http://www.courses.fas.harvard.edu/~chem206/
Me
Me
MeSMe S
PPh3 S=PPh3
Me
Me
MeS
Me
Chem 206D. A. Evans
Matthew D. Shair Wednesday, October 16, 2002
a73 Reading Assignment for week:
Carey & Sundberg: Part A; Chapter 11Concerted Pericyclic Reactions
Pericyclic Reactions: Part–3
Chemistry 206
Advanced Organic Chemistry
Lecture Number 13
Pericyclic Reactions–3
a73 Introduction to Sigmatropic Rearrangements
a73 [2,3] Sigmatropic Rearrangements
a73 Other Reading Material:
Fleming: Chapter 4Thermal Pericyclic Reactions a73 Problems of the Day:
[2,3] Sigmatropic Rearrangements
Trost, Ed., Comprehensive Organic Synthesis 1992, Vol 6, Chapter 4.6:
Nakai, T.; Mikami, K. Org. React. (N.Y.) 1994, 46, 105-209.
Hoffmann, Angew. Chem. Int. Ed. 1979, 18, 563-572 (Stereochemistry of)
Nakai, Chem. Rev. 1986, 86, 885-902 (Wittig Rearrangement)
Evans, Accts. Chem. Res. 1974, 7, 147-55 (Sulfoxide Rearrangement)
Vedejs, Accts. Chem. Res. 1984, 17, 358-364 (Sulfur Ylilde Rearrangements)
[3,3] Sigmatropic Rearrangements
Trost, Ed., Comprehensive Organic Synthesis 1992, Vol 5, Chapter 7.1: (Cope, oxy-Cope, Anionic oxy-Cope)
Chapter 7.2, Claisen
S. J. Rhoades, Organic Reactions 1974, 22, 1 (Cope, Claisen)
S. R. Wilson, Organic Reactions 1993, 43, 93 (oxy-Cope)
T. S. Ho, Tandem Organic Reactions 1992, Chapter 12 (Cope, Claisen)
Paquette, L. A. (1990). “Stereocontrolled construction of complex cyclic ketones by oxy-Cope rearrangement.” Angew. Chem., Int. Ed. Engl. 29: 609.
For study on this [2,3] rxn See Baldwin JACS 1971, 93, 6307
heat
Provide a mechanism for this transformation.
Evans, et al. Acc. Chem. Res. 1974, 7, 149-155.
X
H
H
C
XH
R
C RHX
C
Me
H
1 3
R
X Y:–
X
R
X
X
H
?
?
?
?
YHX H
X
H
Y
H
X Y
X Y
?
R
Y–:X
H
X
X
X
R
X
H
Y
MeH
HX H Y
D
Y
CH3
X
?
?
YHX H
Y
H3C
X
Me H
Y
CH3
X
D
Sigmatropic Rearrangements-1 Chem 206D. A. Evans
Bridging distance too great for antarafacial migration.
Antarafacial GeometrySuprafacial Geometry
bonding
Ψ2 (allyl HOMO)
antibondingbonding
bonding
a73 Construct TS by uniting an allyl and H radical:
Consider the orbitals needed to contructthe transition state (TS).
?
consider the 1,3-migration of H
a73 [1,3] Sigmatropic Rearrangements (H migration)
[3,3] Sigmatropic rearrangement
[2,3] Sigmatropic rearrangement
[1,3] Sigmatropic rearrangement
[1,5] Sigmatropic rearrangement
Sigmatropic rearrangements are those reactions in which a sigma bond(& associated substituent) interchanges termini on a conjugated pi system
a73 Examples:
Sychronous bonding to both termini is possible from this geometry
a203 The stereochemical constraints on the suprafacial migration of carbonwith inversion of configuration is highly disfavored on the basis of strain.
bonding bonding
Inversion at carbon
Suprafacial on allyl fragment
Retention at carbon
Sychronous bonding to both termini cannot be achieved from this geometry
bonding
a73 [1,3] Sigmatropic Rearrangements (C migration)
consider the 1,3-migration of Carbon
?Consider the orbitals needed to contruct
the transition state (TS).
a203 Construct TS by uniting an allyl and Me radicals:
antibonding
Suprafacial on allyl fragment
?
1
3
These rearrangements are only seen in systems that are highly strained,an attribute that lowers the activation for rearrangement.
120 °C
3
1
no observed scrambling of labels a54a54
[1,3]-Sigmatropic rearrangements are not common
R
R
R
RR
H
H
R
R
R
H H
Me
Me
H
H
R
H
H
H
H
R
Me
Me
H
H
H
R
H H
R
HH
Me
Me
Sigmatropic Rearrangements-2 Chem 206D. A. Evans
a73 [1,5] Sigmatropic Rearrangements (C migration)
[1s,5s] alkyl shift ? RETENTION
SIGMATROPIC REACTIONS - FMO-Analysis
1
2
3
?/hν
R = H, CR3
4
5
1
2
3
4
5
[1a,5a] alkyl shift ? INVERSIONa73 [1,5] Sigmatropic Rearrangements (H migration)
disfavored
a73 [1,5] (C migration): Stereochemical Evaluation
230-280°C
RETENTION
[1,5s]H- shift[1,5s]C- shift
nonbonding
thermal
hν
photochemical
the transiton structure
View as cycloadditon between following species:
pentadienyl radical
+
either, or
suprafacial preferred
Dewar–Zimmerman Analysis: Retention
0 phase inversions ? Huckel toplogy
6 electrons
therefore, allowed thermally
13
5
1
5
a71
a71 a71
R
R
R
R
R
R
R
R
O R
C O
O
R
R
H
BuLi O R
Li
O Li
C O
OLi
R
R
H
O Li
R
Sigmatropic Rearrangements: An Overview Chem 206D. A. Evans
[1,2] Sigmatropic Rearrangements: Carbon
+ +
consider as cycloaddition
transition state
a71
a71
olefin radical cation
a71 +
[1,2]-Sigmatropic rearrangements to cationic centers allowed.Wagner-Meerwein Rearrangement
[1,2]-Sigmatropic rearr to carbanionic centers not observed
consider as cycloaddition
a71a71 a71a71stepwise
a71
olefin radical anion
a71a71 a71 a71a71
a71
antibonding
transition state
The Wittig Rearrangement [1,2]
"[2,3]-Wittig Sigmatropic Rearrangements in Organic Synthesis.", Nakai,
T.; Mikami, K. Chem. Rev. 1986, 86, 885.
Marshall, J. A. The Wittig Rearrangement.; Trost, B. M. and Fleming, I.,
Ed.; Pergamon Press: Oxford, 1991; Vol. 3, pp 975.
a71
Ra71This 1,2-sigmatropic
rearrangement is non-concerted
The Wittig Rearrangement [2,3]
Allyl radical
ketyl radical
a71a71 a71a71
Ea ~16 Kcal/mol
The G? between concerted and
non-concerted pathways can be quite small
a71a71 concerted
transition state
FMO analysis
FMO analysis
FMO analysis
N
MeCN
Me
R2
R3R1
–
+
X Y:
R2
R3R
Me
O
Ph
Me
Ph
O
R
BuLi
BuLi
R
O
Ph
Li+
Me
Ph
O
Me
Li+
R2
R3R
:X Y
Ph
O H
Li R?
Me
PhLiO
Me
Y:X
R R3
R2
Li
O R
Ph
N Me
Me
Me
N
R1 R3
R2
Me
CNMe
O
MeMe
Me Me
S
S
BuLi
BuLi
BuLi
BuLi
N CH2
MeMe
O
MeMe
Me Me
S
S
Li+
NMe2CH2
H
OH
MeMe
MeMe
Me2N
R1 R3
R2
CN
S S
OH
MeMe
Me Me
NMe2Me
important extension lacking CN FG; Sato, JACS 1990, 112, 1999
Mander, JOC 1973, 38, 2915
Buchi, JACS 1974, 96, 7573
+
a73 X - N, Y = C; Ammonium Ylide Rearrangement:
–
a73 X - S, Y = C; Sulfonium Ylide Rearrangement:
Lythgoe, Chem Commum 1972, 757
Chem 206D. A. Evans [2,3]-Sigmatropic Rearrangements: An Introduction
–
a203 Sommelet-Hauser:
[2,3]
a203 Modern versions of Stevens:
Review, Pines, Org. Rxns 1970, 18, 416
[2,3]
[2,3]
[2,3] Sigmatropic Rearrangements
a54a54
a73 General Reviews:
a73 Representative X-Y Pairs:
?
An important early paper: Baldwin, J. Chem. Soc., Chem. Comm. 1970, 576
S–P, S–N, S–O (sulfoxides)
O–P (phosphites)
N–N, Cl+–C (haloium ylids)
P–C, C–C (homoallylic anions).
Attributes: Stereoselective olefin construction & chirality transfer
a73 The basic process:
X & Y = permutations of C, N, O, S, Se, P; however X is usually a heteroatom
Trost, Ed., Comprehensive Organic Synthesis 1992, Vol 6, Chapter 4.6:
Nakai, T.; Mikami, K. Org. React. (N.Y.) 1994, 46, 105-209.
Hoffmann, Angew. Chem. Int. Ed. 1979, 18, 563-572 (Stereochemistry of)
Nakai, Chem. Rev. 1986, 86, 885-902 (Wittig Rearrangement)Evans, Accts. Chem. Res. 1974, 7, 147-55 (sulfoxide Rearrangement)
Vedejs, Accts. Chem. Res. 1984, 17, 358-364 (Sulfur Ylilde Rearrangements)
N–O (amine oxides)
S–C (sulfur ylids)
O–C (Wittig rearrangement)
N–C (nitrogen ylids)
S–S (disulfides)
Baldwin, JACS 1971, 93, 3556
–
a73 X - O, Y = C; Wittig Rearrangement:
[2,3]
– [1,2] ?
Garst, JACS 1976, 98, 1526
base
temp
–25 °C ~70% ~30%Rautenstrauch, Chem Commun. 1979, 1970
N
Me
Me O
R2
R3R1
+ –
R2
R3R1
OH
R1 R3
R2
N
N
O
H
OMe
OMe
NMe2
–N2
Cu(I)
C
NMe2
O
R2
R3R1
O
R1 R3
R2
C
NMe2
O
H
R2
R3R1
CO
R1 R3
R2
O
R2
R3R1
NMe2
R2
R3R1
OR
O
ROH
R2
R3R1
SeAr N
Ts
S OAr
R1 R3
R2
S
TsO
Ph
Ts–N–Cl
Na+
Se
Ar
N
R2
R3R1
Ts
R1 R3
R2
OS
Ar
S
Ph
TsO
NTs
BuLi
PhSCl
R1 R3
R2
ONMe
Me
N
Ts
R1 R3
R2
OH
NTsO Ts
SPh
N
Ts
TsO
R2
R3R1
OH
NH–Ts
R1 R3
R2
(MeO)3P
NaOH
keq < 1
note that the product contains the retrons for the enolate Claisen rearrangement
Smith, Chem. Commun. 1974, 695; Smith, JOC 1977, 42, 3165
a73 X - O, Y = C; An all-carbon Rearrangement
:
Chem 206D. A. Evans [2,3]-Sigmatropic Rearrangements: Introduction-2
In thinking about this rearrangement, also consider the carbenoid resonance
form as well:
–
+
140 °C
a73 X - O, Y = C; Wittig-like Rearrangements
Buchi, JACS 1974, 96, 5563
–
Hopkins, Tet Let. 1984, 25, 15
Hopkins, JOC 1984, 49, 3647
a54a54
a73 X - S, Y = N; Related Rearrangement
+
a54 selenophile
Evans, Accts. Chem. Res. 1974, 7, 147
thiophilea54
–
+
a73 X - S, Y = O; Sulfoxide Rearrangement
a54 a54
Hopkins, JOC 1985, 50, 417
a73 X - N, Y = O; Meisenheimer Rearrangement
Zn/HOAc
Tanabe, Tet Let. 1975, 3005
a73 X - Se, Y = N; Related Rearrangement
– [2,3]
–85% yield overall
Dolle, Tet Let. 1989, 30, 4723
Me
O
Ph
RLi
Y:X
Ra Rb
X Y:
RbRa
X
Y Rb
H
H
Ra
H
X
Y
HRb
Ra
Rb
Ra:X Y
Ra
Y
X HH
Rb
Y:XRa
Rb
H
Ra
Rb
X
Y H
X
Ra
RbY:
RbRa
:X Y
CO2H
O
Me
R1
S OAr
R2
R2
SAr O
R Me
O SnBu3
R
MeOBu3Sn
R1–XRLi
n-BuLi
n-BuLi
OS
R1
Ar
R2
HO
Me
Ph
CO2H
Me
HO
R
Me OH
Me
OHR
MeOH
(MeO)3P R2R1
OH
R OH
Me
a74 Product olefin geometry will be (E) from (Z) starting material
Houk JOC 1990, 55, 1421 (Wittig transition states)
Houk JOC 1991, 56, 5657 (Sulfur ylide transition states)
Several theoretical studies have been published: Good reading
only (E) isomer (91%)-78 °C
a74 However, Cis selectivity is dependent on starting olefin geometry
-78 °C
ratio, 65:35
The preceeding transition state models do not explain some of the results:
Evans, Accts. Chem. Res. 1974, 7, 147-55
(E) selectivity: >95%
Nakai, Tet. Lett 1981, 22, 69
(E) selectivity: 75%2 LDA-75 to -50 °C
-75 to -50 °C (E) selectivity: "only isomer"
a74 Product olefin geometry can be either (E) or (Z) from (E) starting material
a74 (Z) Olefin rearrangements might exhibit higher levels of 1,3 induction
a74 Olefin geometry dictates sense of asymmetric induction in rearrangement
Conclusions
?
favored
?highly
disfavored
a74 Cis selectivity has been observed: Still JACS 1978, 100, 1927.
Starting olefin: Trans
Ra & Rb prefer to orient in pseudo-equatorial positions during rearrangement;nevertheless, this is a delicately balanced situation
?
?
[2,3]-Sigmatropic Rearrangements: Olefin GeometryD. A. Evans Chem 206
a73 1,2-Disubstitution: Good Trans Olefin Selectivity
Starting olefin: Cis
favored
disfavored
N +
Me
MeMe Me
N +
Me
Me CH2–TMS
Me
X
R1
R2Y:
Me
X Y:
R2R1
Me
X
Y R2
H
H
R1 Me
R1
Y
X HH
R2 Me
H
R1
R2
X
Y H
Me
H
X
Y
HR2
R1
Me
Y:X
R1 R2
Me
R2R1
:X Y
Me
R2
R1:X Y
Me
Y:XR1
R2
Me
Me
O
n-Bu
CH2–Li
SnBu3O
Me
n-Bu
n-Bu
Me
O Li
n-BuLi
KH
MeH
O
H2C
HH
Li
C4H9
Me
H
C4H9
H
O
H2C H
Li
n-Bu
Me
OH
n-Bu Me
OH
Me
NMe2
Me
NMe2
halogen
SnBu3
Me
n-Bu
LiO CH2
Me
CH2LiOR1
a74 Olefin geometry dictates sense of asymmetric induction in rearrangement
a74 (Z) Olefin rearrangements might exhibit higher levels of 1,3 induction
a74 Product olefin geometry can be either (E) or (Z) from (E) starting material
a74 Product olefin geometry will be (E) from (Z) starting material
a73 Starting olefin: (Z)
Chem 206D. A. Evans [2,3]-Sigmatropic Rearrangements: Olefin Geometry
?
?
R1–Me interaction can destabilize the (E) transition state while (Z) TS might be destabilized by R
1 interactions with both X-Y and allyl moiety.
a73 Starting olefin: (E) Trisubstituted
highlydisfavored ?
favored
?
Conclusions
(E)-path
(Z)-path
-78 °C
a73 (Z) selectivity has been observed: Still JACS 1978, 100, 1927.
95%, >96% (Z)
Still says that the TS is early, so that the 1,2 interactions in the TS are most important.
(Z)-path
(E)-path
?
?
destabilizing
a73 (Z) selectivity has also been observed by others: Sato JACS 1990, 112, 1999.
-70 °C
LHMDS, NH3
76%, (Z):(E) 95:5
X -
X - 61%, (E):(Z) 100:0
Cs–F in HMPA
25 °C
Me
SN
N Me
S O
R1
Me
Ar
n-BuLi
N Me
N S
Me
Li
H
PhS
O
H
H
R1 Me
H
R1
O
S HH
Me
Ph
Br
Me
Me
OH
Me
Me
Me
N Me
N S
Me Me
OHH
Me
SN
N Me
Me
Me
O
Me
Me
N Me
N S
Me
OS
R1
Me
Ph
RCO3H
R1 S O
Me
Ph
Bu
SPh
Me
Me
O
C5H11
CO2H
CO2Me
Me
O
Me
N2 C(COOMe)2
S
R
R
CuSO4
:CR2
Me
SPh
Bu
CO2Me
CO2Me
C5H11
HO CO2H
Me
S
R
R
C
R
R
Me
CO2MeHO
Me
C
R
R
S
R
R
H
Me
S
Bu
PhCO2Me
CO2Me
Trisubstituted olefins via [2,3]-rearrangement of sulfoxides:
However, this reaction is not general:
LDA (E):(Z) 31:69
Nakai, Tet Let 1986, 27, 4511
Nakai, Tet Let 1981, 22, 69
(E):(Z) > 95:5 (74%)2 LDA
a73 Trisubstituted olefins via Wittig [2,3]-rearrangement:
pKa ~ 18 (DMSO
base +–++
A general procedure for the direct synthesis of sulfur ylides:
Grieco, JOC 1973, 38, 2572 (E):(Z) > 90:10 (70%)
a73 Trisubstituted olefins via [2,3]-rearrangement of sulfonium ylides:
–+100 °C
(–)is operationally equivalent to:(–)
Accts. Chem. Res. 1974, 7, 147-55
[2,3]
α
α/γ = 90:10 (95%)
γ
α
(E):(Z) > 97:3 (80-85%) 25 °C
Et2NH, MeOH
–
(Z)-path
(E)-path
?
?
[2,3]-Sigmatropic Rearrangements: Olefin GeometryD. A. Evans Chem 206
favored
disfavored
Me
Me Me
Me
MeMeMe
Me
Me
Me Me Me
Me
MeMe
Me
SPh
X Y:
RMR
L
Me
Me Me
OH
S
MeMe
Me
Me
Me
H
OMe
OMe
NMe2
n-BuLi
H
X
Y
RM
H
RL
H
RL
Y
X RMH
O
MeMe
Me C:
NMe2
Me
Me
Me
Me
S
Me
Li
Me
Me
Me
Me
Me
SLi
O
Me
Me NMe
2
Me
RM
RL
:X
Y
Y
:X
RL
RM
SMe
Me Me
Me
Ph
MeMeMeMe
Me
Me Me Me
Me
Me
S
Me
Me S
MeMeMe
Me
MeS
MeMeMe
S
Me Me Me
MeS
Me
Me Me Me
F
MgBr
This rxn is probably not as stereoselective as advertised
poorly selective
140 °C
Buchi, JACS 1974, 96, 5563
Rautenstrauch, Helv. Chim Acta 1971, 54, 739
(E):(Z) = 3:2
For related [2,3] rxns See Baldwin JACS 1968, 90, 4758
Baldwin JACS 1969, 91, 3646
For study on this [2,3] rxn See Baldwin JACS 1971, 93, 6307
Squalene
Li/NH3 "gave one major product in high yield"
[2,3]
– +
benzyne
heat
PPh3 → S=PPh3
An elegant squalene synthesis Ollis, Chem. Commun 1969, 99
[2,3] (RL = large)
a73 Trisubstituted olefins via [2,3]-rearrangement:
One might project that the (E) path will be moderately favored with selectivity
depending on size difference between RL & RM
(Z)-path
(E)-path
?
?
[2,3]-Sigmatropic Rearrangements: Olefin GeometryD. A. Evans Chem 206
CO2H
NH2
Me
Me
S + O –
O
Me
Me
Me
S +
Me
Me
Me
O
O
CO2H
SH
Me
Me
S
O
O
Me
Me
Me
HBF4CH
2Cl2
N2
S
Me
Me
Me
O
O
CO2H
S
Me
Me
Me
S
O
O
Me
Me
Me
C3H7
O MeBu3Sn Me
OBOMMe
ROCH2
CH2OR
NO
O
Me
O
O N
CH2OR
ROCH2
BuLi
BuLi
OBOM
MeBu3Sn O Me
C3H7
MeS +
Me
Me O
O –
Me
Me
Me
Me
O
O
S
Me
Me
Me
O
O
S
Me
HO
O
XC
XC
O
HO
OH OBOM
MeMe Me
C3H7
C3H7
MeMe Me
OBOMOH
See these papers for other applications
Kallmerten SynLet 1992, 845.
Kallmerten TL 1993, 34, 749.
Kallmerten TL 1993, 34, 753.
n-BuLi, THF, -78 °C
Kallmerten TL 1988, 29, 6901. diastereoselection > 100:1 (64%)
diastereoselection > 100:1 (57%)
n-BuLi, THF, -78 °C
Internal Relay of Stereochemistry in C–C Constructions
Cp2ZrCl2 97% syn; 96% de (43%)
96% de (61%)
Katsuki, Tet Lett 1986, 27, 4577
Chiral Auxiliaries can also be used in the Wittig Rearrangement
64%, 4:93
steps
steps
DBU, -78 °C
Allylation
[2,3] Sulfur Ylide Rearrangement Using a Chiral Auxiliary
Kurth JOC 1990, 55, 2286 and TL 1991, 32, 335
66%, 94:4
BF4 -
[2,3]-Sigmatropic Rearrangements: Chirality TransferD. A. Evans Chem 206
SO Ph
NMe
O
OMe
HO
MeO
NMe
O
CO2Et
H
H C5H11
?
SPh
C5H11
CO2Et
O
HO
NMe
NMeS
O Ph
O
MeTBSO
TMS
O
O Me
O
Me
SnBu3
n-BuLi
OH
C5H11
O
CO2H
O
CO2Et
C5H11
OH
–SPh
O
O CH C
OH2C
Me
HO
MeO
O
Me
TMS
TBSO OH
Me
TMS
TBSO OH
O
O Me
HO
Me
Can you rationalize the stereochemical outcome of this reaction?
Allylic Ethers to Make Three Contiguous Stereocenters
Nakai TL, 1988, 29, 4587.
n-BuLi, -78 °C 94%
4%
Bruckner, Angew. Chem. Int. Ed. 1988, 27, 278
A Felkin analysis predicts the major product
–
ratio 79 : 6
Cases where the chirality is exocyclic to the rearrangement
15
15
15
steps
Kondo Tet. Lett. 1978, 3927.
1) MCPBA
2) P(OMe)3
HSPh, KOt-Bu
Taber J. Am. Chem. Soc. 1977, 99, 3513.
cepharamine
Tandem [ 4+2 ] & [ 2,3 ] Process: Evans, Bryan, Sims J. Am. Chem. Soc. 1972, 2891.
Na2S, MeOH
+
Internal Relay of Stereochemistry in C–O Constructions
[2,3]-Sigmatropic Rearrangements: Chirality TransferD. A. Evans Chem 206
C
N
S
R3
SMe
NHTs
R3
OH
H
Me Me
H
O
CH2
O
H
OMe
OMe
NMe2
C
NMe2
O
R3
HO
Me
O
H
MeMe
H
O
R3
NMe2
H
Me Me
HC
O
Me
HO
S Ph
O
CMe3
S Ph
CMe3
H
Me3C X
:Y
H
N2=CHCO2Et
N NHTs
C SMe–S
H
MeMe
N
NHTs
Me
S
C SMe
S
R3
C
SMe
SMe
R3
S
O
CMe3
OEt
MeMe
O
H HHO
MeMeMe
Me
MgBr
Me
Br
MeMe
H
H
Me Me
H
S
Me
MeS
CMe3
N
CH CN
CMe3
O
(MeO)3PMeOH
H2SeO3
NaH
NaH H
Me3C OSPh
S Ph
CMe3
CH CO
2Et
NMe
3C
H CN
Me3C
H
OH
O
OEt
H
Me3C
Y X:Me3C
H
CO2EtH
Me3C SPh
OHMe3C
H
Cu(I) catalysis
Mander, JOC, 1973, 38, 2915
selectivity: 90:10– -10 °C
25 °C
selectivity: 75:25
selectivity: 52:48
selectivity: 92:8
Evans, JACS, 1972, 94, 3672
House, JOC 1975, 40, 86
a73 The comparison of analogous [2,3] & [3,3] rearrangements:
selectivity: 91:9
–
+
25 °C
favored
heat
heat
[2,3] Sigmatropic rearrangements respond to subtile steric effects
Note that rearrangement is not required to proceed via the carbenoid. propose altenate mechanism
Bakkenolide-A HgCl2, HOH
65% (no other isomer)
65 °C
a73 The synthesis:
65 °C
Baldwin, Chem Comm 1972, 354
:
a73 Candidate processes:
:
Buchi, JACS 1974, 96, 5563
140 °C
:
The Synthesis of Bakkenolide-A (Evans JACS 1977, 99, 5453)
Chem 206D. A. Evans [2,3]-Sigmatropic Rearrangements: Chirality Transfer
+
S Cu(O)
N2 CO2Et
S
Et O
Me
O
Me
Me
OH
HO
Me
O
NMe Me
NaNH2
KOt-Bu
S
N
Me
CH2
S
CO2Et
DBU
TfO CO2Et
N
Me
S
EtO2C
S
CO2Et
N
MeH
NMe Me
Me
O
Me
Me
Br Ph
O
R2N–Li
Ph N Ph
Me
Li
Me
N Ph
O
Me Me
Me
Me
N
MeMe
O
Ph
Me
O
Me
MeO–
MeO–
MeOH
MeOH
Me
Ph
N
Me
Me
Me O
N OMe
Me
Me Ph
Me
Me
HO
Me
Me
O
Me
O
salts readily separated
nonselective N-alkylation
Stevenson, Tet. Lett 1990, 31, 4351
A ring contraction using the Stevens Rearrangement
Both rearrangements afford a single isomer
78%
54%
+
+
Marshall, JACS 1988, 110, 2925
A ring contraction using the Wittig Rearrangement
Aristolactone
82%, 69% eeWith chiral amidebases induction
is observed!
–
83%
liq NH3
Hauser, JACS 1957, 79, 4449
+
–
+
An early ring expansion using the Sommelet-Hauser Rearrangement
Vedejs, JACS 1989, 111, 8430
Methynolide has been synthesized by Vedejsusing this ring-expansion methodology
72%
72%
+
50%–+
Methods based on sulfur ylides: (review) Vedejs, Accts. Chem. Res. 1984, 17, 358
Ring expansion reactions have been investigated
Chem 206D. A. Evans [2,3]-Sigmatropic Rearrangements: Ring Expansion & Contraction