[例题]已知甲、乙两煤矿每年的产量分别为200万吨和300万吨,需经过东车站和西车站两个车站运往外地.东车站每年最多能运280万吨煤,西车站每年最多能运360万吨煤,甲煤矿运往东车站和西车站的运费价格分别为1元/吨和1.5元/吨,乙煤矿运往东车站和西车站的运费价格分别为0.8元/吨和1.6元/吨.煤矿应怎样编制调运方案,能使总运费最少?
解:设甲煤矿向东车站运x万吨煤,乙煤矿向东车站运y万吨煤,那么总运费
z=x+1.5(200-x)+0.8y+1.6(300-y)(万元)
即z=780-0.5x-0.8y.
x、y应满足
作出上面的不等式组所表示的平面区域.
设直线x+y=280与y轴的交点为M,则M(0,280)
把直线l:0.5x+0.8y=0向上平移至经过平面区域上的点M时,z的值最小.
∵点M的坐标为(0,280),
∴甲煤矿生产的煤全部运往西车站、乙煤矿向东车站运280万吨向西车站运20万吨时,总运费最少.