http://www.courses.fas.harvard.edu/~chem206/
O MeH Me
OH
MeHO
BnO
Me
O
OMe
Me
Me
O MeH Me
OH
O
BnO O
O MeMe
Me
Me
Me
XHg
O
Me
Me OR
Me Me
OR
Me OH
OHO
A
O OH
OMe
OR
MeMe
ORMe
Me
O
Chem 206D. A. Evans
Matthew D. Shair Wednesday, October 9, 2002
a73 Reading Assignment for week
Olefin Addition Reactions: Part–3
Chemistry 206
Advanced Organic Chemistry
Lecture Number 10
Olefin Addition Reactions–3
a73 Olefin Bromination
a73 Olefin Oxymercuration
a73 Halolactonization
a73 Simmons-Smith Reaction
Investigation of the early Steps in Electrophilic Bromination through the Study of the Reaction of Sterically Encumbered Olefins
R. S. Brown, Accts. Chem. Res. 1997, 30, 131 (handout)
A. Carey & Sundberg: Part B; Chapter 4"Electrophilic Additions to C–C Multilple Bonds"
Hoveyda, Evans, & Fu (1993). Substrate-Directable Chemical Reactions. Chem. Rev. 93: 1307-70 (Handout)
Hg(OAc)2, CH2Cl2
-78 oC to -20 oC
85%, dr = 93 : 7
a73 Predict stereochemical outcome
99%
1
16
99%, single diastereomer
Hg(OAc)2, CH2Cl2
-78 oC to -20 oC
Bromoniun Ions or -Bromocarbocations in Olefin Bromination. A Kinetic Approach to Product Selectivities
M-F. Ruasse, Accts. Chem. Res. 1990, 23, 87 (handout)
a70
a70
R.S. Brown . Acc. Chem. Res. 1996. 30. 131-137.
C
C
Br
R RBr
R R
Br
Br3–
C CRR RR
Br
Br–
Br-1
Br-4
Br-2
Br-3
Br2
CC
R
R R
R
C
C
Br
R RBr
R RBr2
Ph
H Me
H
Ph
Me H
Me
Ph
Me Me
H
R
R R
R
Ph
H H
Me
Me
H H
Me
Me
H Me
H
Chem 206D. A. Evans Olefin Bromination-1
Introduction
a73 Reaction is first order in alkene
At low concentrations of Br2, rxn is also first order in Br2
At higher concentrations of Br2 in nonpolar solvents rxn is second order in Br2.
a73 Stereochemical outcome versus structure (Br2 in HOAc @ 25°)
Alkene % anti addition
100%
100%
73%
83%
63%
68%
Alkene % anti addition
a73 Bromonium ion origin of the anti (trans) selectivity first suggested by Roberts, JACS 1937, 59, 947
a73 First X-ray Structure of a bromonuium ion: Brown, JACS 1985, 107, 4504
+
krelAlkene
1
61
70
57
27
5470
2620
1700
130,000
1,800,000
CH2=CH2
CH3CH=CH2
n-PrCH=CH2
i-PrCH=CH2
t-BuCH=CH2
(CH3)2C=CH2
cis-CH3CH=CHCH3
trans-CH3CH=CHCH3
(CH3)2C=CHCH3
(CH3)2C=C(CH3)2
a73 Substituent Effects on Bromination Rates
2 eq Br2
-2 eq Br2
X-ray structure
2.116 ? 2.194 ?
1.497 ?
C C
H
H H
H
Br
C C
Me
Me Me
Me
Br
R
R
R
R
R R
R
Br
R
C C
H
H Me
Me
Br
Ad–C C–Ad
Br Br3–
C–AdAd–CC–AdAd–C
Br
Ad–C C–Ad
Br3–
C–AdAd–C
X
R
R
R
R
R R
R
Br
R
R
R
R
R
R R
R
Br
R
TScomplex complex
Br2Br2
Br2
A
B
H
Me3C
R
H
Me3C
H
MeOH
H
Me3C
Br
H
H
H
Me3C
Br
H
H
MeOH
Br
Br
Br3–
Br–.HOR
H
Me3C
Br
Br
RH
H
Me3C
Br
OMe
HH
H
Me3C
OMe
Br
HH
Chem 206D. A. Evans Olefin Bromination-2
a73 Calculated Geometries of Substituted Bromonium IonsRuasse, Chem Commun. 1990, 898
1.47
2.01
1.51
2.05
1.51
2.701.88
Note; the C–Br bond lengths in previous X-ray structure are 2.116 ?.
a73 Bromonium Ions undergo fast exchange with olefinsBrown, Accts. Chem. Res. 1997, 30, 131
Unprecedented until 1991 (Bennet, JACS 1991, 113, 8532)
X = Br: exchange rate: 2 x 106 M–1 s-1
X = I : exchange rate: 8 x 106 M–1 s-1
There is an intermediate in the halogen transfer (ab initio calcs):
+ + +
Products
(pi-complex)
Overall Reaction Mechanism
σ-complex
σ-complex
Second Order Kinetics
Third Order Kinetics
Products
Bromination of Cyclohexene Derivatives Pasto, JACS 1970, 92, 7480
Pyr–Br+ Br3–
R = H, Me
exclusive product
Pyr–Br+ Br3– 47%
53%
Diaxial opening of bromonium ions may be viewed as an extension of the Furst-Plattner Rule for epoxide ring opening (Lecture-3).
It appears that bromine attack from both olefin faces occurs wilth near equal probability.
H
Me3C
H
MeOH
MeOH
H
Me3C
Me
MeOH
H
Me3C
Br
H
H
H
Me3C
Br
H
H
H
Me3C
OMe
Br
MeH
H
Me3C
Br
OMe
HH
H
Me3C
OMe
Br
HH
Me
H
Me H
H
H
RCO3H
Me R
R
H
HH
BrBr
H
H
H
Me3C
Br
Me
H
H
Me3C
Br
Me
H
H
Me3C
Br
Me
H
HOMe H
Me3C
Br
MeH
OMe
–H+
Me
H Br2
H2O
Me
H
O
H H
Br2
HOAc
Me
H
O
Me
H
Br
OHH H
Me
H
Br
H2O
Br Me
R
R
H
HHBr
HH
Me R
R
H
HH
H H
Br
Br
Me
H
Br
OH
H
H
Me
H
Br
H2O
Chem 206D. A. Evans Olefin Bromination-2
Bromination of Cyclohexene Derivatives Pasto, JACS 1970, 92, 7480
Pyr–Br+ Br3– 47%
53%
Diaxial opening of bromonium ions may be viewed as an extension of the Furst-Plattner Rule for epoxide ring opening. (Lecture-2)
Pyr–Br+ Br3–
exclusive product
syn-Unreactive
Case A
Case B
From Case A, one assumes that both bromonium ions are formed; however, for the syn isomer to react, ring opeing must proceed against the polarization
due to Methyl substituent.
anti-Reactive
Representative Examples of Diastereoselective Bromination
syn-Unreactive
not observed
δ+δ+
δ+
Major Product(70%)Minor Product
(7%)
House 2nd Ed, pg 424
How to generate either epoxide from a conformatinaly biased olefin
Epoxidation controlled by steric effects imposed by cis-fused ring
How do we construct the other epoxide diastereomer??
base
majorminor
both bromohydrins afford same product
R Hg–X NaBH4
H
Me3C
Hg–X
Me
H
H–CO2–
R Hg O
H O
–CO2
R Hg–H
H
Me3C
Me
H
Me3C
R
THF, H2O
R H
Hg(OAc)2
H
Me3C
Hg–X
Me
H
THF, H2O
Hg(OAc)2
C CRH HH
H
Me3C
OH
HgOAc
MeH
H
Me3C
OH
HgOAc
RH
ROH
X–Hg–X
H
Me3C
Br
Me
H
C C
RH
HH
XHg
OR
HOMe
H
Me3C
HgOAc
OH
RH
NaBH4
H
Me3C
Br
Me
H
–H+
C C
RH
HH
H
OR
H
Me3C
Me
H
Me3C
Br
MeH
OMe
H
Me3C
H
MeOH
MeOH
H
Me3C
Br
Me
H
MeOH
H
Me3C
Br
H
H
H
Me3C
OMe
Br
MeH
H
Me3C
Br
H
H
H
Me3C
Br
OMe
HH
H
Me3C
OMe
Br
HH
Chem 206D. A. Evans Olefin Oxymercuration-1
R = H 41% 48%
R = Me 100%
Oxy-Mercuration & bromination follow identical pathways (Pasto)
Oxymercuration Pasto, JACS 1970, 92, 7480
exclusive product
syn-Unreactive anti-Reactive
Reduction of the Hg–C bond
nonstereoselective radical chain process
Formate is an excellent source of hydride ion for late transition and heavy main-group metals
The basic process:
Kinetics: Halpern, JACS 1967, 89, 6427 Reduction: Pasto, JACS 199, 91, 719Overview: B rown, JOC 1981, 46, 3810.
δ+
δ+
Bromination of Cyclohexene Derivatives Pasto, JACS 1970, 92, 7480
Pyr–Br+ Br3– 47%
53%
Diaxial opening of bromonium ions may be viewed as an extension of the Furst-Plattner Rule for epoxide ring opening. (Lecture-2)
Pyr–Br+ Br3–
exclusive product
syn-Unreactive
Case A
Case B
From Case A, one assumes that both bromonium ions are formed; however, for the syn isomer to react, ring opeing must proceed against the polarization
due to Methyl substituent.
anti-Reactive
syn-Unreactive
not observed
δ+δ+
δ+
HO
HO
RL
RL
C
Hg
X
C
H
H
H
CH C H
Me
Hg
X
H
H
H
OBn
OC6H11H
BnOBnO
H
OH Hg(OTFA)2
OH
H
AcNHR'
H
OBn
CO2Me
ORH
O
ORHO Me H
OBn
H
N
Me
HBnO2C
H
H
NaBH4
Ph3SiH
Hg(OTFA)2
NaBH4
Hg(OAc)2
Hg(OAc)2
NaBH4 XHg–HgCH2
H
NBnO
2C H
Me
H
O
H
BnOBnO
H
H
OC6H11
OBn
O
OR
CO2Me
OBn
H
R'AcNH
H
H
OBn
HMe
HO
O
ORHO
H
N
Me
HBnO2C
CH2–HgX
H OAc
Et
n-Bu
OH
Me
R
OH
OH
RL
HOH
NaBH4
Hg(OAc)2
Me
OBnO
COOMe
Hg(OAc)2
Hg(OAc)2
Hg(OAc)2
OH
Et Me
OAc
OH
R
OR'
HgOAc
BnOH
NaBH4
Hg(OAc)2
R
OH
MeEt
OAc
NaBH4
HOH
HOH
HOH
MeOH
COOMe
BnO O
Me
OBn
OR'
R Me
OH
OH
RL
HgOAc
Me
OH
HgOAc
OR'
RL
OH
With more electrophilic Hg(II) salt, more polar solvents, and longer rxn times, the rxn may be rendered reversible.
Oxymercuration ExamplesD. A. Evans Chem 206
Diastereoselective ring closures via oxymercuration
α:β = 96 : 4
Mukaiyama, Chem. Lett. 1981, 683
Sinay, Tet. Lett. 1984, 25, 3071
"one isomer"
Isobe, Tet. Lett. 1985, 26, 5199
a73 Kinetic vs Thermodynamic control:
Hg(OAc)2: short rxn times : 40 : 60
Hg(OTFA)2: longer rxn times : 2 : 98Harding, JOC 1984, 49, 2838
syn:anti = 80 :20Chamberlin, Tetrahedron 1984, 40, 2297
R'OH
a73 Acyclic allylic alcohols:
R'OH Ratio
-Et 76 : 24
yield
65%
72%93 : 07-Et
-Ph 88 : 12 66%
70%98 : 02-tBu
Giese, Tet. Lett. 1985, 26, 1197
erythro
77 : 23
O-acetate participation will turn over the stereochemical course of the rxn
diastereoselection = 83 : 17 (79%)Seebach, JACS 1983, 105, 7407
R
OH O
H R'
HgClOAc
5% Yb(OYt)3
R
OH O
Me Me
HgClOAc
5% Yb(OYt)3
R
OH O
Me Me
HgClOAc
Lewis acid addends were surveyed. the logic for this step was two-fold:
(A) Lewis acid would promote the formation of the putative hemiketal imtermediate.(B) Lewis acid would promote reversability of the oxymercuration process
Me3C
OH O
Me Me
HgClOAc
5% Yb(OYt)3
O
O
H
Me
Me
Me
H
Me O
O
H
Me
Me
Me
Me
H
MM-2
Me3C
O O
HgCl
MeMe
Me3C
O O
HgCl
MeMe
R
O O
HgCl
MeMe
R
O O
HgCl
MeMe
R
O O
HgCl
R'
HOAc, 5% Yb(OYt)3
O
O
H
R
Me
Me
H Yb(X2)
O
O
H
R
Me
Me
H
Yb(X2)
O
O
H
R
Me
Me
H
ClHg
OH
H
R
H
HgClOAc
HgClOAc
O
Me
Me
Yb(X2)
HOAc, 5% Yb(OYt)3
O
O
H
R
Me
Me
H Yb(X2)
HgX
O
O
H
R
Me
Me
H
Yb(X2)
HgX
5% Yb(OYt)3
HgCl
YbX3
O
O
H
R
Me
Me
H
Hg
H
Cl
YbX3
O
O
H
R
Me
Me
H
Yb(X2)
O
O
H
R
Me
Me
H H
O
O
H
R
Me
Me
H
HgCl
–OAc
Oxymercuration ExamplesD. A. Evans Chem 206
Oxymercuration via Hemiketals & Hemiacetals
a73 Lewis acid catalyzes formation of hemiketal
+
J. L. Leighton et. al, Org. Lett. 2000, 2, 3197-3199
+
a73 General Reaction: diastereoselection >10:1
a73 Mechanistic Observations:
+
a68
~1:1-mixture of diastereomersProduct formed in low yield.
much recovered starting material
acetone, 2h rt
+
a68acetone, 2 min0 °C
~1:1-mixture of diastereomers
93% yield
Proposed Mechanism
a73 The Oxymercuration Step (Kinetic Phase)
rate-determining step low diastereoselectivity
Erel = 0 Erel = +5.2 kcal/mol
Leighton presumes that mercurium ion formation is rate-determining under kinetic conditions.
At higher temperatures and longer reaction times the products are shown to interconvert.
Me OH
OHMe
Me
O
Me
O O
Me Me Me
O
O O Me
OHMeHMeH
Ca
Me OH
OH
R
Me
O O Me
OHMeHMeH
O MeH Me
OH
Me
HO
BnO
Me
O
OMe
Me
Me
O MeH Me
OH
O
BnO O
O MeMe
Me
Me
MeH
XHg
Me OH
OH
R
Me
HO O Me
OHMeHMe
RO
CH C Me
H
Hg
X
H
A
A
Me OR
Me
CO2R
RLOH
O OH
OMe
OR
MeMe
ORMe
Me
O
B
HgX2
O O O O
OHMe
Me
Me
OH
Me Me
O
Me
OH
OHOH O O
Et OH
Me
H
MeOH
Me
MeH
C
Hg(OAc)2CH
2Cl2
RL
D
A
H RL
H
H
Hg–X
Me
CO2RH
Me
H
OH
H OR
D
Me
Me
OMe Me
H
Me
OHEt
O
OO
OR
H
OO
Me Me
O
Me
Me OR
Me Me
OR
Me
OH
OHO
F
H
O RLMe H RO
2R
Me
OR
H
H
HgX
F
H
O
O
Me
Me
R1
Me
H
HHO
R2
Me
H
H
H
O
O
Me
Me
R1
Me
H
HHO
R2
Me
Hg
H
H
X
HgX+
Chem 206D. A. Evans Oxymercuration Examples: X-206 & Lonomycin Syntheses
X-206 Synthesis (with S. Bender, JACS 1988, 110, 2506)
1
E
E
C17-C37 Subunit
C1-C16 Subunit
16
7
+
aldol
Assemblage strategy for Ring A:
16
1
9
7
9
7
9
7
Predicted stereochemical outcome:
99%
Ionomycin Synthesis (with Dow & Shih, JACS 1990, 112, 5290)
Ionomycin Calcium Complex
Hg(OAc)2, CH2Cl2
-78 oC to -20 oC
85%, dr = 93 : 7
+
HO
HO
HO
HO
n-Bu
CH C Me
H
I
n-Bu
n-Bu
H
CH C H
Me
Hg
X
C
I
C
Me
H
H
H
H -O2C
CH2
CMe C H
Me
I H
+
n-Bu
OH Me
Me
OH
n-Bu
n-Bu
OH
Me
Hg(OAc)2
HOAc
HOAc
OH
n-Bu
I
Me
OAc
OAc
Me
I
n-Bu
OH
OH
n-Bu
HgOAc
Me
OH
Me
OH
Me
RO
O
Me
TIPSO
Me
OH
Me
TIPSO
Me
OH
I
OH
O
Me
O
Me
TIPSO
Me
Me
O
HO
OH
Me
R
OH
HO
O
Me
Me
O
HO
OH
R
HCO3–
HCO3–
HCO3–
HCO3–
A
O Me
OH
Me
MeO
O
HO
C
I
CMeH Me
CH2-O
2C
Me
I
O
HO
RO
O R
HO
O
I
Me
Me
O Me
HO
O
I
I
O
HO
HO
Me
H B
K2CO3
MeOH
O
MeO
Me
OH
MeO
I
O
HO
MeO
Me
R = OMe
R = H
Related Olefin Addition Rxns: Halogen ElectrophilesD. A. Evans Chem 206
Other electrophilic olefin addition reactions afford the same stereochemical outcome
ratio = 80 :20
Ratio = 98 : 2 (78%)
Chamberlin, Tetrahedron 1984, 40, 2297
I2, HOAc
I2, HOAc
Ratio = 94 : 6 (85%)
This is an exceptional approach to the creation of either syn or anti1,3-dioxygen relationships
67% overall
n-Bu3SnH, toluene, 25 °C
TsOH, (CH3)2C(OCH3)2, 25 °C
I2, THF, 4 °C
0.25 M KH2PO4,
diastereoselection 96 : 4
a73 Chamberlin methodology employed in cytovaricin synthesis (JACS 1990, 112, 7001)
This methodology superior to oxymercurationalternative which was evaluated first
a73 Chamberlin (JACS 1983, 105, 5819)
Iodine-induced lactonization is also highly stereoselective
I2, HOH/THF
Ratio96 : 4 (85%)
As we have seen before, gauche Bis more destabilizing than gauche A
t-BuOOHVO(acac)
2
Lactonization Ratio = 96 : 4
Epoxidation Ratio = 3 : 97a73 Other cases:
I2, HOH/THF Ratio
>95 : 5 (49%)
R = H: 77 : 23 (74%)I2, HOH/THF
R = Me: 42 : 58 (81%)
R = Me: 90 : 10 (94%)
I2, HOH/THF R = H: 87 : 13 (41%)
Me
HO
S
Ph
C C
Et
H
H
HO
C
C
MeMe
OHH
Ar O O
Me
HEtH
H
Me
CH2OHHO
Me
Me
OO
R R O
O
Me
Me
O
Me
H
D
O HO
Me
Me
O
Me
O
Me Me MeMe
OO
Me
O
Me
Me
OI
n-Bu
n-Bu
CH C H
Me
Hg
X
C
I
C
Me
H
H
H
H
O EtAr
Me
OH
Me Me
H
MeO H
CH C H
Me
S
Ph
HMeO
Me
C D
D D
D D
D
H Et H
Me
OOAr H
Br
Me Me
H
Me
O
Me
Me
HOOH
R
+
+
+
E E
E
E E
Me
OH
n-Bu
n-Bu
OH
Me
Hg(OAc)2
HOAc
OAc
Me
I
n-Bu
OH
OH
n-Bu
HgOAc
Me
OH
D
A B
O O O O O
Me
Me
HO CH2OH
Me
HEtHMe
HO
Me
HO
O
Me
MeO
Me
C
NBS
D
Me
OMe
Me
OMe
Me
SPh
Me
Cl
Me
Et
SPh
Me
MeO
Et
OMe
Me
Me MeMe
SPh Me
SPhMe
PhS–Cl
Me2ZnTiCl
4
Me2ZnTiCl
4
PhS–Cl
PhS–Cl
MeCN
DMSO
KI3
HCO3–
Ag2CO3
H
H-O
O
Me
Me
H
El(+)-inducedheterocyclization
Bartlett, Asymmetric Synthesis 1984, 3, Chap 6, 411-454
Cardillo, Tetrahedron 1990, 46, 3321-3408
Ratio = 95 : 5 (59%)
Ratio = 99 : 1 (40%)
The above stereochemistry is inferred from the following reaction:
Reetz, Angew. Chem. Int. Ed. 1987, 26, 1028
+
I2, HOAc
Ratio = 98 : 2 (78%)
ratio = 80 :20
Olefin Sulfenation follows the preceding stereochemical analogies
Chem 206D. A. Evans Related Olefin Addition Rxns
Halogen-induced heterocyclization in the synthesis of monensin
Kishi, JACS 1979, 101, 259, 260, 262
Still, JACS 1980, 103, 2117-2121
E
a73 The Kishi Ring D Construction:
57%
only one diastereomer
KO2_
47%
Stereocontrol through A(1,3)Strain
a73 The Still Ring E Construction:
87%
50%
I(+)
Stereocontrol through A(1,3)Strain
OH
OH
OR
OO
BnOH2C CH2OBn
Me
CH2
OR
Me
CH2OBnBnOH2C
O O
CH2
OH
CH2
OH
CH2
OH
Zn-Cu
CH2I2
CH2I2
Zn-Cu
Zn-Cu
CH2I2
CH2I2
Zn-Cu
OH
H
OR
R R
HO
R'
R''
NHSO2Ar
NHSO2Ar
CH3Me3C
HO
CH2OHPhCH
2CH2
R CH3
OH
ICH2ZnI
CH2I2
CH2I2
Zn
Et2Zn
CH2I2
CH2I2
Zn-Cu
CH2
ZnI
I
R
R
ICH2ZnI
OH
R''
R'
PhCH2CH2 CH2OH
Me3C
R''
OH
R CH3
OH
R
R
ZnI2
R'
OH
R''
OH
CH3R
R' R" Ratio
Ph nBu 1 : 1.4
Ph iPr > 200 : 1
Ph tBu > 200 : 1
tBu CH3 1 : 5.1
tBu iPr > 200 : 1
> 200 : 1 (99%)
Isolated alkenes and homoallylic alcoholsare inert to these reaction conditions.
G. A. Molander and J. B. Etter
J. Org. Chem. 1987, 52, 3942
Sm or Sm/Hg
a73 Low-valent Samarium Variants: Molander,JOC 1987, 52, 3942
These results suggest that the transition state might be binuclear.
Construct a reasonable transition structure which
accomdates the data
10 mol%
80% ee (82% yield)
?
a73 Enantioselective Simmons-Smith Variants: Kobayashi, Tet. Let. 1992, 33, 2575
a73 The classical mechanism
+
+
R Ratio
CH3 57 : 43
Et 64 : 36
tBu 67 : 33
M. Pereyre and Co-workers
J. Chem. Res. (S) 1979, 179
Absolute control of stereochemistry is possible through chiral ketal auxiliaries
Yamamoto, Tetrahedron, 1986, 42, 6458
Mash, JACS, 1985, 107, 8256
Yamamoto, JACS, 1985, 107, 8254
diastereoselection 20:1
epoxidation also gives anti adduct
3
1
O–C1–C2–C3 dihedral = 165 °
S. Winstein, JACS, 1969, 91, 6892
9 : 1
>99 : 1
R = OAc: 4:1
R = OMe: >99:1
Sawada, JOC 1968, 33, 1767
CH2I2, Zn-Cu
Dauben, JACS 1963, 85, 468
79 % >99:1
A large rate acceleration relative to simple olefins was observed.
S. Winstein, JACS 1959, 81, 6523; 1961, 83, 3235; 1969, 91, 6892
The Simmons-Smith ReactionD. A. Evans Chem 206
For a recent general review of the Simmons-Smith reaction see:
Charette & Beauchemin, Organic Reactions, 58, 1-415 (2001)
165 o
Me
O
Me
EtMe
Me
O
Me
HO2C
Me
OHMe
OH
OH
LnM
O
R
O
Me Me
MeO
Me Me
OH[O]
Me
O
Me
Et
Me
Me
O
Me
HO2C
Me
OHMe
OH
OH M OR
O
Me Me
MeO
Me Me
OH
O O O
Me
O
Me
EtMe
Me
O
Me
HO2C
Me
OHMe
OH
OH
O
LnM
OOOOO
Me
MeO
Me
HO2C
HO Me Me Me
H H OHMe H Me H
OHMe
H
OOOOO
Me
MeO
Me
HO2C
HO Me Me Me
H H OHMe H Et H
OHMe
H
C. A. Morales Chem 206Olefin Addition Rxns in Polyether Synthesis-1
One plausible biosynthetic proposal for polyether natural products:
Monensin B
Cane, D. E. JACS, 1983, 105, 3394.Cane, D. E. JACS, 1982, 104, 7274.
An alternate biosynthetic proposal:
Townsend, C. A.; Basak, A. Tetrahedron, 1991, 47, 2591.
from lecture 7
(Z,Z,Z)-premonensin triene
[2+2]
Monensin
reductive elimination
Me
OH Me
Me
MeMe
PCC
HOAc
Me
OH
Me
Me
Me
Me
PCC
HOAc
OO H Me
Me
Me O
OO H Me
Me
Me O
OHOO H Me H
Me
Me
Me
Me
OHOO H Me H
Me
Me
Me
Me
OHOO H Me H
Me
Me
Me
Me
OHOO H Me H
Me
Me
Me
Me
OR
S
RL H
RZ
RE
OH
O Cr H
RZ RE
RL
RS
H
H
O
O OH
i-Pr
OHMe Me Me
PCC
HOAc
O CrRL
RS
H
H
O
O OH
H
RE
RZ
O CrRL
RS
H
H
O OH
H R
E
RZ
O
O H
i-Pr
Me O Me
C. A. Morales Chem 206Olefin Addition Rxns in Polyether Synthesis-2
A biomimetic model for syn-oxidative polycyclization:
McDonald, F. E. JACS, 1994, 116, 7921.
9% combined, 11:1 (trans:cis)
38%, 9.9:1
19% combined, 3.7:1 (trans:cis)
24%, 17:1
High syn-stereospecificity for tertiary alcohols
But for secondary alcohols...
...simple oxidation occurs more rapidly than oxidative cyclization.
Conformational model for syn-oxidative cyclization:
[2+2]
reductive
elimination
trans-substitutedtetrahydrofuran
Does this explain the lower degree of "trans-cross-ring" selectivity observed
for (E)-olefins?
Me
EtMe
Me
O
MeMe Me
OEtHHO
Me
O
Me
EtMe
Me
O
Me
HO2C
Me
OHMe
OH
OH
LnM
O
Me
Et
Me
Me
HO OH
O
MeMe Me
OHEtHAcO
(Cl2CHCO2)ReO3
(Cl2CHCO)2O
O
MeMe
EtHAcO O
Me
OHH H
C D
OOOOO
Me
MeO
Me
HO2C
HO Me Me Me
H H OHMe H Et H
OHMe
H
C D
HO
O
O
Me
OEt HH
OH H
OH H
OH
n-C12H25
n-C12H25O
H
n-C12H25OH
Et
O HH
OH H
OH H
OH
n-C12H25HO
O
O
Me
n-C12H25OH
(Cl2CHCO2)ReO3
(Cl2CHCO)2O
NHSO2CF3
NHSO2CF3
Application of the model for syn-oxidative polycyclization using an all (Z)-polyolefin:
McDonald, F. E. Pure App. Chem., 1998, 70, 355.
(Z,Z,Z)-premonensin triene
Monensin
C. A. Morales Chem 206Olefin Addition Rxns in Polyether Synthesis-3
AD-mix β
CrO3(py)2 1) Ac2O, Et3Ncat. DMAP
2) NaBH4, CeCl3
5
Goniocin
5
(E,E,E)-pregoniocin triene
Et2Zn, Ti(O-i-Pr)4
*
* One stereocenter ( ) controls the induction of six additional centers.*
Application of the model for syn-oxidative polycyclization on an all (E)-polyolefin: