弦波,则压控振荡器的输出信号频率与输入信号频率相等,它们之间的相位差为一常值,这种状态称为环路的 锁定状态 。
锁相环通常有两种不同的跟踪状态:调制跟踪与载波跟踪。
▼ 压控振荡器的输出信号跟踪输入的调制信号变化。这种状态就是调制跟踪状态,这种环路称为,调制跟踪环路,。调制跟踪环路可实现高质量的调角信号的解调。
▼ 压控振荡器的输出信号频率只跟踪输入信号的载频,那么就称之为载波跟踪状态,这叫 载波跟踪环,或称“窄带跟踪环”。
锁相环路具有两种工作状态:
(1)捕获状态 ──环路由失锁进入锁定的过程 ;
7.2.2 PLL各部件的特性与数学模型:
( 1)鉴相器 ( PD)
)]()([)( ttftv oid
常用的鉴相器有以下几类:数字鉴相器、模拟相乘器、抽样鉴相器和鉴频鉴相器等。
作为原理分析,通常使用具有 正弦鉴相特性的鉴相器 。
式中,为输入信号 的瞬时相位;)(t
i? )(tvi
为压控振荡器输出信号 的瞬时相位。)(tv
o)(to?
( 1)鉴相器 ( PD) (续 1)
设相乘器的相乘系数为 k,单位为 1/V。输入信号为:
)](s i n [)](s i n [)( 0 tVttVtv iimiiimi
式中,为正弦信号的振幅,为中心角频率,是以载波相位 为参考的瞬时相位。若输入信号为一固定的正弦波,则 是一常数,即 的初始相位。
imV 0i? )(ti?
ti0?
0)( ii t )(tvi
假设输出信号为:
)](c o s [)](c o s [)( 0 tVttVtv oomooomo
式中,为余弦信号的振幅,为环路 VCO自由振荡角频率,是输出信号以其自由振荡相位 为参考的瞬时相位。
omV 0o
)(to? to0?
)(ti
( 1)鉴相器 ( PD) (续 2)
统一参考相位,一般情况下,两信号的频率是不同的。为了便于比较,现统一以 VCO 的自由振荡相位 为参考,
于是输入信号相位需改写为,to0?
)()()()( 100000 ttttttt oioioii
式中,)()()()(
0001 ttttt iioi
改写输入和输出信号表示式:
)](s i n [)](s i n [)( 10 tVttVtv iimoimi
)](c o s [)](c o s [)( 200 ttVttVtv oomooomo
( 1)鉴相器 ( PD) (续 3)
输入信号与输出信号经过相乘器后得到:
)]()(s i n [
2
)]()(2s i n [
2
1
)()(
21
210
ttVV
K
tttVKVtvtKv
omim
oomimoi

再经过低通滤波滤除 成分,便得到误差电压:
02 o?
)]()(s i n [
2
1
)]()(s i n [
2
1
)(
0
21
ttVKV
ttVKVtv
iomim
omimd

令,,不难看出 为鉴相器的最大输出电压,
它在一定程度上反映了鉴相器的灵敏度。单位为( V)。
omimd VKVK 2
1?
dK
返回
( 1)鉴相器 ( PD) (续 4)
)(t?
)()()( ttt oi
则 上式 可写成,)(s in)( tKtv
dd
这就是正弦鉴相特性 。 (讲义下册 95)
▼ 需要指出的是,在上面的推导过程中,设两个输入信号互为正交信号形式,因而得到正弦特性。若改设两信号同为正弦或余弦,则将会得到余弦特性。 不论是那种特性,环路的稳态工作区域总是在特性的线性区域内,环路锁定时相位比较器输出电压为零附近 。
)()(s in tt
则可写成 线性表示式,
)()( tKtv dd
讨论:
▼ 若用 代表相乘器两个输入信号的 瞬时相位误差,即
▼ 假设,有 )30(
6)(
ot
( 1)鉴相器 ( PD) (续 5)
正弦鉴相器的数学模型 )(s in)( tKtv
dd
( 2)环路滤波器 ( LF )
锁相环路中的滤波器是 线性低通滤波器,它主要有两个功能:
第一,滤除误差信号中的高频分量;
第二,为锁相环路提供一个短期的记忆,如果系统由于瞬时噪声而失锁,可确保锁相环路迅速重新捕获信号。
环路滤波器由线性元件,电阻、电容和运算放大器组成。
环路滤波器采用的电路结构不同时,传递函数的阶数不同。
锁相环路中,通常采用一阶滤波器电路。
有时需要较强地抑制鉴相器输出中的交流分量时,也采用高阶滤波电路。
锁相环路中,通常采用直通电路和三种滤波器电路,
假设传递函数为:
)(sH F
( 2)环路滤波器 ( LF ) (续)
R
C
1 R
C
2 R
直通电路 1)(?sH
F
RC积分滤波器
)(1 1)( RCssH F
无源比例积分滤波器
1 R
2 R C
理想积分滤波器
1)(
1)(
21
2

S
SsH
F
1
2 1)(
s
ssH
F

( 3)压控振荡器 (VCO)
在 PLL中,压控振荡器是在外加控制电压 的作用下,
输出信号频率按一定规律变化的振荡电路。它的工作原理与电路和前面所讲的调频电路基本相同。
)(tvP
压控振荡器的一般特性如下图 所示。它的振荡频率与控制电压的关系可表示为:
Pv
o?
0
0o?
)]([)( 0 tvgt Poo
式中,称压控振荡器的中心角频率或自由振荡频率,即控制电压 = 0时的振荡频率。
表示频率随电压变化的函数关系。
0o?
Pv
][g
( 3)压控振荡器 (VCO) (续 1)
在一定的控制电压变化范围内,压控振荡器的频率变化与控制电压呈线性关系,即:
)()( 0 tvKt poo
其中,是曲线的斜率,也称压控振荡器的调制灵敏度。
单位为( )。K VSrad?/
在锁相环路中,压控振荡器的输出对鉴相器起作用的不是瞬时角频率而是它的 瞬时相位 。
)()()( 20 t
0 0
ttdttvktt opoo
由此可见,VCO在锁相环中起了一次积分作用,因此也称为环路中的固有积分环节 。
VCO应是一个有线性控制特性的调频振荡器。基本要求是:
频率稳定度好;控制灵敏度要高;控制特性的线性度要好;
线性区域要宽;噪声尽可能低 。
而这些要求之间往往是矛盾的,设计中要折衷考虑。
( 3)压控振荡器 (VCO) (续 2)
▼ 时域模型:
▼ 频域模型:
K
)(2 t?
p1
K
)(2 s?
s1
)(svP
)()()( 20 t
0 0
ttdttvktt opoo
)(tvP
7.2.2 PLL的环路方程与相位数学模型
( 2)相位数学模型
]s in [dK )( pH F
K p
1
)(1 t?
)(2 t?
)()()( 21 ttte )(tv
P
)(tvd
PD LF VCO
返回 1 返回 2
( 1)方框原理图
7.2.2 PLL的环路方程与相位数学模型(续 1)
0)()(s i n
)(
)(
1
)()(s i n)()(
1
)()]()(s i n [)(
1
1
212

tt
p
pH
KKt
p
KpHtKtt
p
KpHttKt
e
F
de
Fede
Fd

从相位数学模型可得到:
KKK dP srad /
0)()(s i n)()( 1
dt
tdtpHK
dt
td
eFP
e
这就是 PLL环路的非线性微分方程 。
上图令,,为环路增益,单位为 ( )。
7.2.2 PLL的环路方程与相位数学模型(续 2)
( 3)讨论:
方程的三项:
▼ 第一项是 瞬时相位误差 对时间的微分,由于 是输入信号与压控振荡器输出信号的瞬时相差,所以其微分应为输入信号与压控振荡器输出信号的 瞬时频差 。
)(te? )(te?
▼ 第二项 是压控振荡器在控制电压 的作用下,所产生的角频率变化量,所以一般 称为控制频差 。
)(tvP
▼ 第三项 是输入信号和压控振荡器输出信号中心角频率之差,
它不随时间变化而是决定于环路开始工作时的状态,称为
“初始频差”。
▼ 在闭环后的任何时刻,初始频差总等于瞬时频差和控制频差的代数和 。
▼ 在锁定时刻,是常数,所以控制频差等于初始频差。)(t
e?
0)()(s i n)()( 1 dt tdtpHKdt td eFPe
7.2.2 PLL的环路方程与相位数学模型(续 3)
这里需要说明一点,系统的相位数学模型和系统的方框原理图是不同的。
▼ 方框原理图 表示系统所包含的组成部分及各部分的功能,
它的输入和输出信号都是按某种规律变化的 电压或电流 。
▼ 相位数学模型 则表示 信息 在系统内流通的过程与关系,
对 PLL的模型,它描述的是输出相位和输入相位之间的关系。
▼ 下面讨论 PLL的 传递函数,振幅频率特性和相位频率特性,
环路带宽都是对输入相位 而言的,不是对输入电压而言的,这点需要特别强调。 )(1 t? )(tvi
此非线性微分方程的 阶数取决于环路滤波器。
▼ 当采用直通电路,就是一阶 PLL。
▼ 当采用积分滤波器(一阶),就是二阶 PLL。
模型图
7.2.2 PLL的环路方程与相位数学模型(续 3)
当满足 的条件下,
▼ 正弦鉴相特性可写成线性表示式,
)()( tKtv edd
▼ 则非线性微分方程变成线性微分方程:
0)()()()( 1
dt
tdtpHK
dt
td
eFP
e
▼ 把时域线性微分方程变成复频域方程:
)()()()( 1 SSSSHKSS eFPe
锁相环是一个非线性系统,但是,在锁定情况下的跟踪过程可以用线性系统近似处理。
线性性能包括:暂态响应、稳态相差、频率特性、稳定性、
噪声性能等。
)30(6)( ot
7.2.2 PLL的环路方程与相位数学模型(续 4)
鉴相器
( PD)
环路滤波器
( LF )
压控振荡器
(VCO)
)(tvi )(tvd )(tvP
]s in [dK )( pH F
K p
1
)(2 t?
)()()( 21 ttte
)(tvP)(tvd
PD
LF
VCO
方框原理图
)(1 t?
)(tvo
相位数学模型
方框原理图
相位数学模型小结:
7.2.2 PLL的环路方程与相位数学模型(续 4)
PK )(SH F
S1
)(2 S? VCO
)(1 S?
线性化相位数学模型
)(Se?
当满足 的条件下,
)30(6)( ot
线性化相位数学模型
PLL的三个传递函数:
误差传递函数:
闭环传递函数:
开环传递函数:
)(sH c
)(sH o
)(sH e
定义 PLL的三个传递函数
误差传递函数:
)()(
)()(
1 sHKs
s
s
ssH
Fp
e
e
该式表示输入信号与压控振荡器输出信号之间的 误差相位与 输入信号相位 的关系,称为 环路的误差传递函数 。 )(Se?)(1 S?
闭环传递函数:
)(
)(
)(
)()(
1
2
sHKs
sHK
s
ssH
Fp
Fp
c
该式表示压控振荡器 输出信号相位 与 输入信号相位 的关系,称其为 环路的闭环传递函数 。)(2 S?)(
1 S?
开环传递函数:
s
sHK
s
ssH Fp
e
o
)(
)(
)()( 2
习题十八,7-1,7-2,7-3
笫 7章 锁相环路
7.1 概 述
7.2 PLL基本原理
7.3 PLL的线性分析
7.3.1 PLL的线性模型与传递函数
7.3.2 PLL的跟踪特性
7.3.3 PLL的稳态相差
7.3.4 PLL的频率特性
7.3.5 PLL的稳定性( *)
7.3.6 PLL的噪声特性( *)
7.4 PLL的非线性分析
7.5 集成锁相环介绍
7.6 PLL电路实例与应用举例
7.3 PLL的线性分析
7.3.1 PLL的线性模型与传递函数鉴相器
( PD)
环路滤波器
( LF )
压控振荡器
(VCO)
)(tvi )(tvd )(tvP
]s in [dK )( pH F
K p
1
)(2 t?
)()()( 21 ttte
)(tvP)(tvd
PD
LF
VCO
方框原理图
)(1 t?
)(tvo
相位数学模型
0)()(s i n)()( 1 dt tdtpHKdt td eFPe
( 1)线性化相位数学模型
( 1)线性化相位数学模型(续)
则非线性微分方程变成线性微分方程:
0)()()()( 1
dt
tdtpHK
dt
td
eFP
e
)()( tKtv edd
PK )(SH F
S1
)(2 S? VCO
)(1 S?
线性化相位数学模型
)(Se?
)()()()( 1 SSSSHKSS eFPe复频域方程,
当满足 的条件下,
正弦鉴相特性可写成线性表示式,
)30(6)( ot
( 2) 定义 PLL的三个传递函数
误差传递函数:
)()(
)()(
1 sHKs
s
s
ssH
Fp
e
e
该式表示输入信号与压控振荡器输出信号之间的 误差相位与 输入信号相位 的关系,称为 环路的误差传递函数 。 )(Se?)(1 S?
闭环传递函数:
)(
)(
)(
)()(
1
2
sHKs
sHK
s
ssH
Fp
Fp
c
该式表示压控振荡器 输出信号相位 与 输入信号相位 的关系,称其为 环路的闭环传递函数 。)(2 S?)(
1 S?
开环传递函数:
s
sHK
s
ssH Fp
e
o
)(
)(
)()( 2
( 3) PLL的分类和待解决的问题
由于鉴相特性的非线性,有线性 PLL和非线性 PLL。
根据锁相环路中的环路滤波器的阶数决定 PLL的阶数。
▼ 直通电路,,为一阶 PLL。1)(?sH
F
▼ 三种积分滤波器电路,为二阶 PLL。
▼ 有:一阶线性 PLL;一阶非线性 PLL;二阶线性 PLL;
二阶非线性 PLL。
讨论的问题:锁定特性、跟踪特性、频率特性、稳定特性、
噪声特性及同步带、捕捉特性、捕捉时间、捕捉带。
分析的方法:
▼ 线性 PLL采用拉氏变换及其逆变换的方法。
▼ 非线性 PLL主要采用相平面图法。
▼ 学会使用 MATLAB程序辅助分析 。
( 4) PLL实际环路的传递函数
一阶 PLL:直通电路,。1)(?sH
F
p
p
c Ks
K
sH
)(
p
e Ks
s
sH
)(
二阶 PLL:理想积分滤波器,。
1
2 1)(
s
ssH
F

22
2
1
2
2
2
)(
)(
)(
nn
nn
c ss
s
s
s
sH

22
2
1 2)(
)(
)(
nn
e
e
ss
s
s
s
sH

( 4) PLL实际环路的传递函数(续)
n
p
pn
K
K
2
1
21
2
2
1
2
1
,/
这里引入环路的自然角频率 和阻尼系数 两个参数。
n?
( 5) PLL环路 和 的物理意义:
n?
2
0
02
2
0
2 1
1
)(

Q
ss
LCL
R
ss
LCsH
L
C
R
7.3.2 PLL的跟踪特性:瞬态响应和稳态相差。
对于已经锁定的环路,当输入信号的频率或相位发生某种变化时,环路将使压控振荡器的频率和相位跟踪输入信号变化 。
在输入信号发生变化后的一段时间里,环路有一瞬变过程 。
这个瞬变过程的具体状况与 PLL的组成有关,也与输入信号的频率或相位的变化规律有关。
瞬变过程结束后,环路即进入稳定状态 。 这时,压控振荡器与输入信号有相同的频率和一固定的相差,
称为稳态相差 。
)(?e?
7.3.2 PLL的跟踪特性:瞬态响应和稳态相差。 (续 1)
这里提出三个了问题:
输入信号 的频率或相位发生某种变化:)(tv
i
▼ 输入相位阶跃
0
0
0
)(1

t
t
t
ss
)(
1
▼ 输入频率阶跃
0
0
0)(?

t
tt
i

0
0
0)(1?

t
ttt
21 )( ss

环路跟踪是一个瞬变过程,如何求解?
由 求 利用反拉氏变换求
)(sH e )(Se )(te?
)()()(
12 ttt e
7.3.2 PLL的跟踪特性:瞬态响应和稳态相差。 (续 2)
环路跟踪过程结束后,即进入稳定状态 。 这时,压控振荡器与输入信号有相同的频率和一固定的相差,称为稳态相差。如何求解稳态相差?
)(?e?
)(sH e )(Se )(?e?
)(lim)(lim)( 0 sst esete
由 求 利用拉氏终值定理求 。
1,输入相位阶跃,( 1)一阶 PLL
1)(?sH F
tK
e
pet )(
t
t
t
0
0
0
)(te?
)(1 t?
)(2 t?

(讲义下册 104)
0
1
lim
)(lim)(
0
0

s
K
ss
P
s
e
s
e

pp
e KssKs
ss

)()( 1

( 1)一阶 PLL (续)
0)(e?
讨论:
▼ 压控振荡器相位的变化是连续的,为什么压控振荡器的相位要经过一段时间才能跟踪上输入相位的变化呢?根本原因是控制电压改变的是压控振荡器的频率,它是随着控制电压的变化而立即变化的。但需要跟踪的是输入信号相位的跳变,而压控振荡器相位的变化是频率的积分,所以它需要一定的时间。
▼ 误差传递函数是高通特性;闭环传递函数是低通特性。
▼ 环路跟踪过程结束后,即进入稳定状态,
稳态相差 。
1,输入相位阶跃,( 2)二阶 PLL
理想积分滤波器
22
2
1 2)(
)()(
nn
e
e ss
s
s
ssH

22 2)(
nn
e ss
ss

1)1s i n h
1
1( c os h
1)1(
1)1s i n
1
1( c os
)(
2
2
2
2
2
2

t
nn
t
n
t
nn
e
n
n
n
ett
et
ett
t
(讲义下册 105)
( 2)二阶 PLL (续 1)
0
1
21
lim)(lim)(
2
200

ss
ss
n
n
s
e
s
e?

稳态相差 。
0)(e?
n?
707.0
讨论:
▼ 误差传递函数是高通特性,输出信号能完全跟踪输入相位的变化,但跟踪过程将随 和 的不同而不同。
▼ 考虑跟踪过程短和过冲量小,取 。
▼ 环路跟踪过程结束后,即进入稳定状态,
( 2)二阶 PLL (续 2)
VCO在锁相环中起了一次积分作用,因此也称为 环路中的固有积分环节。
0)(e?
)()()( 20 t
0 0
ttdttvktt opoo
物理意义:
对于输入相位阶跃,一阶和二阶 PLL,稳态相差 。
2,输入频率阶跃,( 1)一阶 PLL
)1()( tK
P
e
pe
K
t
PP
sese KKs
ss

00
lim)(lim)(
t
t
0
0
)(te?

tt)(1
PK

)(
)()( 1
pp
e KsssKs
ss

( 1)一阶 PLL(续)

)(?e?
Pdd
d
epdp KKKK
tvtvtvtv
K

)()()()()(
讨论:
▼ PLL重新锁定时,压控振荡器能够跟踪输入频率的变化,
即压控振荡器的振荡频率也变化 。
▼ 压控振荡器的振荡频率也变化,则需要产生稳态相差 。
物理意义:
( 2)二阶 PLL:理想积分滤波器
22
2
2
)(
nn
e ss
s
sH

22 2)(
nn
e sss

1)1s i n h
1
1
(
1)(
1)1s i n
1
1
(
)(
2
2
2
2

t
n
n
t
n
n
t
n
n
e
n
n
n
et
et
et
t
(讲义下册 107)
( 2)二阶 PLL:理想积分滤波器(续)
0
2
lim)(lim)( 22
00

nn
sese ss
sss

n?
707.0
0)(e?
(讲义下册 109)?讨论:
▼ 输出信号能完全跟踪输入相位的变化,但跟踪过程将随和 的不同而不同。
▼ 考虑跟踪过程短和过冲量小,取 。
▼ 稳态相差 。
▼ 对于不是理想积分滤波器的二阶 PLL,例如,RC积分滤波器和无源比例积分滤波器,稳态相差 。
P
e K
)(
7.3.3 PLL的频率特性
1,频率特性的含义
当输入信号的相位按正弦规律变化时,PLL的输出信号相位,即压控振荡器振荡信号的相位,也将按正弦规律变化。
但相位变化的幅度和初始相位将随频率的不同而不同,称这种性质为环路的频率特性或频率响应。
2,频率特性的求法
利用闭环传递函数
)(
)()(
1
2
s
ssH
c?

PLL的频率特性可以用 ( ) 代替闭环传递函数中的 s 求得。
j?j
求相位传递的幅频特性和相频特性,环路 3dB 带宽。
可以看作跟踪特性的特例。此时环路不是简单地稳定于锁定状态,而可以认为是稳定于所谓“跟踪状态”。
7.3.3 PLL的频率特性,3,对于一阶 PLL (续)
p
p
c Ks
K
sH
)(
P
p
p
c
K
j
Kj
K
jH

1
1
)(
2
1
1
)(

P
c
K
jH
)()( 1
PK
tgj

3,对于一阶 PLL (续)
讨论:
▼ 一阶环路对于相位信号的传输相当于一个 RC 低通滤波器,
这里的 1/ 相当于 RC。因此,改变 就可以改变低通滤波器的特性。 pK pK
▼ 环路 3dB 带宽是 (相当于 1/ RC ) 。
pK
▼ 一阶环路的特性只有一个参数 可调。
pK
▼ 环路 3dB 带宽 和稳态相差,
dB3
)(?e?
2
1
1
)(

P
c
K
jH
PdB K 3
举例 1:
( 7-5) 已知一阶环路的复频域传递函数为
p
p
c Ks
K
sH
)(
若输入信号为:
]5s i n10s i ns i n [)( 210 tKtKtVtv PPiimi
环路锁定后输出信号为:
)]5s i n ()10s i n (c o s [)( 22110 tKAtKAtVtv PPiomo
试确定,,和 的值。
1A 2A 1? 2?
4,对于二阶 PLL:理想积分滤波器对于一阶 PLL,只有一个参数 可调。
pK对于二阶环路,其频率特性主要取决于两个参数,和 。
n
22
2
1
2
2
2
)(
)(
)(
nn
nn
c ss
s
s
s
sH

n
p
pn
K
K
2
1
21
2
2
1
2
1
,/
)(2])(1[
)(21
)(2)(
)(2
)(
2
22
2
nn
n
nn
nn
c
j
j
jj
j
jH

4,对于二阶 PLL:理想积分滤波器(续 1)
)(2])(1[
)(21
)(2)(
)(2
)(
2
22
2
nn
n
nn
nn
c
j
j
jj
j
jH

2
1
222
2
)2(])(1[
)2(1
)(

nn
n
c jH
2
)(1
2
2)(
n
n
n
a r c t ga r c t gj

4,对于二阶 PLL:理想积分滤波器(续 2)
)/( n
dBjH c )(?
3.05.0
707.0
0.5
0.3
0.1
图 7.3.8 具有理想积分滤波器的二阶环路的幅频特性
2
返回
4,对于二阶 PLL:理想积分滤波器(续 3)
讨论:
▼ 具有理想积分滤波器的二阶环路的幅频特性,纵坐标是对数刻度 (db),横 坐标是归 一 化频率 。)/(
n
▼ 二阶环路对于相位信号的传输相当于一个 低通滤波器。
▼ 对于二阶环路,其频率特性主要取决于两个参数,和 。
n
▼ 环路的自然角频率,它决定低通特性的频带宽度。
阻尼系数,它主要决定低通特性的形状。 n
▼ 增大或减小 只是把低通特性按比例拉宽或缩窄。
n?
▼ 越小,低通特性的峰起越严重,截止速度越快。通常,
= 1称为临界阻尼,<1称为欠阻尼,>1称为过阻尼。

▼ 在 处,所有幅频特性曲线相交,且过零点。2/
n?
▼ 窄带跟踪环,一般取 。
宽带跟踪环,一般取 。
707.0
1
上图举例 2:
( 7-7) 一阶环路接通瞬间输入和输出信号分别为:
)102c o s ()(
)102s i n5.010005.2s i n ()(
6
36
tVtv
ttVtv
omo
imi

测得环路锁定后稳态相差 。
1、写出环路锁定后,输出信号的表示式;
2、计算该环路的带宽。
r a de 5.0)(
举例 3:
( 7-6) 一阶环路的输入信号为:
)c o ss i n ()c o ss i n ()( 00 tmtVttVtv Fiimiimi
当其接入环路的瞬间,输出信号(压控振荡器振荡信号)为:
tVtv oomo 0c o s)(
求,1、环路的起始频差;
2、环路的起始相差;
3、环路的稳态相差;
4、锁定后环路输出电压表示式。
习题十九,7-4,7-5,7-6,7-7
CAD补充 6,用 MATLAB程序,画 具有理想积分滤波器的二阶环路的幅频特性图。
( = 0.3,0.5,0.707,1.0,3.0,5.0)