蛋白质存在于所
有的生物细胞中,
是构成生物体最
基本的 结构 物质
和功能物质 。
蛋白质是生命活
动的物质基础,
它参与了几乎所
有的生命活动过
程 。
第一章 蛋白质 (Protein)
第一节 概 述
一、蛋白质的定义
蛋白质:是一切生物体中普遍存在的,由天然氨基酸通过肽键连接而成
的生物大分子;其种类繁多,各具有一定的相对分子质量,复杂的分子结构
和特定的生物功能;是表达生物遗传性状的一类主要物质。
二、蛋白质在生命中的重要性
早在 1878年,思格斯就在, 反杜林论, 中指出:, 生命是蛋白体的存在
方式,这种存在方式本质上就在于这些蛋白体的化学组成部分的不断的自我
更新。, 可以看出,第一,蛋白体是生命的物质基础;第二,生命是物质运
动的特殊形式,是蛋白体的存在方式;第三,这种存在方式的本质就是蛋白
体与其外部自然界不断的新陈代谢。现代生物化学的实践完全证实并发展了
恩格斯的论断
1.蛋白质是生物体内必不可少的重要成分
蛋白质占干重 人体中(中年人)
人体 45% 水 55%
细菌 50%~80% 蛋白质 19%
真菌 14%~52% 脂肪 19%
酵母菌 14%~50% 糖类< 1%
白地菌 50% 无机盐 7%
2.蛋白质是一种生物功能的主要体现者
( 1)酶的催化作用
( 2)调节作用 (多肽类激素 )
( 3)运输功能
( 4)运动功能
( 5)免疫保护作用 (干扰素 )
( 6)接受、传递信息的受体
( 7)毒蛋白
3.外源蛋白质有营养功能,可作为生产加工的对象,
三、蛋白质的组成
1.元素组成
蛋白质是一类含氮有机化合物,除含有碳、氢、氧外,还有氮和少量的
硫。某些蛋白质还含有其他一些元素,主要是磷、铁、碘、碘、锌和铜等。这
些元素在蛋白质中的组成百分比约为:
碳 50%
氢 7%
氧 23%
氮 16%
硫 0—3%
其他 微 量
氮占生物组织中所有含氮物质的绝大部分。因此,可以将生物组织
的含氮量近似地看作蛋白质的含氮量。由于大多数蛋白质的含氮量接近
于 16%,所以,可以根据生物样品中的含氮量来计算蛋白质的大概含量
★ 蛋白质含量的测定,凯氏定氮法
(测定氮的经典方法 )
优点:对原料无选择性,仪器简单,
方法也简单;
缺点:易将无机氮 (如核酸中的氮 )
都归入蛋白质中,不精确。
一般,样品含氮量平均在 16%,取其倒数 100/16=6.25,即为
蛋白质换算系数,其含义是样品中每存在 1g元素氮,就说明含有
6.25g 蛋白质);故,※ 蛋白质含量 =氮的量 × 100/16× 6.25
除了上法外,还有
紫外比色法
双缩脲法
Folin—酚
考马斯亮兰 G—250比色法
(条件:蛋白质必须是可溶的)
2.化学组成 (两种类型)
单纯蛋白质:水解为 α-氨基酸
结合蛋白质 =单纯蛋白质 +辅基
第二节 氨基酸化学
一、氨基酸的结构与分类
(2),除甘氨酸外,其它所有氨基酸分子中的 α-碳原子都为不对称碳原子,所以:
A.氨基酸都具有旋光性。 B.每一种氨基酸都具有 D-型和 L-型两种立体异构体。
目前已知的天然蛋白质中氨基酸都为 L-型。
1.氨基酸的结构
氨基酸是蛋白质水解的最终产物,是组成蛋白质的基本单位。从蛋白质
水解物中分离出来的氨基酸有二十种,除脯氨酸和羟脯氨酸外,这些天然氨
基酸在结构上的共同特点为:
(1),与羧基相邻的 α-碳原子上都有一个氨基,因而称为 α-氨基酸
COOH
H2N CH α-碳原子基团
R R基团
α-氨基酸基本结构通式
2.常见氨基酸的分类
中性 AA
( 1)按 R基团的酸碱性分 酸性 AA
碱性 AA
( 2)按 R基团的 疏水性 R基团 AA
电性质分 不带电荷极性 R基团的 AA
带电荷 R基团的 AA
脂肪族 A
( 3)按 R基团的化学结构分 芳香族 AA
杂环族 AA
3.构成蛋白质的 20种氨基酸
4.人体所需的八种必需氨基酸
赖氨酸 (Lys) 缬氨酸 (Val) 蛋氨酸 (Met)
色氨酸 (Try) 亮氨酸 (Leu) 异亮氨酸 (Ile)
酪氨酸 (Thr) 苯丙氨酸 (Phe)
婴儿时期所需, 精氨酸 (Arg)、组氨酸 (His)
早产儿所需:色氨酸 (Try)、半胱氨酸 (Cys)
5,几种重要的不常见氨基酸
在少数蛋白质中分离出一些不常见的氨基酸,通常称为不常见蛋白质
氨基酸。这些氨基酸都是由相应的基本氨基酸衍生而来的。其中重要的有
4-羟基脯氨酸,5-羟基赖氨酸,N-甲基赖氨酸、和 3,5-二碘酪氨酸等。这
些不常见蛋白质氨基酸的结构如下
N
H
HO
C O O H
4- 羟基脯氨酸
H
2
N C H
2
C H C H
2
C H
2
C H C O O H
O H N H
2
5- 羟基赖氨酸
N H
2
C H
3
N H C H
2
C H C H
2
C H
2
C H C O O H
6- N - 甲基赖氨酸
HO
I
I
C H
2
C H C O O H
N H
2
3,5- 二碘酪氨酸
二,氨基酸的重要理化性质
1.一般物理性质
常见氨基酸均为无色结晶,其形状因构型而异
(1)溶解性,各种氨基酸在水中的溶解度差别很大,并能溶解于稀酸或稀
碱中,但不能溶解于有机溶剂。通常酒精能把氨基酸从其溶液中沉淀
析出。
(2) 熔点,氨基酸的熔点极高,一般在 200℃ 以上。
(3) 味感,其味随不同氨基酸有所不同,有的无味、有的为甜、有的味苦,
谷氨酸的单钠盐有鲜味,是味精的主要成分。
(4)旋光性,除甘氨酸外,氨基酸都具有旋光性,能使偏振光平面向左或
向右旋转,左旋者通常用( -)表示,右旋者用( +)表示。
(5)光吸收,构成蛋白质的 20种氨基酸在可见光区都没有光吸收,但在远
紫外区 (<220nm)均有光吸收。在近紫外区 (220-300nm)只有酪氨酸、
苯丙氨酸和色氨酸有吸收光的能力。
? 酪氨酸的 ?max
= 275nm,
?275=1.4x103;
? 苯丙氨酸的
?max= 257nm,
?257=2.0x102;
? 色氨酸的 ?max
= 280nm,
?280=5.6x103;
2.氨基酸的离解性质
? 氨基酸在结晶形态或在水溶液中, 并不是以游离的羧基或氨基形式存在,
而是离解成两性离子 。 在两性离子中, 氨基是以质子化 (-NH3+)形式存在,
羧基是以离解状态 (-COO-)存在 。
? 在不同的 pH条件下, 两性离子的状态也随之发生变化
C O O H
C HH 3N +
R
-
pK1'
+
H+
H+
C O O -
C HH 3 N +
R H+
H+
+
pK2'
- C O O -
C HH 2N
R
PH 1 7 10
净电荷 +1 0 -1
正离子 两性离子 负离子
等电点 PI
3.氨基酸的等电点
当溶液浓度为某一 pH值时,氨基酸分子中所含的 -NH3+和 -COO-
数目正好相等,净电荷为 0。这一 pH值即为氨基酸的等电点,简称 pI。
在等电点时,氨基酸既不向正极也不向负极移动,即氨基酸处于两性
离子状态。
侧链不含离解基团的中性氨基酸,其等电点是它的 pK’1和 pK’2的
算术平均值,pI = (pK’1 + pK’2 )/2
同样,对于侧链含有可解离基团的氨基酸,其 pI值也决定于两性
离子两边的 pK’值的算术平均值。
酸性氨基酸,pI = (pK’1 + pK’R-COO- )/2
硷性氨基酸,pI = (pK’2 + pK’R-NH2 )/2
4.氨基酸的化学性质
(1)与茚三酮的反应(颜色反应)
氨基酸与水合茚三酮共热,发生氧化脱氨反应,生成 NH3与酮酸。水合
茚三酮变为还原型茚三酮。
加热过程中酮酸裂解,放出 CO2,自身变为少一个碳的醛。水合茚三酮
变为还原型茚三酮。
NH3与水合茚三酮及还原型茚三酮脱水缩合,生成蓝紫色化合物。



? 反应要点
A.该反应由 NH2与 COOH共同参与
B.茚三酮是强氧化剂
C.该反应非常灵敏,可在 570nm测定吸光值
D,测定范围,0.5~50μg/ml
E.脯氨酸与茚三酮直接生成黄色物质(不释放 NH3)
? 应用:
A.氨基酸定量分析(先用层析法分离)
B.氨基酸自动分析仪:
用阳离子交换树脂,将样品中的氨基酸分离,自动定性定量,记录结果。
(2)与甲醛反应
? 反应特点
A.为 α- NH2的反应
B.在常温,中性条件,甲醛与 α- NH2很快反应,生成羟甲基衍生物,释放氢离
子。
? 应用:氨基酸定量分析 —甲醛滴定法(间接滴定)
A.直接滴定,终点 pH过高( 12),没有适当指示剂。
B.与甲醛反应,滴定终点在 9左右,可用酚酞作指示剂。
C.释放一个氢离子,相当于一个氨基(摩尔比 1,1)
D.简单快速,一般用于测定蛋白质的水解速度。
(3) 与 2,4-二硝基氟苯( DNFB)反应
? 反应特点
A.为 α- NH2的反应
B.氨基酸 α- NH2的一个 H原子可被烃基取代 (卤代烃 )
C.在弱碱性条件下,与 DNFB发生芳环取代,生成二硝基苯氨基酸
? 应用:鉴定多肽或蛋白质的 N-末端氨基酸
A.虽然多肽侧链上的 ε- NH2、酚羟基也能与 DNFB反应,但其生成物,容易与
α- DNP氨基酸区分和分离
★ 首先由 Sanger应用,确定了胰岛素的一级结构
A.
B.水解 DNP-肽,得 DNP-N端氨基酸及其他游离氨基酸
C.分离 DNP-氨基酸
D.
? 由 Edman于 1950年首先提出
? 为 α- NH2的反应
? 用于 N末端分析,又称 Edman降解法
肽分子与 DNFB反应,得 DNP-肽
层析法定性 DNP-氨基酸,得出 N端氨基酸的种类、数目
(4)与异硫氰酸苯酯( PITC)的反应
? Edman ( 苯异硫氰酸酯法) 氨基酸顺序分析法实际上也是一种 N-端分
析法。此法的特点是能够不断重复循环,将肽链 N-端氨基酸残基逐一
进行标记和解离。
N C S N H C H C
O
R 2
N C H C
O
R 1
H
H
N
H
S,C
C H C
O
R 1
H N N H C H C
O
R 2
SN
H
C
N H OC
R 1
C HN H 2 C H C
O
R 2
N
C
O C H
N H
SC
R 1
? 肽链( N端氨基酸)与 PITC偶联,生成 PTC-肽
? 环化断裂:最靠近 PTC基的肽键断裂,生成 PTC-氨基酸和少
? 一残基的肽链,同时 PTC-氨基酸环化生成 PTH-氨基酸
? 分离 PTH-氨基酸
? 层析法鉴定
? Edman降解法的改进方法 --- DNS-Edman降解法
? 用 DNS(二甲基萘磺酰氯 )测定 N端氨基酸
? 原理 DNFB法相同
? 但水解后的 DNS-氨基酸不需分离,可直接用电泳或层析法鉴定
? 由于 DNS有强烈荧光,灵敏度比 DNFB法高 100倍,比 Edman法高
几到十几倍
? 可用于微量氨基酸的定量
? 用 Edman降解法提供逐次减少一个残基的肽链
? 灵敏度提高,能连续测定。
? 多肽顺序自动分析仪
? 样品最低用量可在 5pmol
( 5) 与荧光胺的反应
?α- NH2的反应
?氨基酸定量
( 6) 与 5,5’-双硫基 -双 (2-硝基苯甲酸 )反应
?-SH的反应
?测定细胞游离 - SH的含量
( 7)其他反应
?成盐、成酯、成肽、脱羧反应
第三节 蛋白质的分子结构
?蛋白质是由一条或多条多肽 (polypeptide)链以特殊方式结合而成的生物
大分子。
?蛋白质与多肽并无严格的界线,通常是将分子量在 6000道尔顿以上的多
肽称为蛋白质。
?蛋白质分子量变化范围很大,从大约 6000到 1000000道尔顿甚至更大
一,基本问题 ---肽
?一个氨基酸的氨基与另一个氨基
酸的羧基之间失水形成的酰胺键
称为肽键,所形成的化合物称为
肽。
?由两个氨基酸组成的肽称为二肽,
由多个氨基酸组成的肽则称为多
肽。组成多肽的氨基酸单元称为
氨基酸残基。
1.多肽
? 在多肽链中,氨基酸残基按一定的顺序排列,这种排列顺序称为
氨基酸顺序
? 通常在多肽链的一端含有一个游离的 ?-氨基,称为氨基端或 N-端;
在另一端含有一个游离的 ?-羧基,称为羧基端或 C-端。
? 氨基酸的顺序是从 N-端的氨基酸残基开始,以 C-端氨基酸残基为
终点的排列顺序。如上述五肽可表示为:
Ser-Val-Tyr-Asp-Gln
C C N C C N C C N C C N C
C H 2 C H C H 2 C H 2 C H 2
C O O
-
O H C O 2 H C H 2
C O N H 2
O H
C H 3
H 3 N
+
O O O O
H H H H H
H H H H
S e r V a l T y r A s p G ln
C H 3
N- 端 C- 端
肽键
2.肽键
?肽键的特点是氮原
子上的孤对电子与
羰基具有明显的共
轭作用。
?组成肽键的原子处
于同一平面。
?肽键中的 C-N键具
有部分双键性质,
不能自由旋转。
?在大多数情况下,
以反式结构存在。
3.天然存在的重要多肽
?在生物体中,多肽最重要的存在形式是作为蛋白质的亚单位。
?但是,也有许多分子量比较小的多肽以游离状态存在。这类多肽通常都
具有特殊的生理功能,常称为活性肽。
?如:脑啡肽;激素类多肽;抗生素类多肽;谷胱甘肽;蛇毒多肽等。
N
H
C
O
C H
2
N H C
O
C H N H C
O
C H
3
C H
C H
O H
C H
2
O H
C HH N C N H C H C N H C H
2
C
C O
C H
N
H
H O
C H
2
N H
N H
C H C H
C H 3
C H 2 C H 3
C O
O
OO
C H
2
C H 2
SO
O H
鹅 膏 覃 碱 的 化 学 结 构
+H
3N-Tyr-Gly-Gly-Phe-Met-COO
- +H
3N-Tyr-Gly-Gly-Phe-Leu-COO
-
Met-脑啡肽 Leu-脑啡肽
C y s
T y r
IL e
G ln
A s n
C y s
P r o
L e u
G ly N H
2
S
S
牛 催 产 素
C y s
T y r
G ln
A s n
C y s
P r o
S
S
P h e
A r g
G ly N H
2
牛 加 压 素
二,蛋白质的一级结构
1,蛋白质的一级结构 (Primary
structure)包括:
(1)组成蛋白质的多肽链数目,
(2)多肽链的氨基酸顺序,
(3)多肽链内或链间二硫键的数目和
位置。
★其中最重要的是多肽链的氨基酸顺
序,它是蛋白质生物功能的基础 。
2.蛋白质的一级结构 的测定
蛋白质氨基酸顺序的测定是蛋白质化学研究的基础。自从 1953年
F.Sanger测定了胰岛素的一级结构以来,现在已经有上千种不同蛋白质的
一级结构被测定。
(1) 测定蛋白质的一级结构的要求
A,A.样品必需纯( >97%以上);
B,B.知道蛋白质的分子量;
C,C.知道蛋白质由几个亚基组成;
D,D.测定蛋白质的氨基酸组成;并根据分子量计算每种氨基酸的个数。
E,E.测定水解液中的氨量,计算酰胺的含量。
(2)测定步骤
① 多肽链的拆分,由多条多
肽链组成的蛋白质分子,必须先
进行拆分。几条多肽链借助非共
价键连接在一起,称为寡聚蛋白
质,如,血红蛋白为四聚体,烯
醇化酶为二聚体;可用 8mol/L尿
素或 6mol/L盐酸胍处理,即可分
开多肽链 (亚基 ).
② 测定蛋白质分子中多肽链的
数目,通过测定末端氨基酸残
基的摩尔数与蛋白质分子量之
间的关系,即可确定多肽链的
数目。
③二硫键的断裂,几条多肽链
通过二硫键交联在一起。可在
可用 8mol/L尿素或 6mol/L盐酸
胍存在下,用过量的 ?-巯基乙
醇处理,使二硫键还原为巯基,
然后用烷基化试剂保护生成的
巯基,以防止它重新被氧化。
可以通过加入盐酸胍方法解离
多肽链之间的非共价力;应用
过甲酸氧化法或巯基还原法拆
分多肽链间的二硫键。
★ 巯基的保护
- O O C C H C H
2 S H
N H 3 +
I C H 2 C N H 2
O
C H 2 O C C l
O
C H 2 C l
- O O C C H C H
2 S
N H 3 +
O C C H 2
O
C H 2- O O C C H C H 2 S
N H 3 +
C H 2 C N H 2
O
- O O C C H C H
2 S
N H 3 +
④ 测定每条多肽链的氨基酸组成,并计算出氨基酸成分的分子比;
⑤分析多肽链的 N-末端和 C-末端
★ 末端氨基酸的测定,多肽链端基氨基酸分为两类,N-端氨基酸和 C-端氨基
酸。在肽链氨基酸顺序分析中,最重要的是 N-端氨基酸分析法。末端氨基酸测
定的主要方法有:
A,二硝基氟苯( DNFB)法
B,丹磺酰氯法,在碱性条件下,丹磺酰氯(二甲氨基萘磺酰氯)可
以与 N-端氨基酸的游离氨基作用,得到丹磺酰 -氨基酸。此法
的优点是丹磺酰 -氨基酸有很强的荧光性质,检测灵敏度可以
达到 1?10-9mol。
N ( C H 3 ) 2
S O 2 C l
H 2 N C H C
R O
H N C H C
R O
S O 2
N ( C H 3 ) 2
+
水解
N ( C H 3 ) 2
S O 2 H N C H C
R O
O H
+ 氨基酸
丹磺酰氯
多肽 N- 端
丹磺酰 N- 端氨基酸
丹磺酰氨基酸
C,肼解法,此法是多肽链 C-端氨基酸分析法。多肽与肼在无水条
件下加热,C-端氨基酸即从肽链上解离出来,其余的氨基酸则
变成肼化物。肼化物能够与苯甲醛缩合成不溶于水的物质而与
C-端氨基酸分离 。
H 2 N C H C
R O
H N C H C
R O OR n
CC HH N O H
n - 1
N- 端 氨 基 酸 C - 端 氨 基 酸
OR n
CC HH 2 N O HH 2 N C H C
R O
N H N H 2 +
H
+
N H 2 N H 2
氨 基 酸 酰 肼 C- 端 氨 基 酸
D,氨肽酶法,氨肽酶是一种肽链外切酶,它能从多肽链的 N-端逐个的
向里水解。根基不同的反应时间测出酶水解所释放出的氨基酸种类
和数量,按反应时间和氨基酸残基释放量作动力学曲线,从而知道
蛋白质的 N-末端残基顺序。最常用的氨肽酶是亮氨酸氨肽酶,水解
以亮氨酸残基为 N-末端的肽键速度最大。
E,羧肽酶法,羧肽酶是一种肽链外切酶,它能从多肽链的 C-端逐个的
水解。根基不同的反应时间测出酶水解所释放出的氨基酸种类和数
量,从而知道蛋白质的 C-末端残基顺序。目前常用的羧肽酶有四种:
A,B,C和 Y; A和 B来自胰脏; C来自柑桔叶; Y来自面包酵母。羧肽酶 A
能水解除 Pro,Arg和 Lys以外的所有 C-末端氨基酸残基; B只能水解
Arg和 Lys为 C-末端残基的肽键。
⑥ 多肽链断裂成多个肽段,可采用两种或多种不同的断裂方法将多肽样品断裂成
两套或多套肽段或肽碎片,并将其分离开来。 多肽的选择性降解的方法 有:
A,酶解法,胰蛋白酶,糜蛋白酶,胃蛋白酶,嗜热菌蛋白酶,羧肽酶和氨
肽酶
B,化学法,溴化氰水解法,它能选择性地切割由甲硫氨酸的羧基所形成
的肽键 。
C H 3 S,
C H 2
C H 2
C HN H C N H C H C
O OR
+ B r C
+
N
B r
-
C H 3 S
+
C H 2
C H 2
C HN H C N H C H C
O OR
C N
C H 3 S C N C H
2
C HN H C N H C H C
O OR
C H 2
+
H 2 O
+
C H 2
C HN H C
O
C H 2
O H 3 N
+
C H C
OR
高丝氨酸内酯
⑦测定每个肽段的氨基酸顺序。
⑧确定肽段在多肽链中的次序,利用两套或多套肽段的氨基酸顺序彼此间的
交错重叠,拼凑出整条多肽链的氨基酸顺序。
⑨确定原多肽链重二硫键的位置,一般采用胃蛋白酶处理没有断开二硫键的
多肽链,再利用双向电泳技术分离出各个肽段,用过甲酸处理后,将每
个肽段进行组成及顺序分析,然后同其它方法分析的肽段进行比较,确
定二硫键的位置。
三,蛋白质的空间结构
1.蛋白质的二级结构
蛋白质的二级 (Secondary)结构是指肽链的主链在空间的排列,或规则的几何走
向、旋转及折叠。它只涉及肽链主链的构象及链内或链间形成的氢键。主要有 ?-螺
旋,?-折叠,?-转角。
(1),?-螺旋
在 ?-螺旋中肽平面的键
长和键角一定,肽键的原子排
列呈反式构型,相邻的肽平面
构成两面角,
① 多肽链中的各个肽平面围
绕同一轴旋转,形成螺旋结
构,螺旋一周,沿轴上升的
距离即螺距为 0.54nm,含 3.6
个氨基酸残基;两个氨基酸
之间的距离 0.15nm.
② 肽链内形成氢键,氢键的
取向几乎与轴平行,第一个
氨基酸残基的酰胺基团的 -
CO基与第四个氨基酸残基酰
胺基团的 -NH基形成氢键。
③ 蛋白质分子为右手 ?-螺旋。 左手和右手螺旋
( 2) ?-折叠
?-折叠是由两条或多条几乎完全伸
展的肽链平行排列,通过链间的氢键交
联而形成的。肽链的主链呈锯齿桩折叠
构象。
① 在 ?-折叠中,?-碳原子总是处于折叠
的角上,氨基酸的 R基团处于折叠的棱
角上并与棱角垂直,两个氨基酸之间的
轴心距为 0.35nm.
② ?-折叠结构的氢键主要是由两条肽
链之间形成的;也可以在同一肽链的不
同部分之间形成。几乎所有肽键都参与
链内氢键的交联,氢键与链的长轴接近
垂直。
③ ?-折叠有两种类型。一种为平行式,
即所有肽链的 N-端都在同一边。另一种
为反平行式,即相邻两条肽链的方向相
反。
( 3) ?-转角
在 ?-转角部分,由四个氨基酸
残基组成,四个形成转角的残基中,
第三个一般均为甘氨酸残基.弯曲
处的第一个氨基酸残基的 -C=O 和
第四个残基的 –N-H 之间形成氢键,
形成一个不很稳定的环状结构。这
类结构主要存在于球状蛋白分子中。
(4)自由回转
没有一定规律的松散肽链结构,但仍是紧密有序的稳定结构,通过主链间
及主链与侧链间氢键维持其构象.不同的蛋白质,自由回转的数量和形式各不
相同.分两类:
① 紧密环
② 连接条带
2.超二级结构和结构域
(1)超二级结构
在蛋白质分子中,由
若干相邻的二级结构单元
组合在一起,彼此相互作
用,形成有规则的、在空
间上能辨认的二级结构组
合体。几种类型的超二级
结构,α α; ββ; βαβ;
βββ.
★超二级结构在结构
层次上高于二级结构,但
没有聚集成具有功能的结
构域,
α α ββ
βαβ
(2)结构域
对于较大的蛋白质分子或亚基,多肽链往往由两个或两个以上
相对独立的三维实体缔合而成三级结构。这种相对独立的三维实体
就称结构域。
① 结构域通常是几个超二级结构的组合,对于较小的蛋白质分子,结
构域与三级结构等同,即这些蛋白为单结构域。
② 结构域一般由 100~200 个氨基酸残基组成,但大小范围可达
40~400 个残基。氨基酸可以是连续的,也可以是不连续的.
③ 结构域之间常形成裂隙,比较松散,往往是蛋白质优先被水解的部
位。酶的活性中心往往位于两个结构域的界面上.
④ 结构域之间由, 铰链区, 相连,使分子构象有一定的柔性,通过结
构域之间的相对运动,使蛋白质分子实现一定的生物功能。
⑤ 在蛋白质分子内,结构域可作为结构单位进行相对独立的运动,水
解出来后仍能维持稳定的结构,甚至保留某些生物活性.
★ 结构域与功能域的关系:
① 有时一个结构域就是蛋白
质的功能域,但不总是.
② 包含一个但通常是多个结
构域
3.蛋白质的三级结构
蛋白质的三级结构是指多
肽链在二级结构的基础上
进一步盘旋、折叠,从而
生成特定的空间结构。包
括主链和侧链的所有原子
的空间排布.一般非极性
侧链埋在分子内部,形成
疏水核,极性侧链在分子
表面.
4.蛋白质的四级结构
许多蛋白质是由两个或两个以上独立的三级结
构通过非共价键结合成的多聚体,称为寡聚蛋白。
寡聚蛋白中的每个独立三级结构单元称为亚基。蛋
白质的四级结构是指亚基的种类、数量以及各个亚
基在寡聚蛋白质中的空间排布和亚基间的相互作用。
如,血红蛋白的四级结构得测定由佩鲁茨 1958年
完成,其结构要点为:
?球状蛋白,寡聚蛋白,含四个亚基
?两条 α链,两条 β链,α2β2
?α 链,141个残基; β链,146个残基
?分子量 65 000
?含四个血红素辅基
?亲水性侧链基团在分子表面,疏水性基团在
分子内部
三.蛋白质分子中的共价键与次级键
一级结构 → 二级结构 → 超二级结构 → 结构域 → 三级结构 → 亚基 → 四级结构
? 维系蛋白质分子的一级结构:肽键、二硫键
? 维系蛋白质分子的二级结构:氢键
? 维系蛋白质分子的三级结构:疏水相互作用力、氢键、范德
华力、盐键
? 维系蛋白质分子的四级结构:范德华力、盐键
a盐键(离子键 ) b氢键 c疏水相互作用力
d 范德华力 e二硫键 f 酯键
?氢键、范德华力、疏水相互作用力、盐键,均为次级键
?氢键、范德华力虽然键能小,但数量大
?疏水相互作用力对维持三级结构特别重要
?盐键数量小
?二硫键对稳定蛋白质构象很重要,二硫键越多,蛋白质分子构象越稳定
离子键 氢键 范德华力 疏水相互作用力
第四节 蛋白质分子结构与功能的关系
一,蛋白质一级结构与功能的关系
研究蛋白质一级结构与功能的关系主要是:研究多肽链中不同部位的残基与生物
功能的关系。
进行这方面的研究常用的方法有:同源蛋白质氨基酸顺序相似性分析、氨基酸残
基的化学修饰及切割实验等。
例 1 镰刀形贫血病
?患者血红细胞合成了一种不正常的血红蛋白( Hb-S)
?它与正常的血红蛋白( Hb-A)的差别:仅仅在于 β链的 N-末端第 6位残基发生了变

?( Hb-A)第 6位残基是极性谷氨酸残基,( Hb-S)中换成了非极性的缬氨酸残基
?使血红蛋白细胞收缩成镰刀形,输氧能力下降,易发生溶血
?这说明了蛋白质分子结构与功能关系的高度统一性
例 2 一级结构的局部断裂与蛋白质的激

体内的某些蛋白质分子初合成时,
常带有抑制肽,呈无活性状态,称为蛋
白质原,蛋白质原的部分肽链以特定的方
式断裂后,才变为活性分子,
例:胰岛素,在刚合成时,是一个比成
熟的胰岛素分子大一倍多的单链多肽,
称为 前胰岛素原
?前胰岛素原 的 N-末端有一段肽链,称
为信号肽,
?信号肽被切去,剩下的是 胰岛素原 。
?胰岛素原 比胰岛素分子多一段 C肽,只
有当 C肽被切除后才成为有 51个残基,
分 A,B两条链的胰岛素分子单体,
例 3 同源蛋白
同源蛋白:是指在不同有机体中实现同一功能的蛋白质,同源蛋白中的一级结
构中有许多位置的氨基酸对所有种属来说都是相同的,称为不变残基;其他位置
的氨基酸称可变残基,不同种属的可变残基有很大变化,可用于判断生物体间亲缘关
系的远近,
例:细胞色素 C
?60 个物种中,有 27 个位置上的氨基酸残基完全不变,是维持其构象中发挥特有
功能所必要的部位,属于不变残基,
?可变残基可能随着进化而变异,而且不同种属的细胞色素 C氨基酸差异数与种属
之间的亲缘关系相关。亲缘关系相近者,氨基酸差异少,反之则多(进化树),
黄色,不变残基( invariable residues)
蓝色, 保守氨基酸( conservative residues)
未标记:可变残基( variable residues)
二,蛋白质的构象与功能的关系
别构效应:又称变构效应,是指寡聚蛋白与配基结合,改变蛋白质构象,导致蛋
白质生物活性改变的现象,它是细胞内最简单的调节方式,
例:血红蛋白的别构效应
?一个亚基与氧结合后,引起该亚基构象改变
?进而引起另三个亚基的构象改变
?整个分子构象改变
?与氧的结合能力增加
第五节 蛋白质的性质
一,蛋白质的分子大小
蛋白质是分子量很大的生物分子,相对分子质量大于 10 000.最高可达 40
000 000(烟草花叶病毒).
蛋白质相对分子质量的测定方法
1.根据化学成分测定最小相对分子质量
? 此法首先利用化学分析方法测定蛋白质分子中某一特殊成分的百分含量
?然后,假定蛋白质分子中该成分只有一个,据其百分含量可计算出最低相对分
子质量:
?最小相对分子质量=(已知成分的相对分子、原子质量) /已知成分的百分含量
?如果蛋白质分子中所含已知成分不是一个单位,则真实相对分子质量等于最小
相对分子质量的倍数。
2,超离心法
?在 60 000~ 80 000r/min的高速离心力作用下,蛋白质分子会沿旋转中心向外周
方向移动
?用光学方法测定界面移动的速度即为蛋白质的离心沉降速度
?蛋白质的沉降速度与分子大小和形状有关
?沉降系数是溶质颗粒在单位离心场中的沉降速度,用 S表示。
?一个 S单位,为 1× 10-13秒
?相对分子质量越大,S值越大
?蛋白质的沉降系数,1~ 200S
由沉降系数 S可根据斯维得贝格 〔 Svedberg〕 方程计算蛋白质分子的相对分
子质量:
M=RST/D〔 1- iρ〕
R:气体常数 T:绝对温度
D:扩散系数 ρ:溶剂的密度
3.凝胶过滤法
?凝胶过滤所用介质为凝胶珠,其内部为多孔网状结构
?一定型号的凝胶网孔大小一定,只允许相应大小的分子进入凝胶颗粒内部,大
分子则被排阻在外
?洗脱时大分子随洗脱液从颗粒间隙流下来,洗脱液体积小;小分子在颗粒网状
结构中穿来穿去,历程长,后洗脱下来,洗脱体积大
?测定蛋白质分子量一般用葡聚糖,商品名,Sephadex
?测得几种标准蛋白质的洗脱体积 〔 Ve〕
?以相对分子质量对数( logM)对 Ve作图,得标准曲线
?再测出未知样品洗脱体积 〔 Ve〕
?从标准曲线上可查出样品蛋白质的相对分子质量
4.SDS-聚丙烯酰胺凝胶电泳法
?SDS:十二烷基硫酸钠,变性剂
?普通蛋白质电泳的泳动速率取决于荷质比(净电荷、大小、形状)
?用 SDS和巯基乙醇(打开二硫键)处理
?蛋白质变性(肽链伸展)并与 SDS结合,形成 SDS-蛋白质复合物
?不同蛋白质分子的均带负电( SDS带负电);且荷质比相同(蛋白质分子大,结
合 SDS多;分子小,结合 SDS少)
?不同蛋白质分子具有相似的构象
?用几种标准蛋白质相对分子质量的对数值对它们的迁移率作图
?测出待测样品的迁移率
?从标准曲线上查出样品的相对分子质量
★ 影响迁移率的主要因素
?凝胶的分子筛效应对长短不同的棒形分子会 产 生不同的阻力 〔 主要因素 〕
?凝胶的浓度和交联度
?同一电泳条件下,分子小,受阻小,游动快,迁移率大。相对分子质量大者,
迁移率小
★ 优点,快速,样品用量少,可同时测几个样品
缺点,误差大,约为 ± 10%(误差主要来源于迁移距离的测量误差)
★ 此方法只能测得 亚基肽链的相对分子质量
二, 蛋白质的两性离解和电泳现象
?蛋白质与多肽一样,能够发生两性离解,也有等电点。在等电点时 (Isoelectric
point pI),蛋白质的溶解度最小,在电场中不移动。
?在不同的 pH环境下,蛋白质的电学性质不同。在等电点偏酸性溶液中,蛋白质
粒子带负电荷,在电场中向正极移动;在等电点偏碱性溶液中,蛋白质粒子带正
电荷,在电场中向负极移动。这种现象称为蛋白质电泳 (Electrophoresis)。
?蛋白质在等电点 pH
条件下,不发生电泳
现象。利用蛋白质的
电泳现象,可以将蛋
白质进行分离纯化 。
三,蛋白质的胶体性质
?由于蛋白质的分子量很大,它在水中能够形成胶体溶液。蛋白质溶液具有胶体
溶液的典型性质,如丁达尔现象、布郎运动等。
?由于胶体溶液中的蛋白质不能通过半透膜,因此可以应用透析法将非蛋白的小
分子杂质除去 。
四,蛋白质的沉淀作用
?蛋白质胶体溶液的稳定性与它的分子量大小、所带的电荷和水化作用有关。
?改变溶液的条件,将影响蛋白质的溶解性质
?在适当的条件下,蛋白质能够从溶液中沉淀出来。
1.可逆沉淀
(1)在温和条件下,通过改变溶液的 pH或电荷状况,使蛋白质从胶体溶液中沉淀分
离。
(2) 在沉淀过程中,结构和性质都没有发生变化,在适当的条件下,可以重新溶解
形成溶液,所以这种沉淀又称为非变性沉淀。
(3)可逆沉淀是分离和纯化蛋白质的基本方法,如等电点沉淀法、盐析法和有机溶
剂沉淀法等 。
2.不可逆沉淀
(1)在强烈沉淀条件下,不仅破坏了蛋白质胶体溶液的稳定性,而且也破坏了蛋白
质的结构和性质,产生的蛋白质沉淀不可能再重新溶解于水。
(2)由于沉淀过程发生了蛋白质的结构和性质的变化,所以又称为变性沉淀。
(3)如加热沉淀、强酸碱沉淀、重金属盐沉淀和生物碱沉淀等都属于不可逆沉淀。
五,蛋白质的变性
蛋白质的性质与它们的结构密切相关。某些物理或化学因素,能够破坏蛋白
质的结构状态,引起蛋白质理化性质改变并导致其生理活性丧失。这种现象称为
蛋白质的变性,
变性蛋白
质通常都是固体
状态物质,不溶
于水和其它溶剂,
也不可能恢复原
有蛋白质所具有
的性质。所以,
蛋白质的变性通
常都伴随着不可
逆沉淀。引起变
性的主要因素是
热、紫外光、激
烈的搅拌以及强
酸和强碱等 。
六,蛋白质的紫外吸收
?大部分蛋白质均含有带芳香环的苯丙氨酸、酪氨酸和色氨酸。
?这三种氨基酸的在 280nm 附近有最大吸收。因此,大多数蛋白质在 280nm 附近
显示强的吸收。
?利用这个性质,可以对蛋白质进行定性鉴定。
七,蛋白质的颜色反应
1.双缩脲反应:
?两分子双缩脲与碱性硫酸铜作用,生成粉红色的复合物
?含有两个或两个以上肽键的化合物,能发生同样的反应
?肽键的反应,肽键越多颜色越深
?受蛋白质特异性影响小
?蛋白质定量测定;测定蛋白质水解程度
2.米伦氏反应
?酪氨酸的显色反应(酚羟基反应)
?米伦试剂为硝酸、亚硝酸、硝酸汞、亚硝酸汞的混合物
?蛋白溶液中,加入米伦试剂,产生白色沉淀,加热后变成红色
3.乙醛酸反应
?在蛋白质溶液中加入 HCOCOOH,将浓硫酸沿管壁缓慢加入,不使相混,在
液面交界处,即有紫色环形成
?色氨酸的反应(吲哚环的反应)
?鉴定蛋白质中是否含有色氨酸
?明胶中不含色氨酸
4.坂口反应
?精氨酸的反应(胍基的反应)
?精氨酸与 α-萘酚在碱性次氯酸钠(或次溴酸钠)溶液中发生反应,产生红色
产物
?鉴定蛋白质中是否含有精氨酸
?定量测定精氨酸
5.福林试剂反应
?酪氨酸、色氨酸的反应(还原反应)
?福林试剂:磷钼酸 -磷钨酸
? 与双缩脲法结合 ---Lowry法
?在碱性条件下,蛋白质与硫酸铜发生反应
?蛋白质 -铜络合物,将福林试剂还原,产生磷钼蓝和磷钨蓝混合

?灵敏度提高 100倍
6.茚三酮反应
灵敏度差
7.黄蛋白反应
?浓硝酸与酪氨酸、色氨酸的反应
?生成黄色化合物
?指甲、皮肤、毛发
8.考马斯亮蓝 G-250
?本身为红色,与蛋白质反应呈蓝色
?与蛋白的亲和力强,灵敏度高
?1---1000微克 /毫升
第六节 蛋白质的分类
一, 依据蛋白质的外形分类
按照蛋白质的外形可分为球状蛋白质和纤维状蛋白质。
1.球状蛋白质:( globular protein) 外形接近球形或椭圆形,溶解性较好,能
形成结晶,大多数蛋白质属于这一类。
2.纤维状蛋白质 (fibrous protein)分子类似纤维或细棒。它又可分为可溶性纤
维状蛋白质和不溶性纤维状蛋白质。
二,依据蛋白质的组成分类
按照蛋白质的组成,可以分为
1.简单蛋白 (simple protein),又称为单纯蛋白质;这类蛋白质只含由 ?-氨基
酸组成的肽链,不含其它成分。
( 1)清蛋白和球蛋白,albumin and globulin广泛存在于动物组织中。清蛋白易
溶于水,球蛋白微溶于水,易溶于稀酸中。
( 2)谷蛋白 (glutelin)和醇溶谷蛋白 (prolamin):植物蛋白,不溶于水,易溶于稀
酸、稀碱中,后者可溶于 70- 80%乙醇中。
( 3)精蛋白和组蛋白:碱性蛋白质,存在与细胞核中。
( 4)硬蛋白:存在于各种软骨、腱、毛、发、丝等组织中,分为角蛋白、胶原
蛋白、弹性蛋白和丝蛋白。
2.结合蛋白 (conjugated protein),由简单蛋白与其它非蛋白成分结合而成
( 1)色蛋白:由简单蛋白与色素物质结合而成。如血红蛋白、叶绿蛋白和细胞色
素等。
( 2)糖蛋白:由简单蛋白与糖类物质组成。如细胞膜中的糖蛋白等。
( 3)脂蛋白:由简单蛋白与脂类结合而成。 如血清 ?-,?-脂蛋白等。
( 4)核蛋白:由简单蛋白与核酸结合而成。如细胞核中的核糖核蛋白等。
( 5)色蛋白:由简单蛋白与色素结合而成。如血红素、过氧化氢酶、细胞色素 c等。
( 6)磷蛋白:由简单蛋白质和磷酸组成。如胃蛋白酶、酪蛋白、角蛋白、弹性蛋
白、丝心蛋白等。
本章小节
1,蛋白质的生物学作用:功能蛋白、结构蛋白
2,蛋白质的组成(元素组成、化学组成)及蛋白质含量的测定
3,二十种氨基酸的结构、分类及名称(三字缩写符、单字缩写符)
4,氨基酸的重要理化性质:两性解离,茚三酮 显色、与 2,4-二硝基氟苯
( DNFB)反应,与异硫氰酸苯酯( PITC)的反应
5,蛋白质的一级结构:肽、肽键、活性多肽及一级结构的测定
6,蛋白质的空间结构:二级结构单元( ?-螺旋,?-折叠,?-转角、自
由回转)、三级与四级结构(超二级结构、结构域、亚基)及结构与
功能的关系
7,蛋白质的性质:大分子性质、蛋白质分子量的测定(离心法、凝胶过
滤法,SDS-聚丙烯酰胺凝胶电泳法)、两性解离(等电点、电泳、
离子交换)、胶体性质、蛋白质沉淀(可逆沉淀、不可逆沉淀)、蛋
白质变性、紫外吸收及颜色反应
8,蛋白质的分类:按外形及组成分类