http://www.courses.fas.harvard.edu/~chem206/
O
N Me
Cl Me
O TiCl4
Me O
OH O
Me
O
N
O
Me
Me
OOH
OTMSMe
Me
Chem 206D. A. Evans
Matthew D. Shair Wednesday, October 23, 2002
a73 Reading Assignment for week:
Carey & Sundberg: Part A; Chapter 11Concerted Pericyclic Reactions
Cycloaddition Reactions: Part–1
Chemistry 206
Advanced Organic Chemistry
Lecture Number 15
Cycloaddition Reactions-1
a73 Introduction to Cycloaddition Reactions
a73 [2+2] Cycloaddition Reactions
a73 The Diels-Alder Reaction
a73 Other Reading Material:
Fleming: Chapter 4Thermal Pericyclic Reactions
a73 Problems of the Day:
[2+2] Cycloaddiltion Reactions
The Diels-Alder Cycloaddition Reactions
EtN(iPr)2
Propose a mechanism for this transformation
MacMillan, JACS 1999, 121, 9726Carey & Sundberg: Part B; Chapter 6
Cycloadditions, Unimolecular RearrangementsThermal Eliminations
Tidwell, T. T. Ketenes, John Wiley and Sons, 1995.Ghosez, L.; Marchand-Brynaert, J. Comprehensive Organic
Synthesis, Vol. 5, Pergamon, 1991, p. 85-122.
"Diels-Alder Reactions". Evans, D. A.; Johnson J. S. In Comprehensive Asymmetric Catalysis, Jacobsen, E. N.; Pfaltz, A.;
and Yamamoto, H. Editors; Springer Verlag: Heidelberg, 1999; Vol III, 1178-1235 (pdf)
2 LDA, TMSCl
a68
a68
Kurth, JOC 1985, 50, 1840
Predict the stereochemical outcome of this reaction
Et
O
Et
Et
OEt
NMe2Me
N
Me
OMe
C3H5 R
ON
Me
Me
BF4-
+
+
+
OH Me C
OEt
OEt
OEt EtO OEtMe O OH
OEt
O
O
OEt
Me
S
Me
OH
Me
EtO2C
Me
O
MeMe Me
OHC
Me
Et2N OMe
O
O Me
H NMe
2Et
OH
Et
Me
CO2Me
OH
Me
Me
OH
Me
Me
NMe2Me
O
Me
Me
O
Me
OH
Me
Me
Me
OMeMe
OMeEt2N
Me OLi
CMe2(OBn)
O
N
Me
Me
OLiMe
N Et
OMe
CMe2(OBn)
O Me
Me
Me
Me
Me
O
Me
Me
Me
CHOMe
Me
Me
Me
OMe
Me OEt
H3PO4
?
CH3C(OEt)3
CH3C(NMe2)(OMe)2
CH2=C(OMe)(NEt2)
Et2O EtOH
NaOEt
CO2MeMe
O
Me2N
Me
O
NEt2
NEt2
O
NMe2Me
EtO OEt
Et
Me
NMe2
O
H
a73 Reactions to ponder:
60%
94%
125oC
125oC
H3PO4 or TsOH
The Saucy Marbet Alternative
Saucy, Marbet, Helv. Chim. Acta 1967, 50, 2091,2095
EtCO2H (cat)
+
Predict the major diastereomerWelch, JACS 1987, 109, 6716
Stevenson, Tet. Let. 1991, 32, 4199
diastereoselection 6:1Predict the major diastereomer
a73 Compare the two variants:
92% (E:Z = 98:2)
98% (E:Z = 86:14)
60%
138oC
98oC
Hg(OAc)2, EVE
CH3CH2CO2H (cat)
a73 Lead paper: Johnson, Faulkner, Peterson, JACS 1970, 92, 741
Johnson Orthoester Claisen
Johnson & Eschenmoser Claisen RearrangementsD. A. Evans Chem 206
a73 Synthesis of Amide Acetals
Eschenmoser-Claisen
Eschenmoser, A. Helv. Chem. Acta 1964, 47, 2425; Helv. Chim.Acta 1969, 52, 1030.
Xylene, 150oC
Xylene, 110oC
High yield, E:Z = 99:1Faulkner and Peterson
Xylene, 140oC, 14h 70%
Me
R2 R1
OTBS
O
O
OTBS
R1R2
Me
O
O
R1R2
Me O
Et OEt
N
R
R H
H
R
Li
OMe
N
R
R H
Me
R
Li
OH
a56
a56
a56O
O
Me O
OTMS
R
O
Me
Hc Hb
Ha
C OR
HbHc
R O –
OLi
R
Me
R Me
OLi
OH
O
O
Me Me
OH OH
Me Me
MeMe MeMe
O
RO OR
Me Me
O O
MeH OTBSH
R1H O
R2
R2
H
OR1
OTBSH
Me
H
MeMe
OO
MeMe
OMe Me
O O
R2 R1
OTBS
OMe
Me O
OTBS
R1R2
OTBSOTBS
Me
OMe O O
Me MeMe Me
Ireland-Enolate Claisen
Ireland, R. E.; Mueller, R. H.; Willard, A. K. J. Am. Chem. Soc. 1976, 98, 2868
LDA
Me3SiCl t1/2 (32oC) = 3.5 h
66%
a73 Reviews Pereira, Aldrichimica Acta 1993, 26, 17-29 (Ireland-Claisen)
Ireland, Aldrichimica Acta 1988, 21, 59-69 (Claisen-related)
Chem 206D. A. Evans Ireland Enolate Claisen Rearrangement
a73 Enolization: Amide Bases
LM–NR2
?
(E) Geometry
(Z) Geometry
The Ireland Model (JACS 1976, 98, 2868)
Narula, Tetrahedron Lett. 1981, 22, 4119more recent study: Ireland, JOC 1991, 56, 650
Substituted enolates afford an additional stereocenter
LDA, TBSCl
LDA, TBSClDMPU
a56
(E)
(Z)
(E):(Z)conditions
LDA, TBSCl
LDA, TBSClDMPU
94:6
7:93
key study: Ireland, JOC 1991, 56, 650 and earlier cited papers
Stereoelectronic Requirements: The α-C-H bond must be able to
overlap with pi? C–O
– Ha+
base pi? C–O
Paterson, Tet Lett 1991, 32, 7601
LDA, TMSClEt
3N
20-60 °C
1,2 syn aldol relation permuted into1,5 syn relationship via Claisen rearrangement
63% yield (diastereoselection 86%)
Double Claisen Rearrangements are also possible
?
?
favored
disfavored
control
kinetic
thermo
X
CC CC
CC
CC
C C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
O
O
O
O
O
O
X
Y Y
X
C
C
H
Me
Me Me
Me
Me
Me
Me
Me Me
Me
Me
Me
HOMO
X
Y
O
O
O
Cycloaddition Reactions-1 Chem 206D. A. Evans
Why does maleic anhydride react easily with 1,3-butadiene, but not with ethylene? So what are the "rules"?
[4+2] [2+2]
pi*
pi
concerted
a54
bonding
bonding
+ energy
a54
+
light a54
pi
pi* newHOMO
light
a73 Consider [2 + 2] cycloaddition: Photochemical activation [ pi2s + pi2s]
bonding
a73 Consider [2 + 2] cycloaddition: Thermal activation [ pi2s + pi2s]
The frontier orbitals of the reacting species must have the proper symmetries
heat
a73 The related reaction of 2 ethylenes is nonconcerted: [2 + 2] cycloaddition
LUMO
??
a73 We also know that the photochemical variant is concerted
a73 Nomenclature
pi2s pi2a
Using this nomenclature, the Diels-Alder reaction is a pi4s + pi2s cycloaddition
pi2s
pi2s
antibonding
[ pi2s + pi2s] "forbidden"
pi2api2s
[ pi2s + pi2a] "allowed"
bonding
bonding
antarafacialsuprafacial
[pi2s + pi2a]
TL 1967, 4357, 4723.must be antarafical for indicated stereochem
[2+2] Cycloaddition - Examples
hν
[pi2s + pi2s]
hν
[pi2s + pi2s]
Quadricyclane
Prismane-Der.
Dauben, Tet. 1961, 15, 197.
Sch?fer, AC 1967, 79, 54.
Dewarbenzene-Derivative
H2C C O
Ph2C C O
H
C O
O
ZnBr2
Zn
O
O
?
O
Ph Br
O
Ph Br
O
OO
H
ORR'
O
OR
R'
R'
R
ORR'
R'
RO
(CH3CO)2O
R X
O
R'
C O
R
R'
? H2C C O AcOH
OH R O
OAr C O
R-ArO
H2O
C
O
R R'
N
ORR'
Z
Y
XO
R
R'
X
Y
Y
X O
R'
R
O
R'
OR1
R2
R3
C OR1
R2
R3or ?
R R'
O
N2
or ? C O
R
R'
R O
H
?
-CH2CH2 C O
R
H
HOMO
O
H
H
O
?
R3N
RCH2CO2Ar
O
ORR'
Cycloaddition Reactions-2 Chem 206D. A. Evans
Ketene Preparation
Staudinger Reaction (very general)
X = Cl, Ts, AcO, DCC, etc...
+
_
_ _
_
_
_
or
Alkene
Imine
R = -CH=CH2
1,3-Dipole
Carbonyl
Summary of Ketene Cycloadditions
550 °C
hν
hν
[pi2spi2a]
LUMO
FMO Analysis
X
Cl
Cl
Cl
Cl
H R
H R
C C O
R'
H
C O
Me
X
RH
H R
C
R'
H O
Me
X
O
X
Br
Br
Br
X
Me
O
OR'
R R
O
C
H H
O
C
Me Me
O
C
Me Me
OCMeMe
Me
Me
Me Me
Me
Me
C
Me
Me
C HMe
MeH
O
OO
H HH H
B
OMe
Me
Me Me
OMeMe
Me MeA
A
C
Me
Me
C MeH
MeH
O
OMeMe
Me MeB
O
H H
O O
H H
H
H
O O
Cycloaddition Reactions-3 Chem 206D. A. Evans
[2+2]: Stepwise Versus Concerted
? Ketenes add stereoselectively to Z
alkenes
? Z olefins are much more reactive
than E
least hinderedbond rotation
? Very large polar effects? E olefins yield a mixture of cis and trans
products? Solvent effects observed, but it could merely
be a ground state effect? KIE seen for many reactions support stepwise
mechanism? Calculations (Wang and Houk) show a highly
asynchronus transition state in the gas phase reaction
? All stereochemical outcomes can be rationalized assuming a stepwise mechanism
Stepwise Concerted
Solvent Effects
+ +
endo exo
Solvent
hexane
Et3N
CHCl3
CH3CN
endo / exo
4.3 / 1
2.2 / 1
1.6 / 1
0.59 / 1
Solvent
hexane
Et3N
CH3CN
endo / exo
0.71 / 1
0.28 / 1
0.14 / 1
? Solvent effects implicate a zwitterionic intermediate
Brady,et. al, JACS 1970, 92, 146-148.
Ketene-Alkene [2+2]
+
Fast
1 : 2
?
?+
+
+ _
+
_
+
Frey, H. M.; Isaacs, N. J. J. Chem Soc. B, 1970, 830-832.
+
38 kcal/mol
32 kcal/mol
Ketenes + Aldehydes Afford -Lactones
path A
path B
ab initio Calulations
Pons, J. -M.; et. al. JACS 1997, 119, 3333.
O
MeO
CMe3
CO2H
O
R2
R1
O
O
R2N O
O
O
O
R2
R1
O
Me2S
CH2COCl
H NEt3
S O
O
O
R1 Nu
OH
R2
O
R2
R1
R2N CO2H
R'
O
CMe3
H
O H
O
R
Cl
C
O
HR
O Cl
N
O
Ph
O
Et3N
N
SH
NBn
ArH
C
O
HR
Et3N
N
SH
NR
RH
N S
HR
–O
H
N S
HR
–O
H
N Bn
Ar
O
HHNO
Ph
O
N
S
O
HHR
N R
R
O
HHR
N
S
O
HHR
N
S
O
HHR
N Bn
Ar
O
HHNO
Ph
O
Cycloaddition Reactions-4 Chem 206D. A. Evans
The Staudinger Reaction
In this process, the illustrated ketene, generated in situ from an acid chloride,undergoes reaction with the indicated substrates to form β -lactams in a
stereoselective process. When the azo-methine (RN=CHR) geometry in thereactant is (Z) the product stereochemistry is trans (eq 1). In a complementary
fashion, the (E) imine affords the cis-substituted product (eq 2). While thistransformatlion could be viewed as a [2s+2a] cycloaddition, it is felt that this reaction
is stepwise.
(1)
(2)
a73 The stepwise mechanism
+
(1)
conrotatoryclosure
+
conrotatoryclosure
enantiomers
Ther are two contortaory modes.If you control the conrotatory mode,
you control the absolute stereochemistry of the reaction:
See also Evans, Williams, Tet. Lett. 1988, 29, 5065.
Evans, SjogrenTet. Lett. 1985, 26, 3783, 3787. diastereoselection > 95:5
80-90% yields
"[2+2] photocycloaddition/fragmentation strategies for the synthesis of natural and unnatural products.", Winkler, J. D.; Bowen, C. M.; Liotta, F. Chem. Rev. 1995, 95, 2003.
"Stereoselective intermolecular [2+2]-photocycloaddition reactions and their application in synthesis.", Bach, T. Synthesis 1998, 683.
Transformations of -Lactones
_+
? or BF3
-CO2
base
or acid
Nu = OH2, ROH, R2NH
CuCN
R'Li (2eq)
Arnold, L. D.; Drover, J. C. J.; Vederas, J. C. J. Am.
Chem. Soc. 1987, 107, 4649.
Application in Natural Product Synthesis: Ginkolide B, E. J. CoreyJACS 1988, 110, 649.
1. (COCl)2, PhH, ?
2. NBu3, toluene, ?
JOC 1982, 47, 3470.
4.1 Intermolecular Diels-Alder Reactions, W. Oppolzer
4.2 Heterodienophile Additions to Dienes, S. M. Weinreb
4.3 Heterodiene Additions, D. L. Boger
4.4 Intramolecular Diels-Alder Reactions, W. R. Roush
4.5 Retrogade Diels-Alder Reactions, R. W. Sweger, A. W. Czarnik
Comprehensive Organic Synthesis, Vol. 5, Trost, Ed. 1991
O
H
O
MeOMe
MeOMeO
NMe2
O
O
O
O
MeEt
H
O
H
HHH
H
H
Me
H
H
H
H
OH
Me
MeH
O H
OOMe
O
R
Me
O
OHO
HO
Et H
O
Me
O
O
O
Me
H
Me
H Me
HH
Me
H
H
HO
OHH
H
H
Ph
CO2HH
H H
H
These natural products could well have incorporated the DA rxn into their biosynthesis.
Endiandric Acid B
(Syntheses)
Nicolaou, JACS 1982, 104, 5555
(Synthesis)
Shair, JACS, 2002, 124, 773
(Biosynthesis) JACS 1985, 107, 3694Clive, JACS 1988, 110, 6914
Kozikowski, JOC 1987, 52, 3541
Mevinolin: R = Me
Compactin: R = H
(Synthesis) Evans, JACS, 1993, 115, 4497
Lepicidin
a73 Representative natural products displaying the Diels-Alder retron:
+
?a73 The Reaction:
Natural Products Synthesis Through Pericyclic ReactionsDesimoni, Tacconi, Barco, Polini, ACS Monograph 180, 1983, Chapter 5,
Articles and monographs of Significance
Asymmetric Diels-Alder Reactions with Chiral Enoates as Dienophiles
Modern Synthetic Methods 1986, Scheffold, Ed. Springer-Verlag,
Asymmetric Cycloaddition Reactions (Inter- & Intramolecular DA rxns)
Asymmetric Synthesis, Vol. 3 Morrison, J. D., Academic Press, 1984
Hetero Diels-Alder Methodology in Organic SynthesisBoger, D.L. and Weinreb, S.N., Academic Press, 1987
Intramolecular Diels-Alder Reactions, Org Rxns, Vol. 32, 1984
Intramolecular Diels-Alder and Alder Ene Rxns, D. F. Taber, Springer-Verlag, 1984
Mechanistic Aspects of Diels-Alder Reactions: A Critical SurveySauer, Angew. Chem. Int. Ed., 1980, 19, 779-807
DA Reactions Part II: The Reaction MechanismSauer, Angew. Chem. Int. Ed., 1967, 6, 16-33
DA Reactions Part I: New Preparative AspectsSauer, Angew. Chem. Int. Ed., 1966, 5, 211-230
Silyloxydienes in Organic SynthesisDanishefsky, Acct. Chem. Res., 1981, 14, 400-406
DA Reactions of AzadienesBoger, Tetrahedron, 1983, 39, 2869-2939
Preparation & DA Reactions of Heterosubstituted 1, 3-DienesPetrzilka, Synthesis, 1981, 753-786
Retro-DA Strategy in Natural Products SynthesisIchihara, Synthesis, 1987, 207-222
Intramolecular [4 +2] & [3 + 2] Cycloadditions in Organic SynthesisOppolzer, Angew. Chem. Int. Ed., 1977, 16, 10-23
The Intramolecular DA Rxn: recent advances and synthetic applicationsFallis, Can. J. Chem., 1984, 62, 183-234
Synthetic Aspects of D-A Cycloadditions with HeterodienophilesWeinreb, Tetrahedron, 1982, 38, 3087-3128
The Diels-Alder Reaction Chem 206D. A. Evans, C. A. Morales
Longithorone A
(Synthesis)Sorensen, JACS, 2002, 124, 4552
Evans, ACIE 2002, 41, 1787
FR182877
Additional Reading: Lowry & Richardson, Chapter 10, theory of Pericyclic Rxns pp 839-900
a73 Note that the termini only match at one end for theHOMO-LUMO pairing. Hence we say that the symmetry
requirements for the reaction in question are not met.This does not mean that the reaction will not occur,
only that the reaction will not be concerted. Such reactionsare called "symmetry-forbidden". LUMO-pi
3
HOMO-pi2
Does the possibility for the followingconcerted dimerization exist?
The Other Dimerization Possibility for Butadiene
a73 Secondary (transient) orbital overlap can also occcur in the stabilization of certain transition state geometries. Such a
transient stabilizing interaction can occur in the endo, but not exo, transition state:
a73 Primary orbital overlap leads directly to the formation of new chemical bonds.
LUMO-pi3
HOMO-pi2
Frontier MO Explanation for the Endo Rule
If the symmetries of the frontier MO's of reacting partners are "properly matched" thereaction is referred to as "symmetry-allowed". The Diels-Alder reaction is such a case.
As illustrated, the HOMO and LUMO of both the diene and dienophile, which in this case are the same, will constructively overlap as indicated in formation of both sigma bonds.
Orbital Symmetry Considerations for Diels Alder Reaction
LUMO-pi3
HOMO-pi2LUMO-pi3
HOMO-pi2
En
erg
y
Secondary orbital overlap
disfavored favored
The Alder Endo Rule The following observation illustrates an example of the Alder Rule which will be defined below.
+
"Endo product""Exo product"
Observation: The endo Diels-Alder adduct is formed faster even though the exo product is more stable. There is thus some special stabilization in the transition state
leading to the endo product which is lacking the exo transition state.
2
Exo TS ?
Endo TS ?
a73 Of the two possible transition states, the one having the "greatest accumulation of interacting double bonds will be preferred" (the Alder Endo Rule).
Secondary orbital overlap is noted below.
Exo TS ? Endo TS ?
Diels-Alder Reaction-Orbital Symmetry ConsiderationsD. A. Evans Chem 206
H
HH
H
H
H
H H
CC
C C C C
C C
C
CCC CC C
C
C
CCC
CC
C C
C C
C C
C
C C
C
?
Me
Me
HOMO3
HOMO2
HOMO1
O
HH
O
HOMO2
HOMO1
Lewis acid catalysis not only dramatically increases rates by ca 10+6
it also improves reaction regiochemistry & endo diastereoselectivity
Ethylene & Butadiene Vs Butadiene & Acrolein
Rate Acceleration?E (LUMO3-HOMO1) < ?E (LUMO2-HOMO1)
+
LUMO1
+
E LUMO3
LUMO2
Dienophile
E(LUMO1) - E(HOMO2)
or
E(LUMO2) - E(HOMO1)
a73 The closer the two orbitals are in energy, the better they interacta73 As ?E decreases for the relevant ground state FMOs, rxn rates increase
LUMO1 LUMO2
Diene
The Critical Energy Difference:
ene
rgy
Chem 206D. A. Evans Diels-Alder Reaction: The Transition Structure
rel rate = 10+5rel rate = 1
exptl ?H
? = 14.0 kcal/mol
?S? = -38.3 eu?S? = -32.1 eu
?H? = 22.5 kcal/mol
a73 Bond formation is not synchronus with substituted dienophiles (Jorgensen)
2.325 ?2.091 ?2.193 ? 2.193 ?
Houk, Jorgensen, JACS 1989, 111, 9172
Jorgensen, JACS 1993, 115, 2936-2942leading references:
a73 The lengths of the forming C–C bonds are Ca. 1.5 times the normal bond distance. This factor comes out of the ab initio work of Jorgensen & Houk
Transition State Modelling is Coming of Age
Transition Structures of Hydrocarbon Pericyclic ReactionsHouk Angew. chem. Int. Ed. 1992, 31, 682-708
?
+
a73 Diene Reactivity as measured against Maleic anhydride
Sauer, Angew. Chem. Int. Ed., 1980, 19, 779-807
log k = 4.96 log k = 1.83log k = 2.12log k = 2.19log k = 2.36
a73 Lewis Acid Catalysis of the reaction is possible: Yates & Eaton,
JACS 1960, 82, 4436
Me
R
CO2Me
COX
COX
CO2Me
H
COX
Me
COX
R
CO2Me
H
Me COX
R
COX
PhS
AcO
RO
RO
COMe
COX
CO2Me
O2N
MgBr2
CO2Me
NO2
RO
RO
NO2
CO2Me
PhS COMe
AcO
R3SnH
RO
COX
–NO2–
NO2
O O
O2N
H
MeMe
R3SnH
RO
NO2
CO2Me
RO CO2Me
CO2MeRO
COXRO
Me
H
H
O
AcO
PhS
COMe
base
Here is an interesting problem in reaction design
disfavoredfavored
a73 Orientation of Reacting Partners
Diels-Alder Reaction: RegiochemistryD. A. Evans Chem 206
toluene, 120 °C 59 : 41
96 : 04C6H6, SnCl4, 25 °C
100 : 00 @ 75 °C
favored disfavored
for R = CO2HX = OH
4.5 : 01 @ 100 °C
Lewis acid catalysis improves orientation
favored disfavored
C6H6, SnCl4, 25 °C 95 : 05
80 : 20CH2Cl2, 0 °C
Lewis acid catalysis improves endo diastereoselection
DA Reactions Part II: The Reaction Mechanism, Sauer, Angew. Chem. Int. Ed., 1967, 6, 16-33
In general, 1-substituted dienes are more regioselective than their 2-substituted counterparts:
Sauer, Angew. Chem. Int. Ed., 1967, 6, 16-33
favored disfavored
However, what if you need the disfavored product?
disfavored favored
Ni(Raney)
Trost, JACS 1980, 102, 3554
By employing a removable substituent, it is possible to access the normallydisfavored product diastereomer
Danishefsky, JACS 1978, 100, 2918: The NO2 FG completely dominates directivity
It then can be removed by elimination
or by reductionOno, Tet. 1985, 4013
83%
86%
mixture of ring-fusionisomers Ono, Chem. Commun. 1982, 33-34
4.1 Intermolecular Diels-Alder Reactions, W. Oppolzer, See page 347
Comprehensive Organic Synthesis, Vol. 5, Trost, Ed. 1991
O
O
MeO
Me Me
Me
O
O
O
Me
F3B
O
OOH
RO
Me
MeOSnCl
4
OMe
O
Me
OMe
Me
OMe
Me
MgI2
BF3?OEt2
Me
MeO
O
O
H
Me
Me
H
O
O
MeO
Me
MeH
O
O
MeO
Me
BF3?OEt2 (-20 °)
RO
OH O
O OMe
Me
Me
OMe
O
OOH
RO
MeH
O
O
MeO
Me
X
CH2OMe
Me OR
Me
CNCl
O
O
N–Ph
O
O
N–Ph
Cu(BF4)2
CN
Cl
MeOCH2 H
Me
Me
ORH
PhN
O
O
Ph–N
X
O
O
H
H
–OH
–OMe
N–Ph
O
OMe
ORMe
H
H
O
O
X
Ph–N
Me
Me
H OR
NPh
O
O
Cl
CN
H CH2OMe
Me OR
Me O
O
N–Ph
25-50 °C
Corey, JACS 1969, 91, 5675 Ratio: 90 : 10
0 °C
Instructive Issues of Regiocontrol with Quinone Dienophiles
Chem 206D. A. Evans Diels-Alder Reaction: Regiochemistry
Orientation of Reacting Partnerscontrolled by Lewis acid structure Conditions Ratio
thermal (100 °)
SnCl4 (-20 °)
50 : 50
<5 : 95
80 : 20
δ+ selection 80 : 20
selection >95 :5
δ+
Reusch JOC 1980, 45, 5013
0.5 equiv
0.4 equiv
selection >95 :5
selection >95 :5
Kelly Tet. Let. 1978, 4311
Similar results provided by Stoodley Chem. Comm. 1982, 929
83 : 17
>97 : 3
36 : 64
Ratio
–Me
X =
Overman, JACS 1988, 110, 4625
25-50 °C
Franck, Tet. Lett. 1985, 26, 3187
Franck, JACS 1988,110, 3257
R = Me: Ratio; 83 : 17
R = Me3Si: Ratio; 88 : 12
better than
Comments on the Transition State
a73 Avoid Eclipsing allylic substituents
a73 better donor (Me) anti to forming bond
a73 avoid gauche OR interaction
Diels-Alder Reactions with Chiral Dienes