http://www.courses.fas.harvard.edu/~chem206/
R R
OM
R R
NM R
NR
BuLi A
NR Li
NR
El
NLi R
B
N R
El
Chem 206D. A. Evans
Matthew D. Shair
Friday,
November 8, 2002
a73 Reading Assignment for this Week:
Carey & Sundberg: Part A; Chapter 7Carbanions & Other Nucleophilic Carbon Species
Enolates & Metalloenamines-1
Carey & Sundberg: Part B; Chapter 2Reactions of Carbon Nucleophiles with Carbonyl Compounds
a73 Assigned Journal Articles
a73 Rationalize why metalloenamine B is more stable than A.
Chemistry 206
Advanced Organic Chemistry
Lecture Number 22
Enolates & Metalloenamines-1
a73 Tautomerism in C=O and C=NR Systems
a73 C=O Enolization with Metal Amide Bases
a73 C=O Enolization: Kinetic Acidities
a73 Mild Methods for Enolate Generation
a73 Enolate Structure: A Survey of X-ray Structures
a73 Metallo-Enamine X-ray Structures
"Structure and Reactivity of Lithium Enolates. From Pinacolone to Selective C-Alkylations of Peptides. Difficulties and Opportunities
Afforded by Complex Structures". D. Seebach Angew. Chem. Int. Ed. Engl., 27, 1624 (1983). (handout)
"Stereoselective Alkylation Reactions of Chiral Metal Enolates". D. A. Evans Asymmetric Synthesis, 3, 1 (1984). (handout)
a73 Other Useful References
"Recent Advances in Dianion Chemistry". C. M. Thompson and D. L. C. GreenTetrahedron, 47, 4223 (1991).
The Reactions of Dianions of Carboxylic Acids and Ester Enolates". N. Petragnani and M. Yonashiro Synthesis, 521 (1982).
"Generation of Simple Enols in Solution". Capon, Guo, Kwok, Siddhanta, and Zucco Acc. Chem. Res. 21, 121 (1988).
"Keto-Enol Equilibrium Constants of Simple Monofunctional Aldehydes andKetones in Aqueous Solution". Keeffe, Kresge, and Schepp JACS, 112, 4862
(1990).
"pKa and Keto-Enol Equilibrium Constant of Acetone in Aqueous Solution". Chiang, Kresge, and Tang JACS 106, 460 (1984).
more stable
pKa (DMSO)~30
(El+)
minor (<5%) major (<95%)
Chem 206Enolates & Metalloenamines: IntroductionD. A. Evans
"Structure and Reactivity of Lithium Enolates. From Pinacolone to Selective C-Alkylations of Peptides. Difficulties and Opportunities Afforded by Complex
Structures". D. Seebach Angew. Chem. Int. Ed. Engl., 27, 1624 (1983).
"Stereoselective Alkylation Reactions of Chiral Metal Enolates". D. A. Evans Asymmetric Synthesis, 3, 1 (1984).
"Generation of Simple Enols in Solution". B. Capon, B.-Z. Guo, F. C. Kwok, A. K. Siddhanta, and C. Zucco Acc. Chem. Res. 21, 121 (1988).
"pKa and Keto-Enol Equilibrium Constant of Acetone in Aqueous Solution". Y. Chiang, A. J. Kresge, and Y. S. Tang J. Am. Chem. Soc. 106, 460 (1984).
Important References
Ra
O
Rb
Ra
OH
Rb
Ra
O–
Rb
El(+)
El(+)
Ra
O
Rb
El
Enols & Enolates are the most important nucleophiles in organic & biological chemistry.
H+
base
Ra
N
Rb
El(+)
El(+)
H+
base
Enamines & metalloenamines, their nitrogen counterparts, are equally important.
R
Ra
N
Rb
R M
Ra
N
Rb
R H
Ra
N
Rb
R
El
Tautomers: Structural isomers generated as a consequence of the 1,3-shift of a proton adjacent to a X=Y bond. for example:
+ H + pK = 19.16 (calculated)
pK = 10.94 (measured)+ H +
pK = 8.22 (measured)
Acidity of Keto and Enol Tautomers: Consider Acetone:
+ H +– H +
– H ++ H +
Keto-Enol Tautomers: Tautomerism may be catalyzed by either acids or bases:
acid catalysis:
+
base catalysis: R CH3
O O –
R H
H
HR
OH
R
OH
R H
HCH3
O
H
H
Z
O
CH3R
X Y XZ Y
H H
C
O
CH3H3C
C
OH
CH3C H
H
C
H
HH
3C
C
O –
C
H
HH
3C
C
OH
H3C C CH3
O
C
O –
CH3C H
H
Kresge, JACS 1984, 106, 460
On the origin of the acidity of enols: Wiberg, JACS 1996, 118, 8291-8299
enamine
metalloenamine
N
R
R H
H
R
Li
OMe
N
R
R H
Me
R
Li
OH
O OH
R
O
Me
N Me N Me
H
MeNH2 –H2O
R
O
Me
OLi
R
Me
R Me
OLi
O
MeR
Hc Hb
Ha
C OR
HbHc
R O –
s-BuLi (THF)
Li–N(SiMe2Ph)2
Li–N(SiEt3)2
Li–N(SiMe3)2
Li–N(i-Pr)2
LiNR2
-OMe
-OMe
-NEt2
-NEt2
-S-t-Bu
-CMe3
-CHMe2
-C6H5
Me
R
OLi
OLi
R
Me
OLi
MeR
R Me
OLi
Chem 206Enolization with Metal Amides basesD. A. Evans
Tautomeric Equilibria: Ketones vs. Imines
Keq ~ 10–3
Keq > 10
The enamine content in an analogous imine is invariably higher than its carbonyl counterpart. In the case above, ring conjugation now stabilizes the
enamine tautomer as the major tautomer in solution.
Enolization: Amide Bases
LM–NR2
?
(E) Geometry
(Z) Geometry
The Ireland Model (J. Am. Chem. Soc. 1976, 98, 2868)Narula, Tetrahedron Lett. 1981, 22, 4119
more recent study: Ireland, JOC 1991, 56, 650For the latest word on this subject see: Xie, JOC 1997, 62, 7516-9
R-Substituent Ratio, (E):(Z)
95 : 5
Base
LDA (THF)
LDA (THF, HMPA) 16 : 84
a73 Solvent
25 : 75
95 : 5LDA (THF)
0 : 100LDA (THF)
LDA (THF) 0 : 100
0 : 100LDA (THF)
LDA (THF) 40 : 60
-Et 77 : 23LDA (THF)
LDA (THF)
Base
95 : 5-OMe, O-t-Bu
Ratio, (E):(Z)R-Substituent
LM–NR2
(E) (Z)
+
39 : 61
15 : 85
4 : 96
0 : 100
R = Cy, (E):(Z)
0 : 100
1 : 99
30 : 70
THF, -78 °C
R = Et, (E):(Z)
70 : 30
Base
a73 Base Structure Masamune (J. Am. Chem. Soc. 1982, 104, 5526)
+
(Z) Geometry(E) Geometry
at equilibrium 16 : 84
Stereoelectronic Requirements: The α-C-H bond must be able to overlap with
pi? C–O
– Ha+
base
a73 Stereochemistry
pi? C–O
Can you rationalize these differences?
Et Me
O LiNR
2
O
MeEt
NLi
Me
Me Me
Me
LiNR2
Li–N(i-Pr)2
OLi
Et
Me
Me
Et
OLi
LiTMP
Me
MeMe
Me
Me3C Me
NLi
Et Me
OLi
OLi
MeEt
KO
Me
O
Ph
K–H
Na–H
O
Me
Ph3C–Li
Ph3C–Li
LiN(i-Pr)2
LiN(SiMe3)2
t-BuOH
O
Ph
O
Me
A
A
A
OLi
Ph
OLi
Me
LiN(i-Pr)2
B
B
B
OLi
Ph
OLi
Me
LiO
Me
Chem 206D. A. Evans
Ratio, (E):(Z)
LiTMP, 10% LiBr 98 : 2
86 : 14
THF, -78 °C
+
Collum (J. Am. Chem. Soc. 1991, 113, 5053)
Collum (J. Am. Chem. Soc. 1991, 113, 9575)
Lithium Halide Effects Collum (J. Am. Chem. Soc. 1991, 113, 9572)
(LOBA) 98 : 2(LiTMP) 86 : 14
(LDA) 77 : 23
(E) Geometry (Z) Geometry
+
Base Structure Corey & Co-workers, Tetrahedron Lett. 1984, 25, 491, 495
THF, -78 °C
M–base +
Base temp Ratio (A:B)control
kinetic–78 ° 99:1
kinetic–78 ° 95:5
kinetic–78 ° 90:10
thermoheat 10:90
thermoheat 26:74
thermoheat 38:62
Regioselective Enolization
A: Alkyl groups stabilize metal enolate
A: As M–O bond becomes more ionic A is attenuated
M–base +
Kinetic Selection sensitive to structure
ratio: 99:1
estimatedpKa's
(Bordwell)
(25) (18)
Unsaturated Ketones
kinetic enolate
KOt–Bu
thermodynamicenolate see kinetic acidity handout for an
extensive compilation of cases.
Enolization with Metal Amides bases
pKeq est: 7 (10+7)
For the latest in the series of Column papers see: JACS 2000, 122, 2452-2458
Me Me
O
Me Me
O
Me
Ph Me
O
Ph
O
O
Me
N
O
Et
MeO
O
MeO
OLi
N
OLi
Et
OLi
Me
Ph
OLi
Me CH
2
OLi
Me
Ph CH
2
OLi
Me CH
2
OLi
MeO
OLi
N
OLi
Et
OLi
Me
Ph
OLi
Me Me
OLi
Me
Ph Me
OLi
Me Me
OLi
O
Me
Me
O
OMe
O
O
Me
O
Me MeMe
OLi
Me
Me
LiO
OLi
Me
OLiMe
O
OLi
Me MeMe
Chem 206D. A. Evans Enolization with Metal Amides bases
Kinetic Selection sensitive to structure
LDA
71:29
LDA
99:1
LDA
14:86
LDA
99:1
LDA
~90:10
LDA
~83:17
LDA
85:15
LDA only enolate
LDA only enolate
LDA only enolate
LDA only enolate
LDA only enolate
Kinetic Selection in Enolization of Unsaturated Ketones
Choose Lewis Acid (LA) which can reversibly associate with amine base (B:).
This system has the potential to enolize carbonyl functional groups:
R CH2–H
O LA O LA
CH2R
Useful Lewis Acid Pairs
All of the above systems will enolize simple ketones to some extent.
+O
CH3R
LA B
B:
B:
LA B
NMe Me
B–H
O
OEt(EtO)2P
O
O
OEt(EtO)2P
O
NHCbz
CHO
Me
R CH3
O O
CH3RS PhO CH3
O O
CH3EtO R2N CH3
O
Me
NHCbz
OEt
O
R OEt
O
OEt
O
Me
Me
Lithium Enolates
Rathke, Nowak J. Org. Chem. 1985, 50, 2624-2626.
MgBr2, 1.2 equiv
Et3N, 1.1 equiv
1 equiv R= i-Pr, 40% yield
R= n-C6H13, 100% yield
Conventional methods of deprotonation (NaH) resulted in epimerization (Overman JACS 1978, 5179).
85% + 10% recovered aldehyde
Above conditionsusing DIPEA
24 h, rt
Base = DBU, 5 min, 99%, >50:1 E:ZBase = DIPEA, 7 h, 97%, >50:1 E:Z
Horner-Wadsworth-Emmons Reaction.
1.2 equiv
LiCl, 1.2 equivBase, 1.0 equiv
i-PrCHO, 1 equivMeCN
rt
pKa 19.2 (DMSO), K+ counterion
pKa 12.2 (Diglyme), Li+ counterion
D.A. Evans Chem 206Design of Soft Enolization Systems
Strategy
LA + (–) (+)
LA+
+
+ (+)
(+)(–)
Complexation
MgBr2 + NEt3 Reversible
ReversibleLi–X + NR3
Sn(OTf)2 + NR3 Reversible (Et3N, EtNi-Pr2)
-OTf = - OSO2CF3
Reversible (Et3N, EtNi-Pr2)R2B-OTf + NR3
R2BCl + NR3 Reversible (Et3N, EtNi-Pr2)
Reversible (Et3N, EtNi-Pr2)PhBCl2 + NR3
TiCl4 + NR3 Irreversible (Et3N, EtNi-Pr2)
i-PrOTiCl3 + NR3 Reversible (Et3N, EtNi-Pr2)
Reversible (Et3N, EtNi-Pr2)(i-PrO)2TiCl2 + NR3
(i-PrO)3TiCl + NR3 Reversible (Et3N, EtNi-Pr2)
100% enolization for B, Sn, Ti
partial enolization for Li, Mg
RCHO, 1 equivTHF, rt
Roush & Masamune, Tet. Lett. 1984, 25, 2183-2186
O
O
EtO
O
OEt
O
O N
Bn
O
Me
O
CO2Me
O
MeN
O
Bn
O
Mg
Brn
Et3N–H
Me
O
Cl
O O
O
Mg
EtOH
-CO2
MVK
O
COOH
O
Me
N
O
Bn
O CO2Me
OEt
O
EtO
O
O Me
O
Me
O
O
MePh
TiCl4
NO2
O
S OH
O
EtO OEt
O
Ph Me
O
Ph H
O
PhCHO
Et Et
O
CHO
Ph Me
O
Ph Ph
O
Me
OH
S
O
NO2
OH
O
HPh
TiCl4
O
OEtEtO
O
EtEt
++ ++
The Early Literature
10-15:1 Z/E
TiCl4
DIPEA
THF
-40° C
Brocchini, Eberle, Lawton J. Am. Chem. Soc. 1988, 110, 5211-5212.
91% yield95:5 syn/anti
TiCl4
Et3N
CH2Cl2, 0° C
30 min
+
Ketone and aldehyde combined followedby sequential addn of TiCl
4 and then amine
Harrison, C. R. Tetrahedron Lett. 1987, 28, 4135-4138.
75% yield
TiCl4
Pyridine
THF
Lehnert, W. Tetrahedron Lett. 1970, 4723-4724.
+
Michael reaction
Rathke
Evans, Bilodeau unpublished results.
73% yield, 93:7 diastereomer ratio
Magnesium Enolates
Deuterium quench indicates 25% enolization of N-propionyloxazolidinone
MgBr2?OEt2
Et3N
CH2Cl2, 0° C
75% yield
MgCl2, 2 equiv
Et3N, 4 equiv
+CO2
MeCN
rt
70 % yield
MgCl2, 2 equiv
NaI, 2 equiv
Et3N, 4 equiv
Ketone Carboxylation 85% yield
MgCl2, 1 equiv
Et3N, 2 equiv
MeCN, rt
Diethylmalonate acylations
J. Org. Chem. 1985, 50, 2622-2624.J. Org. Chem. 1985, 50, 4877-4879.
Syn. Comm. 1986, 16, 1133-1139.
A Survey of 'Soft' Enolization TechniquesD.A. Evans Chem 206
Titanium Enolates
CO2, MeCN
rt
R3N
R3N
O
MeN
O
Bn
O
R
O
Me
TiCl4
i-PrOTiCl3
TiCl4?2THF
(i-PrO)3TiCl
(i-PrO)2TiCl2
TiCl4
i-PrOTiCl3
O
t-Bu Me
TiCl4
Mei-Pr
O
O N
Bn
O
Me
OTiCl
Cl
Cl Cl
R3N-TiCl4
TiCl4
i-PrOTiCl3
R3N
(i-PrO)2TiCl2
MeO OMe
O
Me
O
Me
Me
O
MeN
O
Bn
O
Ti
Cl4
PhS Me
O
Xp (CH2)2COEt
O
Me
Bn
O
N
O
O Me
O
Me
OMe
O
Me
O
Xp
Me
O
CH(OMe)2X
p
HC(OMe)3
Et
O
BOMCl
Xp CH2OBn
O
Me
Xp CH2OH
O
Me
O
MeN
O
Bn
O
Ti
Cln
O
O O
MeO
O
Me
O
R Me
O
PhSCH2Cl
ClCH2NHCOPh
MeOCH2NHCbz
Me
O
O N
O O
Bn
Me
Me
OH
Me
Me
O
CH2SPhX
p
Me
O
CH2NHCBzX
p
Xp CH2NHCOPh
O
Me
86% yield, >99:1
Evans, Clark, Metternich, Novack, Sheppard J. Am. Chem. Soc. 1990, 112, 866.
1. TiCl4
DIPEA
2. i-PrCHO
99%, >99:1
93%, 97:3
89%, 97:3
91%, 96:4
93%, 99:1
99%, >99:1
88%, >99:1
78%, 98:2
H2C=CHCO2Me
J. Am. Chem. Soc. 1990, 112, 8215-8216.; J. Org. Chem. 1991, 56, 5750-5752.
Reactions with Representative Electrophiles
self condensationself condensation
1
50
80
100
% EnolizationLewis Acid
Ethylisopropylketone
80
~10
70
100
100
% EnolizationLewis Acid
N-Propionyloxazolidone (1)
Reversible ComplexationR3N-TiCl3(OiPr)+ -+
a73 Order of addition of reagents is not important for i-PrOTiCl3 or (i-PrO)2TiCl2.
a73 Enolization process not responsive to tertiary amine structure
a73 DIPEA, Et3N, N-Ethylpiperidine all suitable bases.
a73 DBU and tetramethylguanidine do not provide enolate.
a73 CH2Cl2 is the only suitable solvent for these enolizations.
a73 Order of addition of reagents is important for TiCl4.
+ + - Irreversible Complexation
Titanium Enolates
a73 Enolizable substrates:
a73 Substrates Which present problems:
R=Ar, R<i-Pr
Chem 206M. Bilodeau, D.A. Evans A Survey of 'Soft' Enolization Techniques
RR
-X– -X–
MeH
H
O BL2OTf
+X–
H
Me H
+X–
O BL
2XO
MeMe
Me
Me Me
O BR2
Me
TfOB
Me
Me
Me
O BR2
Me
Mr
BOTfMe
Me
MeR
OBX
R R
Me Me
O
OBL2
R Me
O
B
R
R Me
R
O BR2
MeMe
B
R
Me
R
O
R
R
OBL2
Me
Mr
Me
O BR2
Me
R
O B X
RR
R2BOTf-ketone complex may deprotonate through charged complex with (Z) preference
charged
Cy2BCl-ketone complex may deprotonate through syn complex
++
syn
++
anti
The Ketone-Boron Complexes as enolate precursors:
ratio ~97: 3Bu2B-OTf, Et3N
9-BBN-OTf, Et3N ratio ~97: 3
R2B-X, R3N
ratio 21:79Cy2B-Cl, Et3N
Brown, J. Org. Chem. 1993, 58, 147-153
Cy2B-Cl, Et3N ratio ~ 3: 97
R2B-X, R3N
ratio ~ 88: 12
Enolization Model: Paterson, Tetrahedron Lett. 1992, 33, 7223.
Goodman, Tetrahedron Lett. 1992, 33, 7219.
A Survey of 'Soft' Enolization Techniques: Boron Enolates-1
Borane and lutidine or DIPEA form 1:1 complex with L2B-OTf.
Complexation reversible as enolization will occur upon addition of
ketone. Less hindered nitrogen bases - pyridine, Dabco, DBU,
irreversibly complex with L2B-OTf.
9-BBN-OTf, Et3N
Evans, Nelson, Vogel, Taber J. Am. Chem. Soc. 1981, 103, 3099-3111.
+ -+
-
NR'3 NR'3
(-)-(Ipc)2BOTf
Chiral dialkylboron triflates
Masamune, S. et. al. Tetrahedron Lett. 1979, 2225, 2229, 3937.Masamune, S. et. al. J. Am Chem. Soc. 1981, 103, 1566-1568.
Diastereoselective Aldol Reactions of Boron Enolates.
Di-n-butylboron triflate
Evans, Vogel, Nelson J. Am. Chem. Soc. 1979, 101, 6120.Evans, Nelson, Vogel, Taber J. Am. Chem. Soc. 1981, 103, 3099-3111.
Evans, Bartroli, Shih J. Am. Chem. Soc. 1981, 103, 2127.
Dialkylboron Triflates
Enolizes ketones with 2,6-lutidine or DIPEA in ethereal solvents.
Mukaiyama, Inoue Chem. Lett. 1976, 559-562.Bull. Chem. Soc. Jpn. 1980, 53, 174-178.
Masamune, Sato, Kim, Wollmann J. Am. Chem. Soc. 1986, 108, 8279-8281.
Tetrahedron 1990, 46, 4663-4684.Tetrahedron Lett. 1989, 30, 997-1000.
Tetrahedron Lett. 1986, 27, 4787-4790.
D.A. Evans Chem 206
Enolate Stereochemistry
Paterson, I. et. al.
anti syn
Mg
N
O
Li
Li
O M
HMe
H
O
R
M
R
R R
O
O Li
HR
H
Br
Mg
OEt2
O
Me
CMe3
H
H
R H
O
Me
M ORMRO
O O
RM
M
Me O
O CMe3
H
Li
NMe
2
Me2N
Mg
Br
MM
M
O
M
OR R
O
RR
O M
RR
O R
M
R R
O M
OR
M
a71 a71
1.35 ?
1.34 ?
+
In solution and in the solid state metal enolates have a strong tendency to aggregate into dimers and tetramers to satisfy metal solvation requirements.
Crystallized as the dimer
Crystallized as the dimer
Seebach & co-workers, J. Am. Chem. Soc. 1985,107, 5403.
For certain metal enolates from heavy metals such as M = Hg+2 the C-metal
tautomer is sometimes favored.
The prediction stated above does hold, but the net change in
the C–C bond length is < 2 % !
1.36 ?
1.32 ?
One would predict that as the relative importance of the C– structure
increases, the C–O bond would shorten and the C–C bond would lengthen.
Since enolates usually function as carbon nucleophiles, it is therefore of some interest to assess the relative importance of the illustrated contributing
polar resonance structures. Within the last decade good X-ray crystal structures of a number of metal enolates have been obtained.
C – resonance
structure
O– resonance
structure
For alkali metal enolates (M = Li, Na, K etc.) the O-metal tautomer is strongly
favored. This generalization holds for most alkaline earth enolates (Mg+2) as
well. These are the generally useful enolate nucleophiles
Metal Tautomerism
Resonance Structures
D. A. Evans Chem 206Enolate Structures from X-ray Diffraction
δ–
Ab initio calculations (Spartan) indicate that the partial negatilve charge on the
alpha carbon is ~ – 0.22 for the Li enolate
M = HM = Li – 0.19– 0.22
O
Me
SiO CMe
3
Me
Me
Me
Me
O LiLi
OLi OO O
Li O Li
Li
O
Li
O
LiLi
O
O
Li
Li
O
Li
O
N
Li
Li
O
O
Li LiN
O Si
Li
Li Li
Li
LiLi
LiN
Li
O
O
Li
SiMe
Me
Me
O
Me
CMe3
H2C
O Li
Williard, P. G.; Hintze, M. J. J. Am. Chem. Soc. 1987, 109, 5539-5541.
LDA
Si
Williard, P. G.; Carpenter, G. B. J. Am. Chem. Soc. 1986, 108, 462-468.
Enolate Structures: Lithiun Enolates Chem 206D. A. Evans
Li Enolates
Me3C O Br
O
O
O Zn
O
Zn
Br
O CMe3Br
Me3C
Zn
Br
C
Zn
Br
O C
O
O ZnBr
OMe3C
Me3C O
O
ZnBr
OO
Zn O
Zn
THF
THF
Br O
CMe3
Br
Me3C
Br
Zn
Zn
Br
O
Enolate Structures: The Reformatsky Reagent Chem 206D. A. Evans
Dekker, J.; Boersma, J.; van der Kerk, G. J. M. J. Chem. Soc. Chem. Commun. 1983, 553.
Dekker, J.; Budzelaar, J.; Boersma, J.; van der Kerk, G. J. M. Organometallics 1984, 3, 1403.
2.0?
Zn(0)
Zn Enolates
2.0?
The THF Complex
O
CHOO
Br
O
Me
C6H13
OH
O
O OH
O
Br CHO
R
O
O
R
Br
O
CHOO
N
O
Me
O
BnNBn
O
Me
Br
OZnBr
N
Br
O
Br
Me
O
Bn
O C
6H13
CHOMe
O
Br
R Me
Br O
O
Me
O
CHO
O
BrO
O
Me
O
OBr
MeR
Ph Br
Me
O O
Me
Ph Ph
OH OH
PhPh
Me
O
PhCHO
O
O
R
OH
O
O OH
O
O
OH
R
OHR Me
O
Et
O
O
Et
O
Me
R OH
O
O
R
H Sm
Et
O
R(H)
(R)H
Summary of SmI2 chemistry: Sonderquist, Aldrichimica Acta 1991, 24, 15Review: Comprehensive Organic Synthesis, 1991; Vol 2, Chapter 1.8, pp 277-299
The "Classical" Reformatsky Process The Samarium(II) Variant
Both cyclic and acyclic cases studied (11 cases). H. Nozaki & Co-workers, J. Am. Chem. Soc. 197, 99, 7705
48% yield
Zn, Et2AlCl
-20 °C
78% yield
25 °C
C. H. Heathcock & Co-workers, J. Org. Chem. 1987, 52, 5745.
Zn/THF
2 SmI2/THF
-20 °C
8: 1 diastereoselection97% yield
one isomer? 86% yield
-78 °C
2 SmI2/THF
G. A. Molander & Co-workers, J. Am. Chem. Soc. 1987, 109, 6556.
Proposed Transition structure
Rxns carried out in water with either activated Zn or Sn.19 cases reported. T. H. Chan & Co-workers, Chem. Commun. 1990, 505.
diastereoselection 60:4087% yield
Zn in HOH
25 °C
Based on the Nozaki recipe JACS 1977, 99, 7705T. Nishida & Co-workers, Tetrahedron 1991, 47, 6623.
diastereoselection 10:155% yieldZn, Et2AlCl
Good entry into prior literature
82% yieldSmI2/0 °C
R = H: 76% yield
R = Me: 82% yieldaldol diastereoselection 62:38
no config assignment
SmI2/0 °C
R = Me: 82% yieldaldol diastereoselection 70:30
no config assignment
R = H: 85% yieldSmI2/0 °C
Chem 206
T. Tabushi & Co-workers, Tetrahedron Lett. 1986, 27, 3889.
The Reformatsky ReactionD. A. Evans
O LiN
PhH
OTMS O X O
t-Bu
Ph NLi Ph
Me Me
O
NMe
N NLi t-Bu
Ph H
OTMS
O
t-Bu
OTMS
t-Bu
NMe
N NLi
Ph H
O
R N
Me
N NLi t-Bu
Ph H
(R)
O
R
OTMS
t-Bu
(S)
OTMS
R
t-Bu (1.0)Ph (0.8)
i-Pr (0.8)
R (equiv base)
Koga, et al J. Am. Chem. Soc . 1986, 108 , 543-545. 51% yield (97% ee)
1 equiv HMPA10 equiv TMSCl
-105 °C
With an in situ quench:
Koga, et al Heterocycles 1990, 30 , 307-318.
73% yield (96% ee)
TMSCl (5 equiv)HMPA (1 eq)
1)
Simpkins, J. Chem. Soc., Chem. Commun. 1986, 88-90.
X = Br or OH70% ee
NBS or MCPBA
2) TMSCl, THF
Asymmetric Deprotonation of Meso Ketones
Chem 206Chiral Amide Bases: Deprotonation of KetonesD.M. Barnes, D. A. Evans
The Effects of Additives on Induction
THF, -78 °c
Conditions ee(%)
Internal quench with TMSCl
External quench of TMSCl
Reaction run with 0.5 equiv of LiCl(rel. to amide), then quenched with
TMSCl
69
23
83
Does a change in aggregation state inhibit racemization of the initial Li enolate?
Simpkins and Cousins, Tetrahedron Lett . 1989, 30 , 7241-7244Simpkins and Bunn, J. Org. Chem . 1993, 58 , 533-534.(1)
Kinetic Resolution of Ketones
HMPA, TMSCl, THF-105 °C
45% (90% ee)66% (30% ee)
78% (18% ee)
51% (94% ee)33% (98% ee)
22% (94% ee)
Koga, et al Tetrahedron Lett . 1989, 30, 6537-6540.
Me
TMSO H
Me
TMSO H
HTMSO
Me
HTMSO
Me
MeN
O
O
O
NMe
N NLi t-Bu
Ph H
OCOPhMeN
CO2Me
O
OO
O
Ph NLi Ph
Me Me
MeN
OTMS
OTMS
O
OTMS
OO
O
C8H17Me
Me
O H
C8H17Me
Me
O H
NMe
N NLi t-Bu
t-Bu H
cocaine
more stable
more stable
Simpkins, et al Tetrahedron 1993, 49 , 207-218.
88% (85% ee)
79% (88% ee)
5 equiv TMSClTHF, -95 °C
(R) - 1
Other cyclic ketones can be used as substrates.See: Cox and Simpkins, Tetrahedron: Asymmetry 1991, 2, 1-26.
Momose, et. al Chem. Pharm. Bull . 1990, 38 , 2072-2074
Chem 206Chiral Amide Bases: Other Ketonic SubstratesD.M. Barnes, D. A. Evans
a73 Regioselective Deprotonation of Unsymmetrical Ketones
Conditions Ratio
(TMS)2NH, TMSILDA
(R) - 1(S) - 1
9078
2>98
1022
98<2
9384
4>98
716
96<2
(TMS)2NH, TMSI
LDA(R) - 1
(S) - 1
RatioConditions
ThermodynamicKinetic
KineticKinetic
ThermodynamicKinetic
KineticKinetic
Koga, et al Tetrahedron: Asymmetry 1990, 1 , 295-298.
TMSCl, HMPA -100°
80% yield90% ee
O
Me Me
Ph NLi Ph
Me Me
NLi NH
H
LiN
NEt
OTBS
O
O
OH
OTBS
OH
62 (R)
92 (S)
31 (R)
78 (R)
Me
Ph
O
CMe3
CO2H
MeO
Ph
NKO
Me
Me
Me
CH2CO2HBr
CMe3
CMe3
Cl CH2CO2H
O
Ph
Me
Me OH CH2
OH
CMe3
HOOC
OH
HPh
HOOC
CMe3
Duhamel, et al, Chem Commun. 1993, 116-117 90% yield84% ee
THF, -70 °C
this number has been challenged
Aggregation pheremoneof the Douglas Fir Beetle
358THF, HMPA, 0°+ 3
3
2
1
Ref.
Kinetic Resolution of Racemic Epoxides
92% yield (90% ee - rotation) - Asami, Tetrahedron Lett . 1985, 26 , 5803-5806.73% yield (76% ee -Mosher) - Hendrie and Leonard, Tetrahedron 1987, 43 , 3289-3294.
2 / PhH
3
2
1
1 Whitesell and Felman, J. Org. Chem . 1980, 45, 755-756.
2 Asami, Chem. Lett . 1984, 289-832.
3 Asami and Kirihara, Chem. Lett . 1987, 389-392.
80THF, HMPA, 0°
77
65
THF, 0°
THF, reflux
ee(%)Yield (%)Conditions
Ring opening of meso epoxides
Chem 206Chiral Amide Bases: Epoxide Opening and EliminationsD.M. Barnes, D. A. Evans
2, THF
-78° - RT
26% yield~ 80% ee 26% yield
+
Mori, Tetrahedron 1987, 43 , 2249-2254.
(+)
(+)
2, DBU, THF
Equivalents 2 Yield (ee) Yield (ee)
0.750.33 31 (>95) 67 (30) 60 (33)21 (72)
Asami and Kanemaki, Tetrahedron Lett . 1989, 30, 2125-2128.
Asymmetric Eliminations
HCl, Et2O 1, THF / hexane
96% yield74% eeDuhamel, et al Tetrahedron Lett . 1987, 28 , 5517-5520.(+)
Reviews: Cox and Simpkins, Tetrahedron: Asymmetry 1991, 2, 1-26.
Simpkins, Pure Appl. Chem. 1996, 68, 691-694.Simpkins, In Advanced Asymmetric Synthesis;
Stephenson, G. R., Ed.; Chapman & Hall: London, U.K., 1996; pp 111-125.