热 学气体分子的平均平动动能与温度的关系温度标志着物体内部分子无规则运动的激烈程度:分子无规则运动激烈程度的定量表示
k?
kTk 23
温度的微观意义:比较 和有
knP?32?
nkTP?
方均根速率
kTvm
2
3
2
1 2
mM
RT
m
kT
v
332

所以在同一温度下,质量大的分子其方均根速率小。
2v
由于
mPV /( A)
( C)
( B)
( D)
)/( mTPV)/( RTPV
)/( kTPV
解:
n k TP? kT
V
N
P?
kT
PV
N?
( B)
例 1,若理想气体的体积为,压强为,温度为,一个分子的质量为,为玻耳兹曼常量,
为摩尔气体常量,则该理想气体的分子数为:
PV
T m k
R
例 2.理想气体微观模型(分子模型)的主要内容是:
(1) _____________________________;
(2) _____________________________;
(3) _____________________________.
气体分子的大小与气体分子之间的距离比较,可以忽略不计,2分除了分子碰撞的一瞬间外,分子之间的相互作用力可以忽略,2分分子之间以及分子与器壁之间的碰撞是完全弹性碰撞,1分例 3.关于温度的意义,有下列几种说法:
(1)气体的温度是分子平均平动动能的量度.
(2)气体的温度是大量气体分子热运动的集体表现,
具有统计意义.
(3)温度的高低反映物质内部分子运动剧烈程度的不同.
(4)从微观上看,气体的温度表示每个气体分子的冷热程度.
上述说法中正确的是
( 1)、( 2)、( 3)
,密度,
例 3.某气体在温度为 时,压强为KT 273?
a tmP 2100.1 32 /1024.1 mkg
则该气体分子的方均根速率为 _______.
mM
RT
v
32
RT
M
M
PV
m
P
M
PV
M
RT
m
495m/s 3分