Matthew D. Shair Monday,
November 18, 2002
Chemistry 206
Advanced Organic Chemistry
Handout 26B
Synthetic Applications of -Diazocarbonyl
Compounds
An Evans Group Afternoon Seminar
Krista B. Goodman
January 15, 1999
Chem 206
Synthetic Applications of
αααα
-Diazocarbonyl Derivatives
Krista Beaver
Synthetic Applications of
α
-Diazocarbonyl Compounds
An Evans Group Afternoon Seminar
Krista Beaver
January 15, 1999
Leading References:
McKervey and Ye,
Chem. Rev.
1994
1091
Doyle, McKervey and Ye,
Modern Methods for Organic Synthesis with
Diazo Compounds, Wiley, 1998
Diazocarbonyl Compounds: Structure and Nomenclature
R'
R
O
NN
acid
R'
R
O
NN
?
,
hv
or M
R'
R
O
cyclopropanation
insertion
rearrangementylide formation
Diazocarbonyl
Diazonium
solvolysis
rearrangement
displacement
Synthesis of
α
-Diazocarbonyl Compounds
? First synthesized by Curtius in 1883 by diazotization of
α
-amino acids
RO
H
O
? Arndt-Eistert synthesis (1927)
R
O
N
2
1. (ClCO)
2
, DMF
2. CH
2
N
2
? Diazo Transfer
R
O
R'
RSO
2
N
3
, base
R
O
R'
N
2
? Acyl Transfer
O
O
N
2
N
O
O
ROH
O
O
N
2
R
Arndt and Eistert,
Ber. Dtsch. Chem.
Ges.
1927
60B 1122
Pettit,
JOC
1986
1282
Regitz,
ACIEE
1967
733
Badet,
JOC
1993
1641
For temporary activation of carbonyl compounds prior to diazo transfer, see Danheiser,
JOC
1990
1960
R=Me, Ts, etc.
26B-01
11/11/01
7:59 PM
Chem 206
Synthetic Applications of
αααα
-Diazocarbonyl Derivatives
Krista Beaver
R
R
1
N
2
O
R
R
1
O
XX
R
R
1
O
HX
R
R
1
O
HO
R
R
R
1
O
R
2
OR
R
R
1
O
HO
T
s
R
R
1
O
H
O
COR
2
R
R
1
O
HO
2
P(OR
2
)
2
R
R
1
O
HS
R
R
R
1
ORS
SR
R
R
1
O
R
2
R
3
R
R
1
O
HS
e
R
R
R
1
O
R
2
H
R
R
1
O
AcO
SeR
R
R
1
O
CN
S
S
e
R
R
R
1
OHO
OH
R
R
1
O
HN
R
2
R
3
R
R
1
O
H
SiR
3
R
R
1
O
HB
R
2
R
R
1
O
HO
H
R
R
1
O
HP
O
(
O
R
)
2
Some Reactions of
α?
Diazocarbonyl Compounds
Adapted from McKervey,
Chem. Rev.
1994
1090
Acid Catalyzed Reactions of Diazo Compounds
Review: Smith, Tet. 1981 2407
H
3
C
CH
3
O
NN
acid
H
3
C
CH
3
O
NN
Diazocarbonyl
Diazonium
Common acids include BF
3
?OEt
2
, HBF
4
, TFA, etc.
Mechanism of activation is unclear for both Lewis and protic acids; activation may occur by protonation on C or O
Acid-Catalyzed Reactions
OMe
O
N
2
O
-25°C, 2 min
(82%)
O
TFA
Gibberrellic Acid
Mander,
JACS
1980
6626
Cl
3
COCO
OCOCCl
3
HO
O
N
2
TFA, -20°C
(96%)
O
O
"Having become familiar with the peculiarities of diazoketone chemistry while preparing [other compounds] (and, I might add, inured to handling uncomfortably large quantites of diazomethane), it occurred to us that we might be able to substitute a diazo group for bromine."
Lewis Mander
Mander,
Chem
.
Comm
.
1971
773
Tet
.,
1991
134
26B-02
12/20/99
4:05 PM
Chem 206
Synthetic Applications of
αααα
-Diazocarbonyl Derivatives
Krista Beaver
Smith,
TL
1975
4225
Me
Me
O
N
2
BF
3
?OEt
2
O
Me
Me
(40 - 65%)
O
Me
Me
Lindlar's cat.
(100%)
Smith's cyclopentenone annulation:
More Acid Catalysis
Olefins as nucleophiles:
Me
O
N
2
Me
O
Me
Me
Cl
HCl
(100%)
Mander
J
asmone
O
R
N
2
O
R
O
OBF
3
N
2
O
O
R
BF
3
?OEt
2
Mander,
Aust. J. Chem.
1979
1975
N
2
O
Rearrangement:Polyene cyclizations:
O
MeMe
O
MeMe
46%
12%
+
Smith,
JACS
1981
2009
BF
3
?OEt
2
EtO
H
O
N
2
SnCl
2
EtO
O
R'
O
O
Me
Me
Me
O
O
Me
Me
Me
O
CO
2
Et
RH
O
BF
3
?OEt
2
Roskamp,
JOC
1989
3258
Ghosh, Chem. Comm.
1988
1421
+
EtO
2
CCH
N
2
(81%)
O
Me
Me
Me
Me
Br
Aplysin
(50 - 90%)
ββββ
-Ketoester synthesis:
Ring expansion:
Yields are good when R is aliphatic; moderate when aromatic
TESO
O
R
H
BF
3
?OEt
2
BnO
2
CCH
N
2
(53 - 87%)
O
RO
H
CO
2
Et
Angle,
TL
1998
3119
N
S
N
2
O
O
O
Me
Me
CO
2
CH
2
CCl
3
H
N
S
O
O
O
Me
Me
CO
2
CH
2
CCl
3
H
John and Thomas
TL
1978
995
ROH, BF
3
?OEt
2
RO
">60%"
Thiols also work well
TL
1998
8195
Diastereoselectivity increases with size of R; independent of Lewis acid or protecting group
diastereoselection 3:1 - 20:1
Substitution:
Tetrahydrofuran Synthesis:
26B-03
12/20/99
4:14 PM
Chem 206
Synthetic Applications of
αααα
-Diazocarbonyl Derivatives
Krista Beaver
Substitution Reactions
N
S
H
2
NO
O
O
Me
Me
COOH
H
NaNO
2
, Br
2
N
S
O
O
O
Me
Me
COOH
H
Br
Br
Kapur and Fasel,
TL
1985
3875
Synthesis of
αααα
-substituted chiral acids:
Me
COOH
H
2
NH
Me
N
2
H
O
OH
O
Me
H
O
Nu
-
Me
COOH
Nu
H
Ingold,
Nature
1950
179
(90%)
Nu = Br, Cl, F
Displacement occurs with retention of stereochemistry
For other examples, see McKervey, Chem. Rev.
1994
1091
Deamination:
N
S
O
O
O
Me
Me
COOH
H
Mg
Reaction with Boranes
BH
3
B
3
EtO
2
CCHN
2
, then D
2
O
CO
2
Et
DH
(97%, 100% d
1
)
O
N
2
Bu
3
B
OBBu
2
Bu
n
-BuLi, t
hen MeI
O
BuMe
Hooz,
JACS
1969
6195
Wojtkowski,
JOC
1971
1790
(61%)
Base-Induced Reactions
R
Li
O
N
2
R
O
N
2
R
2
OH
R
1
R
1
R
2
O
Pellicciari,
JCS Perkins I
1985
493
Rapoport,
JOC
1985
5223
N
2
Li
CO
2
Et
CO
2
Et
N
2
O
+
O
O
CO
2
Et
O
O
Rh
2
(OAc)
4
100%
+
Aldol-type reactions:Ester alkylation:Gilbert-Seyferth Reagent:
N
2
H
(MeO)
2
OP
R
1
R
2
O
KO
t-
Bu
R
1
R
2
+
Seyferth,
JOC
1971
1379
Gilbert,
JOC
1982
1837
LDA is the optimal base for lithiation
HO
N
2
O
O
MeO
O
CF
3
COOH
Mechanism?
26B-04
12/20/99
4:24 PM
Chem 206
Synthetic Applications of
αααα
-Diazocarbonyl Derivatives
Krista Beaver
O
O
Carbenoid Reactions: The Catalysts
Rh
Rh
O
O
O
O
O
O
Me
Me
Me
Me
L
L
Rhodium Acetate
Decomposition can be catalyzed by:
Heat or light
Transition metals, including Cu
II
, Rh
II
, Mn
II
, Fe
II
, Co
II
, Ni
0
, Ni
II
, Zn
II
, Mo
II
, Ru
II
, Ru
III
, Pd
III
Most common catalysts:
Copper (I):Rhodium (II):
Rhodium Carboxylates:
Rhodium Carboxamidates:
CuOTf, Cu(OTf)
2
, CuSO
4
, CuX, Cu(acac)
2
Much milder catalyst than Cu (introduced in 1973 by Tessié)
Structures generally contain bridging ligands and contain a Rh-Rh single bond
Rh
2
(OAc)
4
, Rh
2
(tfa)
4
, Rh
2
(oct)
4
,
Rh
2
(tpa)
4
, Rh
2
(pfb)
4
Rh
2
(acm)
4
, Rh
2
(cap)
4
,
Rh
2
(CF
3
CF
2
CF
2
CONH)
4
Reaction pathways are highly sensitive to steric and electronic effects
Review: Padwa,
ACIEE
1994
1797
L
n
MC
R
2
N
2
L
n
MC
R
2
B
ML
n
B
S:
N
2
N
2
R
2
C
Transition M
etal Catalyzed Diazo Decomposition
L
n
M
SCR
2
Doyle,
Chem
.
Rev
.
1986
919
Ligand Effects: Selectivity
O
N
2
O
O
O
O
O
Rh
2
(OAc)
4
90:10
Rh
2
(pfb)
4
38:61
Rh
2
(acam)
4
100:0
H
3
C
N
2
CH
3
O
CH
3
H
3
C
O
H
3
CC
H
3
O
Rh
2
(OAc)
4
44:56
Rh
2
(pfb)
4
0:100
Rh
2
(cap)
4
100:0
+
+
Rh(II
)
Rh(II
)
Doyle,
JACS
1993
958
Padwa and Doyle,
JACS
1993
8669
Methine versus methyl:
Cyclopropanation versus C-H Insertion:
H
3
C
O
H
3
COC
H
3
COC
Dipolar Cycloaddition versus C-H insertion:
HC
H
3
N
2
O
O
Rh(II
)
EE
O
O
Ar
CH
3
EE
O
O
CH
3
+
Rh
2
(OAc)
4
75:25
Rh
2
(pfb)
4
0:100
Rh
2
(cap)
4
100:0
Padwa and Moody,
Tet
.
1993
5109
More Competition Experiments
These results imply that the metal is involved in the transition state
Reaction pathways can be controlled by tuning the ligands on the metal
Conclusions:
26B-05
12/20/99
4:33 PM
Chem 206
Synthetic Applications of
αααα
-Diazocarbonyl Derivatives
Krista Beaver
Generalizations: Sigma Bond InsertionOnly intramolecular processes are generally useful
? When X is a heteroatom, insertion is facile
Order of selectivity: methine > methylene > methyl 5 - membered ring formation is favored in general
? When X is carbon:
R
N
2
OEt
O
X-H
catalyst
R
OEt
O
XH
Reviews
O-H Insertion: Moody
Tet.
1995
10811
C-H Insertion: Sulikowski
Tet. Asymm.
1998
3145
O-H Insertion Reactions
CO
2
Me
OH
OMEM
MeO
2
CC
O
2
Me
N
2
Rh
2
(OAc)
4
CO
2
Me
O
OMEM
CO
2
Me
CO
2
Me
COOH
O
OH
COOH
Chorismic Acid
Ganem,
JACS
1982
6787
O
AcO
Me
H
O
H
TMSO
H
H
O
Me
O
AcO
Me
H
TMSO
H
H
O
Me
EtO
2
C
P
O(OEt)
2
N
2
Rh
2
(OAc)
4
, then NaH
(75%, 2 steps)
Fuchs,
TL
1994
7163
(75%)
CO
2
Et
"the most complex alkoxyphosphonate yet described"
Tandem O-H Insertion/Claisen Rearrangement
Me
OMe
O
N
2
O
Me
OH
+
Me
OCH
3
HO
O
O
Me
Wood,
JACS
1997
9641
98% ee
95% ee
Rh
2
(OAc)
4
O
O
H
Me
CO
2
Me
Me
[3,3]
O
O
H
Me
CO
2
Me
Me
slow
fast
(66%)
Wood,
JACS
1999
, in press
Me
OCH
3
HO
O
O
Me
Me
OMe
O
O
O
Me
PhH,
?
, 20 min
O
Me
HO
CO
2
Me
Me
PhH,
?
, 18 hrs
Z-Enol Transition State
E-Enol Transition State
47% ee
(75%)
The opposite enantiomer is
observed!
Merck Thienamycin Process
NH
H
Me
OH
H
N
2
O
O
ON
O
2
O
Rh
2
(oct)
4
N
H
Me
OH
H
O
OH
CO
2
p
-NB
PhH, 80 °C
100%
N
H
OH
H
O
S
CO
2
NH
3
Salzmann,
JACS
1980
6161
Thienamycin
26B-06
12/20/99
4:39 PM
Chem 206
Synthetic Applications of
αααα
-Diazocarbonyl Derivatives
Krista Beaver
C-H Insertion: Reactions
Ph
N
N
2
O
S
CO
2
Me
Me
Me
N
S
Ph
H
H
O
CO
2
Me MeMe
hv
Me
AcO
Me
H
H
N
2
O
OAc
Me
Me
Me
H
H
AcO
Me
OAc
O
Rh
2
(OAc)
4
Corey,
JACS
1965
2518
Wenkert,
JOC
1982
3243
(59%)
Rh
2
(OAc)
4
AcO
H
3
CO
O
N
2
AcO
H
3
CO
AcO
H
3
CO
O
O
+
(65%)
Diastereoselection > 99:1
Adams,
JACS
1994
3296
BnO
O
N
2
O
BnO
Rh
2
(
5R
-MEPY)
4
O
O
BnOH
2
C
OBn
97% ee
O
O
BnOH
2
C
OBn
50% ee
Diastereoselection 93:7
Doyle,
JACS
1994
4507
+
For a review of catalytic enantioselective carbene reactions, see:
Doyle,
Chem
.
Rev
.
1998
911
Generalizations: Cyclopropanation
R
N
2
OEt
O
catalyst
R
OEt
O
R
2
R
1
R
1
R
2
+
Electron rich olefins work bestBoth concerted asynchronous and stepwise mechanisms have been proposedCyclopropanes can participate in tandem reactions
Reviews:
Davies,
Ald
.
Acta
.
1997
107
Davies,
Tet
.
1993
5203
For subsequent reactions: Calter, Evening Seminar 1992
Cyclopropanation Followed by Rearrangement
Rh
2
(oct)
4
MeO
2
C
N
2
OEt
H
CO
2
Me
OEt
EtO
CO
2
Me
Davies,
JOC
1992
4309;
TL
1992
453
TBSO
Me
O
O
TBSO
O
Me
O H
TBSO
O
Me
O H
Et
2
AlCl
(80%)
TBSO
O
Me
O
O
O
OH
Me
HO
CO
2
Me
H
Antheridic Acid
Corey,
JACS
1985
5574
Cu(TBS)
2
(84%)
(87%)
Et
2
AlCl
(88%)
N
2
26B-07
12/20/99
4:46 PM
Chem 206
Synthetic Applications of
αααα
-Diazocarbonyl Derivatives
Krista Beaver
H
Davies,
TL
1994
8939
More Cyclopropanation
NH
NH
N
O
O
DMB
N
2
Rh
2
(OAc)
4
pinacolone
120°C
NH
NH
N
O
O
DMB
NH
NH
N
O
DMB
Wood,
JACS
1997
9461
Rh
2
(TBSP)
4
Ph
CO
2
Me
N
2
Me
Ph CO
2
Me
90% ee
Staurosporine
(62%)
+
Me
CO
2
Me
Ph
Me
(79%)
Corey,
TL
1994
5373
Ph
OMe
N
2
O
Rh
2
(
S
-TBSP)
4
94% ee
1. KMnO
4
, NaIO
4
2. Me
2
SO
4
, K
2
CO
3
,
acetone
Li
2
CuCnAr
2
CO
2
Me
CO
2
Me
Cl
Cl
1. 6N HCl,
?
2.
ClSO
3
H
Cl
Cl O +
Davies,
TL
1993
7243
(79%)
(97%, two steps)
(82%)
(84%)
H
CO
2
Me
Ph
Ph
H
CO
2
Me
CO
2
Me
Ph
Reaction with Aromatic Rings
? Discovered by Büchner (1893)
N
2
OEt
O
E
E
Büchner,
Liebigs Ann. Chem.
1893
214
Doering,
JACS
1956
5448
? Initial experiments gave poor selectivity, but transition metals help...
OCH
3
N
2
OEt
O
?
E
H
3
CO
+ 6 other products
N
2
OEt
O
E
H
3
CO
Rh (II)
+
E OCH
3
+
Tessié,
Chem. Comm.
1980
765
(35%)
(73%)
JOC
1981
873
hv
Büchner Reaction: Confertin Synthesis
AcO
Me
O
N
2Me
Me
AcO
Me
O
Rh
2
(mandalate)
4
Me
O
Me
OTBS
H
Me
Me
O
H
O
HH
Me
Confertin
McKervey,
Chem. Comm.
1988
1028
JCS Perkins I
1991
2565
26B-08
12/20/99
4:59 PM
Chem 206
Synthetic Applications of
αααα
-Diazocarbonyl Derivatives
Krista Beaver
Ylide Formation
R
N
2
OEt
O
R
2
X
catalyst
R
X
OEt
O
RR
X is generally S, O or N and can be sp
2
or sp
3
hybridized
Ylides often undergo sigmatropic rearrangements or cycloadditions
Reviews:
Barnes, Evening Seminar, March 16, 1993 Padwa,
Chem. Rev.
1991
263
Padwa,
Chem. Rev
.
1996
223
[2,3]-Sigmatropic rearrangement:Stevens Rearrangement ([1,2] alkyl shift):
R
2
N
N
2
R
1
O
Rh
2
(OAc)
4
N
O
R
1
R
2
N
O
R
2
R
1
West,
JACS
1993
1177
OMe
SPh
O
N
2
O
S
Ph
O
E
SPh
E
O
Rh
2
(OAc)
4
Acorenone B
Kido and Kato,
JCS
Perkins
1
1992
229
H
H
Dipolar Cycloadditions: Carbonyl Ylides
O
CO
2
Et
N
2
O
H
HH
OAc
Me
Me
HH
O
O
CO
2
Et
H
AcO
Me
Me
HH
O
CO
2
Et
O
Me
Me
AcO
H
Dauben,
JOC
1993
7635
O
R
O
MeO
2
C
N
2
TMSO
Rh
2
(OAc)
4
O
R
O
MeO
2
C
TMSO
O
R
O
MeO
2
C
Merck,
TL
1994
9185
TMSO
(66%)
Tigilane Skeleton
Zaragozic Acid Skeleton
Rh
2
(OAc)
4
(86%)
N
N
OMe
O
Me
O
N
2
O
Bz
N
Bz
O
N
MeO
2
C
O
Me
N
Bz
N
O
MeO
2
C
O
Me
H
H
Rh
2
(pfb)
4
N
N
O
Et
Me
CO
2
Me
O
N
N
O
Et
Me
CO
2
Me
O
O
N
OO
CO
2
Me
N
2
Et
N
Me
Rh
2
(OAc)
4
(95%)
Padwa,
JOC
1995
6258
Padwa,
JOC
1995
2704
Lysergic Acid Skeleton
Vindoline Skeleton
(93%)
26B-09
12/20/99
5:14 PM
Chem 206
Synthetic Applications of
αααα
-Diazocarbonyl Derivatives
Krista Beaver
Wolff Rearrangement
H
N
2
R
1
O
H
R
1
O
R
1
O
H
N
2
OMe
Me
O
OMe OMe
O
2
N
Ag
+
, H
2
O
COOH
OMe
Me
OMe OMe
O
2
N
Arndt-Eistert Homologation:
Evans,
JOC
1993
471
Wolff Rearrangement - [2+2] Cycloaddition
O
H
O
O
Me
TMS
N
2
H
Me
O
TMS
O
O
[2+2]
Me
TMS
O
Me
OE
SiO
2
Aphidicolin
O
O
MeH
O
Ireland,
JACS
1981
2446;
JOC
1984
1001
(60%)
R
R
Catalyst Glossary
Rh
2
(pfb)
4
Rh
2
(OAc)
4
Rh
2
(cap)
4
Rh
2
(MEPY)
4
Rh
2
(MEOX)
4
Rh
2
(MPPIM)
4
Rh
2
(MACIM)
4
Rh
2
(
S
-TBSP)
4
Rh
2
(
S
-DOSP)
4
Rh
2
(oct)
4
Rh
2
(tfa)
4
Rh
2
(tpa)
4
Rh
2
(acam)
4
or
Rh
2
(acm)
4
Rhodium Perfluorobutyrate
CF
3
CF
2
CF
2
CO
2
Rhodium Acetate
CH
3
CO
2
Rhodium Trifluoroacetate
CF
3
CO
2
Rhodium Triphenylacetate
Ph
3
CC
O
2
Rhodium Octanoate
CH
3
(CH
2
)
6
CO
2
Rhodium Acetamidate
CH
3
CONH
Rhodium Caprolactamate
N
M
O
M
Rh
2
(tfm)
4
NH
O
CO
2
Me
N
NH
O
CO
2
Me
N
NH
O
CO
2
Me
O
NH
O
CO
2
Me
O
Ph
Rhodium Trifluoroacetamidate Copper
t
-Butylsalicylaldimine
N
t
-Bu
OH
CF
3
CONH
Cu(TBS)
2
Ac
N
CO
2
TsN
CO
2
(CH
2
)
11
CH
3
O
O
Rh
Rh
O
O
O
O
O
O
R
R
R
R
All ligands on Rhodium are bridging
through the carboxylate or the amide
26B-10
12/20/99
5:22 PM