Lecture 2: The nucleus and nuclear instability
Nuclei are described using the following nomenclature:
Z is the atomic number, the number of protons: this defines the element.
A is called the “mass number” A = N + Z.
N is the number of neutrons (N = A - Z)
Nuclide: A species of nucleus of a given Z and A.
Isotope: Nuclides of an element (i.e. same Z) with different N.
Isotone: Nuclides having the same N.
Isobar: Nuclides having the same A.
[A handy way to keep these straight is to note that isotope includes the letter “p”
(same proton number), isotone the letter “n” (same neutron number), and isobar the
letter “a” (same A).]
Example:
of isotope an is
of isotone an is
of isobar an and
Chart of the Nuclides
90 natural elements
109 total elements
All elements with Z > 42 are man-made
Except for technicium Z=43
Promethium Z = 61
More than 800 nuclides are known (274 are stable)
“stable” unable to transform into another configuration
without the addition of outside energy.
“unstable” = radioactive
[www2.bnl.gov/ton]
Nuclear Structure: Forces in the nucleus
Coulomb Force
Force between two point charges, q, separated by distance, r (Coulomb’s
Law)
k0q1q2
F(N) = k0 = 8.98755 x 109 N m2 C-2(Boltzman constant)
R2
Potential energy (MeV) of one particle relative to the other
k0q1q2
PE(MeV) =
R
Strong Nuclear Force
? Acts over short distances
? ~ 10-15 m
? can overcome Coulomb repulsion
? acts on protons and neutrons
Summary of Nuclear Forces:
Nuclei give off energy (i.e., radiation) in an attempt to become more stable
Nuclear instability can be traced to the interaction of i) Coulomb and ii) strong
nuclear force.
Coulomb Strong Nuclear
repulsive attractive
p+ - p+ p+- p+, n - n , p+- n
doesn't saturate short range; falls off quickly
weak (eg. e- to nucleus, ery strong (several decades of MeV)
~ few eV to .1 MeV)
atom is mostly empty space nucleus is densely packed
Due to the Coulomb-nuclear force balance, nuclei exhibit a roughly constant
density and radius.
Energy-Mass Equivalence
Atomic Mass Units (amu, or AMU)
By definition: Atomic masses are measured on a scale in which a 12C6 atom is
exactly 12 atomic mass units.
Gram atomic weight of any element contains N0 atoms (N0 = Avogadro's number)
12 grams of carbon = 6.02 x 1023 carbon atoms
12gcarbon 1.99 x 10-23 g
= = 12 AMU
6.02 x 1023 atoms carbon atom
1.99 x 10-23 g
1 aum = = 1.66 x 10-24 g =1.66 x 10-27 g
12
Using Einstein’s mass-energy equivalence formula: E=m0C2,
1.660531 x 10-27 kg x ( 3.0 x108 m/s) = 1.49448 x 10-10 kg m2/s2 = 1.49448 x 10-10 Joule
Given: 1.6022 x 10-19 Joules = 1 eV
1 AMU is equivalent to 931.48 MeV
Rest mass energies and mass equivalences:
electron mass: 0.000549 amu = 0.511 MeV
proton mass: 1.007277 amu = 938.28 MeV
neutron mass: 1.008665 amu = 939.57 MeV
hydrogen atom: 1.007825 amu
Mass Differences, .
The mass of a nuclide is LESS than the sum of its parts…
? Energy released when all constituents come together.
? Nuclear force so strong that the mass of the bound system is smaller than the
sum of the components.
? = M – A , or M = ? + A
M is the true atomic mass
A is the atomic number
Nuclear reactions release energy
How much energy is released?
Compare the total masses on both sides of the arrow.
Nuclear Binding Energies
The difference in mass between a given nucleus and the sum of the same
number of individual protons and neutrons is the binding energy.
Nuclear Stability/Instability
? Strong nuclear force, operates over short range
? “saturates” quickly
? neutrons interact only with neighbors
protons interact (repulse via Coulomb interaction) throughout
the entire nucleus.
In heavier nuclei, the #neutrons must increase faster than the
number of protons to maintain stability.
? N/Z ratio = 1 at low A
? e.g., Mg Z=12, but N=12,13 or 14 (isotopes)
? N/Z ratio approaches 1.5 when Z~80
“Line of stability” Z = N
Any nucleus far from the “line of stability” will be unstable.
The position of a nucleus relative to the line of stability will define
the mode of nuclear instability (radioactive decay mode).
Radioactive decay tends towards the line of stability
Alpha decay
Natural alpha emitters: Z > 83
? conservation of electric charges
? conservation of nucleons
E.g.,
How much energy, Q, is released?
Compare the masses on both sides of the arrow.
Q = MRa – MRn – Mhe
Use . values in Turner Appendix D.
Q = Δ Ra –Δ Rn –Δ He
Q = 23.69 - 16.39 - 2.42 = 4.88 MeV
How is this energy, Q, distributed?
Shared by the daughters, the Rn nucleus and the alpha particle.
? Momentum is conserved: mv = MV
? Kinetic energy of the 2 products = Q
The energy of the alpha particle:
The energy of the Rn nucleus:
Alpha decay results in a 2-particle emission.
Q is fixed by the mass balance
Eα is fixed by the conservation laws (energy, momentum)
Therefore, alpha particles must have discrete energies.
Nuclear Decay Scheme Diagrams
Graphical display of nuclear transformations
? Decay mode
? Energy transitions
? Abundances (branching ratios)
Conventions:
? Arrows slanting to the left indicate decrease in Z
? Arrows slanting to the right indicate an increase in Z
? Wavy lines going straight down indicate a gamma emission from the
nucleus.
Decay Scheme Exercise
α 6.82 (80%)
6.55 (12%)
6.42 (7%)
γ 0.271 (10%)
0.402 (7%)