Chemistry 206
Advanced Organic Chemistry
Handout–23A
Enolate Acylation
Matthew D. Shair Monday ,
November 11, 2002
Tet Let
.
1990
,
31
, 1401-4
JOC
.
1991
,
56
, 5301-7
Chem 206
Enolate Acylation Acylation & Carboxylation
D. A. Evans
The Reaction:
+
Acylation
Carboalkoxylation
+
Situations where the reaction is employed:
a73
Acyl moiety is a constituent of the target structure:
++
(–)
(+)
(–)
(+)
a73
Acyl moiety employed in assisting bond construction but not part
of the target structure:
+
R–X
Deacylation:
When an acyl residue is employed in the one of the illustrated bond constructions, it may then be removed by nucleophilic deacylation: Several examples are provided.
Deformylation:
HCO
3
–
competitive ring cleavage not a problem due to more electrophilic formyl C=O
Decarboxylation in this system is a sigmatropic rearrangement involving C=O participation
Decarboxylation:
a73
Alkyl-Oxygen Cleavage:
tert
-butyl esters
NaH, DMF
R–Br
CF
3
CO
2
H
?
–CO
2
representative procedure: Henderson,
Synthesis
1983
, 996
a73
Alkyl-Oxygen Cleavage:
Methyl esters
Li–I/H
2
O
?
H
3
O
+
CO
2
R = H
HO
–
Acylketeneintermediate
leading references
OM
R
1
R
2
XR
3
O
R
2
R
1
O
R
3
OO
OR
3
O
R
1
R
2
O
OR
3
X
R
2
R
1
OM
R
2
R
1
OH
OR
3
O
O
OR
3
O
R
1
R
2
R
2
R
1
O
XO
R
3
O
O
O
OR
3
O
H
R
2
X
R
1
O
R
R
H
O
O
O
O
Me
CO
2
Me
CO
2
Me
Me
O
Me
R
2
CO
2
Me
R
1
O
OR
3
O
O
Me
Me
Me
Me
O
O
Me
CO
2
Me
Me
O
CHO
O
Me
Me
Me
Me
O
O
CO
2
-t-Bu
CO
2
-t-Bu
O
R
R
O
O
OO
H
H
O
R
O
CO
2
-Me
N
Me
Me
CO
2
–
O
R
O
R
O
O–
OR
CO
O
H23-01-Acylation Intro
11/5/00
8:20
PM
LDA
Chem 206
Claisen Condensation & Related Processes
D. A. Evansa73
Claisen Condensation: Condensation of 2 esters
+
RO
–
H
3
O
+
a73
Intramolecular Variant: Dieckmann Condensation
H
3
O
+
RO
–
Strictly speaking, the Claisen and Dieckmann condensations are defined as condensations between ester enolates & ester electrophiles. In this discussion, we choose to liberalize the classifcation to include ketone enolates as well. a73
Reaction Thermodynamics: Overall Keq ~ 1
RO
–
2
+
+
+
RO
–
ROH
+
a73
Final enolization Step: Keq ~ 10
+4
Contrary to popular belief, final enolization step does not render the process irreversible
pKa 12
pKa 16
Reaction Control Elements:
NaH
kinetic product
Thermodynamic
product
-78 °C
0 °C
a73
Analysis of the two processes:
Conventional Carbomethoxylation:
Equilibrium achieved between all species
Me
2
CO
3
+ MeO
–
+ MeOH
Keq ~ 10
-2
Keq ~ 10
+4
Me
2
CO
3
Keq > 10
+4
Critical issue:
Product enolate
A
is significantly destabilized by peri-interaction
with aromatic ring disrupting the required planarity of the delocalized enolate.Hence, the greater stability of
B
dictates the product.
A
B
Keq >> 1
A
B
a73
This type of control is general:
HCO
2
Et
KO
t
Bu
Meyers,
JOC
1976
,
41
, 1976
Piers,
Tet. Let
1968
, 583
MeO
–
HCO
2
Et
benzene
benzene
HCO
2
Et
MeO
–
JACS
1965
, 87, 5728
These reactions can be manipulated to give either kinetic or thermodynamic control:
CO
2
Me
R
Me
CO
2
Me
OR
O
O
OR
R
O
OR
O
R
R
O
Me
CO
2
Me
R
R
O
OR
O
R
R
O
OR
R
O
OR
O
O
OR
O–
R
R
O
NC
OMe
O
O
CO
2
Me
O
OMe
MeO
CO
2
Me
O
Me
CO
2
Et
O
OH
Me
Me
OH
O
CO
2
Et
Me
O–
O
CO
2
Me
CO
2
Me
O–
O–
CO
2
Me
O
O–CO
2
Me
O–
O
MeOH
CO
2
Me
O–
O
Me
O
Me
Me
O
Me
O Me
Me
OH
RO
–
H23-02-Claisen Condensation
11/5/00
8:17 PM
-78 °C
fast
D. A. Evans
Kinetic Enolate Acylation: The Mander Reagent
Chem 206
a73
Kinetic Acylation: Methyl Cyanoformate (
1):
+
slow
+ LiCN
1
Enolate acylation with
1
is fast
Intermediate
2
breaks down to product
more slowly than the acylation step
2
Under these conditions, proton transferfrom product to enolate does not occur.
Mander
Tet. Lett.
1983
,
24
, 5425
a73
Examples:
LDA
1
84%
1
LDA
65%
75%
LDA
1
1
Me-Li
+ isomer
7%
Mander,
SynLett.
1990
, 169
1
R
2
Cu(CN)
2
Li
2
82%
Hashimoto,
Chem. Lett.
1989
, 1063
a73
The Tetrahedral Intermediate
2; Why is it so stable?
2
slow
+ LiCN
Consider this process in the broader context of elimination reactionsof the E1cb classification where: Y might be either C or some heteroatomX might be various leaving groups such as CN, OR etc.
base
–
slow
+ X
–
+ X
–
slow
–
base
Data is available for the case where X = CN, OR & Y = carbanion:
Stirling,
Chem. Commun
.
1975
, 940-941
leaving grp
(X)
pKaH–X
log
k
X
k
OPh
–OPh
10
1<-7
9.5
–CN
–C(Me)
2
-NO
2
~10
<-9-3.9
16
–OMe
+ LiCN
+ LiOMe
2
Above data makes the point that CN is a poor LG but it also leads one to the faulty conclusion that
2
should partition to acyl cyanide rather than methyl ester!
O
Li
OCN
OMe
R
1
R
2
R
2
O
R
1
OMe
O
X
FG
H
R
FG
X
FG
Y
XY
R
YH
X R
R
R
2
R
R
O
R
1
OMe
OCN
Li
O
OMe
R
1
O
R
2
R
2
O
R
1
CN
O
OO
NC
OMe
O
R
2
O
R
1
OMe
OCN
Li
CO
2
Me
Me
OTMS
Me
CMe
3
Me
3
C
H
R
1
OLi
R
2
O
OMe
R
1
O
R
2
Me
O
Me
CO
2
Me
O
Me
O
CO
2
Me
O
Me
Me
O
Me
CO
2
Me
O
OTBS
O
CO
2
Me
H23-03-Mander Reagent
11/5/00
8:21 PM
Acylating agents can be desiged where the tetrahedral intermediate exhibits exceptional stability:
Chem 206
D. Evans and S. MillerJ. Org. Chem.
1993
,
58
, 471.
95%
THF, -78 °C
DIBAl-H
M. Angelastro, N. Peet and P. BeyJ. Org. Chem.
1989
,
54
, 3913.
THF, -78 °C
73%
P. Thiesen and C. HeathcockJ. Org. Chem.
1988
,
53
, 2374.
THF/Et
2
O
-110 °C to -80 °C 62%
Several other examples reported.
J. Prasad and L. LiebeskindTetrahedron Lett.
1987
,
28
, 1857.
THF, 0 °C 99%
MeMgBr
R-
Li or
R-
MgBr
THF, 0 °C
R = Me, n-Bu, or Ph; yields > 90%
Carbon Acylation with
N
-Methoxy-
N
-methylamides
J. L. Leighton, D. A. Evans
Nu(-)
H
3
O
+
Weinreb
Tet. Lett.
1981
,
22
, 3815.
Nucleophiles:
R–Li, R–MgX
Acceptable
DIBAL
LiAlH
4
LiB(R)
3
H
Weak hydride reagents: NaBH
4
Unacceptable
R–ZnX & other colalent metal alkyls
other colalent metal enolates
An excellent review on all aspects of Weinreb amide chemistry:
M. Sibi,
Organic Preparations and Procedures Int.
,
1993
,
25 (1)
, 15-40.
Representative Organometals:
H
3
O
+
Hydride Reductions:
R
1
–M
H
3
O
+
H
3
O
+
R
2
–M
W. Wipple, H. ReichJ. Org. Chem.
1991
,
56
, 2911-2.
THF, -78 °C
THF, -78 °C to R. T.
J. Org. Chem.
1989
,
54
, 4229.
Enolates and Metalloenamines:
83%
47%
R
L
i(MgX)
RO
OLi
R'
N
O
Me
OMe
LiN
R
Li
Ar
S
O
R'
R
O
O
CH
2
Li
OEt
BrMg
NOMe
O
N
MeO
Me
OLi
R
Me
NOMe
O
N
O
Li
Nu
RN
O
Me
OMe
R
Me
Me
R
Nu
O
N
O
Me
OTBS
N
O
OMe
Me
Ar
N
O
Me
OTBS
Me
O
O
R
1
Ar
MeO
2
C
N
Me
O
OR
OMe
MeO
2
C
P
(OMe)
2
O
OR
O
Li
P(OMe)
2
O
CbzHN
N
Me
Bn
O
OMe
CbzHN
OEt
Bn
O
Me
N
OMe
Me
OMe
Me
TBSO
Me
O
2
N
OMeOMe
Me
O
OMe
OMe
Me
H
OMe
Me
OMe
Me
TBSO
Me
O
2
N
OMeOMe
Me
O
OMe
O
t
-Bu
OLi
O
O
t
-Bu
O
R
1
R
2
O
N
O
Me
OMe
OLi
Me
OO
Me
H23-04 Weinreb Amides-1
11/5/00
8:22
PM
tetrahedral intermediate
stable for hours at 0°C
Problem is to control C=O reactivity on central D-fragment
35
30
28
21
F
D
29
21
D
F
17
28
Evans, Rieger, Jones, Kaldor,
JOC
,
1990
,
55
, 6260-6268
C
28
–C
29
C
20
–C
21
29
29
29
The Rutamycin B Synthesis,
H. Ng, Ph. D. Thesis, Harvard University, 1993
Evans, Bender, Morris J. Am. Chem. Soc.
1988
,
110
, 2506.
The Solution:
Et
2
O, -78 °C
LDA, 0 °C
83%
The X-206 Synthesis,
S. L. Bender, Ph. D. Thesis, Harvard University, 1986
MOP =
1
A
+
7
16
17
21
C
1
-C
16
Subunit
C
17
-C
37
Subunit
A
B
C
D
E
F
1
7
15
21
27
35
A
D
F
35
27
F
E
D
12
15
21
27
30
35
7
11
11
1
Carbon Acylation with
N
-Methoxy-
N
-methylamides-2
J. L. Leighton, D. A. Evans
Chem 206
several steps
25
5
1
8
17
12
33
20
HF
MeCN-H
2
O
80%
23
32
26
20
LDA
23
20
26
32
97%
26
20
26
32
80%
32
Me
N
NMe
2
Li
Me
Me
H
OMOP
Me
Me
Me
O
O
O
O
X
O
Me
OBn
H
Me
Me
O
N
NMe
2
Me
O
H
Et
O
H
M
Me
O
OH
Me
OH
Me
Me
Me
Et
PMBO
Me
TESO
O
N
Et
OMe
Me
Et
PMBO
N
NMe
2
H
Me
Me
OO
Me
O
O
H
O
Me
OH
O
O
Me
OH
Me
TESO
Me
O
O
O
OO
O
Me
OH
Me
Me
Me
HO
Et
Me
OH
Me
OH
OH
Me
Me
OH
Me
Me
OH
O
Me
Me
OMe
Me
H
Me
OH
Et
O
O
O
O
OH
OR
O
Me
OR
Me
Me
OR
Me
Me
O
H
O
O
Me
Me
OO
O
O
OH
Me
Me
Me
OH Me
Me
O
Me
OH
OH
OH
O
O
Et
OH
Me
H
Me
OH
Me
Me
H
H
Li
O
Me
Me
H
H
Me
H
O
Me
HO
Me
OH
Me
Me
Et
HO
H
Me
Et
PMBO
Me
O
H
Me
I
Me
O
Me
O
Me
Me
O
O
H
H
Me
Me
CH
2
Me
N
Me
O
O
N
MeNMe
2
MeO
OMOP
H
Me
H
Me
Me
CH
2
Me
O
Li
O
O
N
MeNMe
2
MeN
OMOP
H
Me
H
Me
Me
CH
2
Me
O
O
O
O
OMOP
H
Me
Et
Me
H
Me
Me
NH
OBn
NMe
2
O
Et
Me
H
OBn
Me
O
Me
C MeMe
OMe
HO
Me
Me
Me
O
O
O
O
H
H23-05-Weinreb Amides-2
11/5/00
8:25 PM
E. Knott
J. Chem. Soc.
916 (1955)
The Thioamide component:
Reagents
P
4
S
10
JOC 46, 3558 (1981), Synthesis 149 (1973)
Lawesson's Reagent
Bull. Chim. Soc. Belg. 87, 229 & 293 (1978)
P
4
S
10
, Et
3
N or NaHCO
3
Indian J. Chem., Sect. B 14, 999, (1976)JACS 102, 2392 (1980)
RCS
2
R' + R
2
NH Thioamide
Imidate +H
2
S Thioamide
Chem. Ind. (London) 803 (1974)Angew. Chem. 79, 865 (1967)
R
3
P=S
R
3
P
The Solution:
?
(+)
(–)
The Problem:
??
(–)
(+)
(–)
(+)
(–)
(+)
??
A. Eschenmoser
Science
196
, 1410 (1977)
Key Bond Construction Needed for the B12 Synthesis:
?
Key papers:
Review: Trost
Comp. Org. Synth.
Vol. 2, Ch. 3.7 (1991)
A. Eschenmoser
Helv. Chim. Acta.
54
, 710 (1971)
A. Eschenmoser
Angew. Chem., Int. Ed. Engl.
6
, 866 (1967)
A. Eschenmoser
Angew. Chem., Int. Ed. Engl.
8
, 343 (1969)
Base, Thiophile
The General Reaction: Acylation of an Amide C=O
D. H. Ripin, D. A. Evans
Chem 206
The Eschenmoser Coupling Reaction
RN
X
R
3
S
R’
R”
O
N
R”
R’
R
R
3
O
N
N
H
N
O
OMe
Me
(CH
2
)
2
CO
2
Me
O
Me
N
H
N
HO
N
H
(CH
2
)
2
CO
2
Me
Me
Me O
O
NH
O
RN
O
R’
R”
N
R”
R’
S
(CH
2
)
2
CO
2
Me
R
P
S
P
Me
Me
O
N
Me
H
(CH
2
)
2
CO
2
Me
(CH
2
)
2
CO
2
Me
Me
Me
O
N
R
Me
Me O
N
O
H
N
H
N
O
OMe
Me
R
3
Me
Me
R
3
Me
R
2
Me
R
3
O
R
2
Me
R
2
N NH
N
H
N
O
N
H
N
H
N N
H
S
NHN
Me
MeO
2
CCH
2
Me
MeO
2
CCH
2
O
(CH
2
)
2
CO
2
Me
Me
MeO
2
CCH
2
C S
N
Me
N
H
N
S
N
X
S
S
S
p-MeOPh
PhOMe
H
H23-06-Eschenmoser-1
11/5/00
8:27 PM
Under equilibrating conditions (B1) appears to be preferred over (B2)
Not observed
Enolates (B1) and (B2) both more stable than enolate (A) Enolization at (A) preferred on basis of inductive effects. Hence,Path A preferred in kinetically controlled situation
Explanation:
Thermodynamic
Control?
Kinetic Control?
B
B
2
NaOEt/EtOH
NaOEt/EtOH
A
NaH/C
6
H
6
Davis & Garratt,
Comprehensive Organic Synthesis
1991
,
2
, 806-829
AB
1
( )
n
Reviews:
The Dieckmann Condensation
Regioselectivity:
Chem 206
Intramolecular Enolate Acylation–Dieckmann Condensation
D. A. Evans and P.H. Carter
Schaefer, Bloomfield,
Organic Reactions
1967
,
15
, 1.
( )
n
not viable
excellent
excellent
acceptable
situation dependent
high dilution required
Accesible Ring SizesThe individual steps:
+ EtO
–
Enolization:
+ base
+ base-H
A variety of bases may be considered for the enolization step. Either alkoxide or a non-nucleophilic base such as NaH are commonly used. Choice of base can be important (Vide infra).
Ring Closure:
+ EtOH
Keq (enoliz)
Keq (cycliz)
~ 1
Keq (enoliz)
~ 10
+4
Statements claiming that the final enolization step renders the process irreversible are simply incorrect.
NaOEt
EtOH
?
KOtBu / PhH
R.H. Schlessinger,
et al. Heterocycles
1987
,
25
, 315.
NaOEt / EtOH
The effect of beta heteroatoms: classical kinetic vs. thermodynamic control
??
EtO
2
C
CH
2
CO
2
Et
ONa
N
ONa
CO
2
Et
MeOMeO
CO
2
Et
CO
2
Et
CO
2
Et
N
OH
N
OH
CO
2
Et
EtO
O –
OEt
O
O
OEt
O –
EtO
O –
O
CO
2
R
O
CO
2
R
O
CO
2
R
O
CO
2
R
O
CO
2
R
CO
2
R
O
CO
2
RC
O
2
R
CO
2
Et
CO
2
Et
EtO
2
C
CO
2
Et
ONa
CO
2
Et
CO
2
Et
EtO
2
C
O
OEt
O
EtO
2
C
EtO
CO
2
Et
O
CO
2
Et
CO
2
Et
H23-07-Dieckmann-1
11/5/00
8:29 PM
S-Ylids
Thioethers
carbenes
+
:
–+
?
Ra-Ni, 68%
Rh(OAc)
2
+
ii
NaOH
S. Danishefsky
Tet. Lett.
30
, 3625 (1989)
99%
*
79%
DBU
NaHCuBr
T. Kametani
J. Chem. Soc., Perkin Trans. I
1607 (1980)
mix
Et
3
N, PPh
3
H. Rapoport
J. Org. Chem.
46
, 3230 (1981)
64%
t
-BuOK
t
-BuOH, 25 °C
P(CH
2
CH
2
CN)
3
,
TFA, sulfolane
A. Eschenmoser
Science
196
, 1410 (1977)
This center readilyepimerizes to a 2:1mix of diaster. in favor of the shown.
b) P(OEt)
3
, Xylene,
?
a) 1.05 eqiv. (PhCOO)
284%
(+)
H. Rapoport
J. Org. Chem.
46
, 3230 (1981)
A. Eschenmoser
Helv. Chim. Acta.
54
, 710 (1971)
Bases:Inorganic: MHCO
3
, MOH, MH, MOR
Organic: R
3
N, N-methylmorpholine, buffered solutions
Thiophiles: Ar
3
P, R
3
P, (RO)
3
P
Combination:
22
The Eschenmoser Coupling Reaction-2
Chem 206
D. H. Ripin, D. A. Evans
Reagents for the Reaction:
PhP
NMe
2
N
PhP
O
NBn
t
-BuO
2
CS
TfO
Me
CO
2
Bn
O
O
t
-BuO
2
C
NBn
Me
OO
CO
2
Bn
NH
MeN
OAc
S
Br
CO
2
Me
Ar
CO
2
Et
MeN
CO
2
Et
OAc
NH
CO
2
Me
Br OMe
Me
N
MeO
Me
CO
2
Me
OAc
NMe
EtO
2
C
N
2
HN
O
S
CO
2
t
-Bu
N
CO
2
t
-Bu
O
CO
2
t
-Bu
N
S
O
N
2
S
N
–O
CO
2
t
-Bu
O
CO
2
t
-Bu
N S
S
R
S
R
N
H
N
O
OMe
Me
(CH
2
)
2
CO
2
Me
O
Me
(CH
2
)
2
CO
2
Me
Me
Me O
S
NH
O
(CH
2
)
2
CO
2
Me
Me
Me
O
N
Me
H
(CH
2
)
2
CO
2
Me
(CH
2
)
2
CO
2
Me
Me
Me
S
N
R
Me O
N
O
H
N
H
N
O
OMe
Me
R
3
Me
Me
R
3
Me
R
2
Me
R
3
O
R
2
Me
R
2
N NH
NHN
MeO
2
CCH
2
Me
MeO
2
CCH
2
O
(CH
2
)
2
CO
2
Me
Me
MeO
2
CCH
2
Me
Br
R
R
R
C
RRR
H23-08-Eschenmoser-2
11/5/00
8:27 PM
Kocienski and Co-workers,
Tet.
1990
,
46
, 1716
-78 °C
LDA
D. A. Evans and P.H. Carter
Intramolecular Enolate Acylation–Dieckmann Condensation
Chem 206
8:1 mixture
Peterset,
Recl.Trav.Chim.Pays-Bas
1977
,
96
, 219.
R.Danieli,
J.Org.Chem.
1983
,
48
, 123.
J.L. Adams,
J.Org.Chem.
1985
,
50
, 2730.
tBuOK / PhH
LDA
NaH
DMSO
Miscellaneous Dieckmann Reactions of Potential Interest
G.Stork and Co-workers,
J.Am.Chem.Soc.
1960
,
82
, 4315.
NaOEt Et
2
O
Deduce the mechanism of this multistep process.
T.M. Harris and Co-workers,
J.Org.Chem.
1984
,
49
, 3681.
no loss ofstereochemicalintegrity
H.-J. Liu and Co-workers,
Tet.Lett.
1982
,
23
, 295.
KH, THF
NaH
Intramolecular Ketone Acylation
S.Brandawge and Co-workers,
Tet.Lett.
1992
,
33
, 3025.
When X = NR
2
, this is a good reaction, but when X = OR, it is a poor reaction.
(TMS)
2
NLi
THF, -78
o
C
EtO
2
CR
CO
2
Et
SEt
O
R
CO
2
Et
EtS
CO
2
Et
SC
O
2
Et
N TMS
tBOC
S
OTMS
OEt
(tBOC)HN
CO
2
Et
X
X
Me
CO
2
Et
CO
2
Et
Me
Cl
O
CO
2
Et
Me
O
CO
2
Et
H
Me
O
CO
2
Et
O
Me
Me
Me
CO
2
Et
O
Me
O
Me
Me
Me
O
O
H
N
O
Me
TsHN
CO
2
Et
H
HN
TsHN
OO
R
O
Cl
O
Me
O
Me
O
Me
O
X
O
Me
Me
O
HO
OMe
Me
O
Me
O
O
OMe
OMe
H23-09-Dieckmann-2
11/5/00
8:30 PM
D. A. Evans and P.H. Carter
Intramolecular Enolate Acylation–Dieckmann Condensation
Chem 206
Kinetically controlled Cyclizations
LDA
Heterocycles
,
1987
,
25
, 315
Li-TMP
60-70%
JACS
,
1979
,
101
, 5060
Li-NTMS
2
Tet. Let
,
1981
,
22
, 3883
Li-NTMS
2
3 equiv
Hatanaka,
Tet. Let
,
1983
,
24
, 4837
NaH
MeOH
6-demethyl-6-deoxy-tetracycline
Woodward,
JACS
,
1962
,
84
, 3222
78%
Li-NTMS
2
3 equiv
Brandange,
JOC
,
1984
,
49
, 927
DMSO
–
41%
Danishefsky,
JACS
,
1973
,
95
, 2410
41%
EtO
–
Prostaglandin E2
Sih,
JACS
,
1975
,
97
, 865
Multistep Condensations
CO
2
Me
OMe
N
CO
2
Me
N
CO
2
Me
Me
CO
2
t
Bu
CO
2
Me
Me
R
CO
2
Me
CO
2
Me
R
Me
O
CO
2
Me
N
N
O
CO
2
Bn
O
H
COSPh
H
O
CO
2
Bn
CO
2
t
Bu
N
O
H
PhOCH
2
CONH
H
COSPh
H
PhOCH
2
CONH
N H
O
CO
2
t
Bu
OH
O
MeO
2
C
O
CO
2
Me
MeO
2
C
CO
2
Me
O
Cl
MeO
O
Cl
MeO
O
CO
2
Me
OH
OH
CO
2
Me
MeO
2
CC
O
2
Me
O
OH
OH
O
OH
NMe
2
OHCONH
2
O
HO
CO
2
Me
HO
O
OLi
O
C
OMe
O
CCCO
2
Me
H
LiO
H
CH
HO
C
O
COMe
H
CO
2
Me
CO
2
Me
MeO
2
C
OO
O
CO
2
Me
CO
2
Me
HO
O
OH
CO
2
Me
EtO
2
CC
O
2
Et
O
Me
H23-10-Dieckmann-3
11/5/00
8:31 PM
tetrahedral intermediate
stable for hours at 0°C
Problem is to control C=O reactivity on central D-fragment
35
30
28
21
F
D
29
21
D
F
17
28
Evans, Rieger, Jones, Kaldor,
JOC
,
1990
,
55
, 6260-6268
C
28
–C
29
C
20
–C
21
29
29
29
The Rutamycin B Synthesis,
H. Ng, Ph. D. Thesis, Harvard University, 1993
JACS
1993
, 115, 11446-11459.
Evans, Bender, Morris J. Am. Chem. Soc.
1988
,
110
, 2506.
The Solution:
Et
2
O, -78 °C
LDA, 0 °C
83%
The X-206 Synthesis,
S. L. Bender, Ph. D. Thesis, Harvard University, 1986
MOP =
1
A
+
7
16
17
21
C
1
-C
16
Subunit
C
17
-C
37
Subunit
A
B
C
D
E
F
1
7
15
21
27
35
A
D
F
35
27
F
E
D
12
15
21
27
30
35
7
11
11
1
Synthetic Applications of Metalloenamine Nucleophiles
D. A. Evans
Chem 206
several steps
25
5
1
8
17
12
33
20
HF
MeCN-H
2
O
80%
23
32
26
20
LDA
23
20
26
32
97%
26
20
26
32
80%
32
Me
N
NMe
2
Li
Me
Me
H
OMOP
Me
Me
Me
O
O
O
O
X
O
Me
OBn
H
Me
Me
O
N
NMe
2
Me
O
H
Et
O
H
M
Me
O
OH
Me
OH
Me
Me
Me
Et
PMBO
Me
TESO
O
N
Et
OMe
Me
Et
PMBO
N
NMe
2
H
Me
Me
OO
Me
O
O
H
O
Me
OH
O
O
Me
OH
Me
TESO
Me
O
O
O
OO
O
Me
OH
Me
Me
Me
HO
Et
Me
OH
Me
OH
OH
Me
Me
OH
Me
Me
OH
O
Me
Me
OMe
Me
H
Me
OH
Et
O
O
O
O
OH
OR
O
Me
OR
Me
Me
OR
Me
Me
O
H
O
O
Me
Me
OO
O
O
OH
Me
Me
Me
OH Me
Me
O
Me
OH
OH
OH
O
O
Et
OH
Me
H
Me
OH
Me
Me
H
H
Li
O
Me
Me
H
H
Me
H
O
Me
HO
Me
OH
Me
Me
Et
HO
H
Me
Et
PMBO
Me
O
H
Me
I
Me
O
Me
O
Me
Me
O
O
H
H
Me
Me
CH
2
Me
N
Me
O
O
N
MeNMe
2
MeO
OMOP
H
Me
H
Me
Me
CH
2
Me
O
Li
O
O
N
MeNMe
2
MeN
OMOP
H
Me
H
Me
Me
CH
2
Me
O
O
O
O
OMOP
H
Me
Et
Me
H
Me
Me
NH
OBn
NMe
2
O
Et
Me
H
OBn
Me
O
Me
C MeMe
OMe
HO
Me
Me
Me
O
O
O
O
H
H23-11-met-enamine acylation
11/4/01
10:08 PM
a73
The Ferensimycin B Synthesis,
JACS
1991
, 113, 7613-7630
Synthetic Applications of Metalloenamine Nucleophiles
D. A. Evans
Chem 206
Ferensimycin B
A
C
B
A
BC
HO
O
Me
OH
H
MeMe
Me
O
OH
O
Me
O
Et
O
Me
Me
Me
OH
Et
Et
OH
H
O
Me
Me
OO
Et
HO
O
Me
OH
H
Me
OH
Me
OH
Me
OH
Me
Et
Me
HE
t
O
a73
The B–C Fragment (
C
10
-C
23
Synthon
)
C
10
-C
23
Synthon
18
18
B
B
B
C
(–)
18
H
OH
Et
Et
OH
Me
Me
Me
O
Et
O
Me
O
O
Me
O
Et
Me
Me
O
Me
Et
Et
OH
OH
H
H
O
Me
X
Me
Me
Et
O
Me
O
Et
Et
OH
11
11
11
The C-11 ketone must be protected during
the C-18C-19 bond construction
Et
2
O
Et-Li
17
B
THF
Et
2
NLi
21
21
11
18
C
B
BC
18
11
21
NaHSO
4
H
2
O
C
18
diastereoselection
9 : 1 (48%)
21
11
18
C
B
B
18
BC
C
Bepi-C
18
6
PPTS
MeOH
PPTS
MeOH
18
18
N
NMe
2
O
Me
Me–N
Li
O
H
Me
Me
Me
Et
O
Me
O
O
Et
Et
Mg
Br
NMe
2
NH
O
Me
O
Et
O
Me
Me
Me
Et
Et
OH
H
Me
H
OH
Et
Et
OH
Me
Me
Me
O
Et
O
Me
OO
Me
O
Et
O
Me
Me
Me
OH
Et
Et
OH
H
O
O
Et
Me
Me
N
Me
H
Li
O
Me–N
Me
NMe
2
O
Et
Me
O
Et
Me
O
Me
Et
Me
H
O
O
O
H
Me
Et
Me
O
Me
Et
Me
Et
O
Li
18
B
H
Me
N
Me
Me
Et
O
NMe
O
11
a73
The In situ protection of the C–11 Carbonyl
MeO
NMe
2
R–M
17
B
N
NMe
2
O
Me
Me–N
Li
O
H
Me
Me
Me
Et
O
R
carbonyl-protected intermediate
18
B
H
Me
N
Me
Me
Et
O
NMe
O
11
MeO
NMe
2
H23-12-Ferensimycin construct
11/4/01
3:32 PM