http://www.courses.fas.harvard.edu/~chem206/
R Me
O M O
H R R R
O
Me
OM
Chem 206D. A. Evans
Matthew D. Shair Wednesday, November 13, 2002
a73 Reading Assignment for this Week:
Carey & Sundberg: Part A; Chapter 7Carbanions & Other Nucleophilic Carbon Species
The Aldol Reaction–1
Carey & Sundberg: Part B; Chapter 2Reactions of Carbon Nucleophiles with Carbonyl Compounds
Chemistry 206
Advanced Organic Chemistry
Lecture Number 24
The Aldol Reaction–1
a73 Other Useful References
a73 Polyketide Biosynthesis
a73 Historical Perspective on the Aldol Reaction
a73 Aldol Diastereoselectivity
a73 Enolate Diastereoface Selectivity
a73 Absolute Control in the Aldol Process
Evans, D. A., J. V. Nelson, et al. (1982). “Stereoselective Aldol Condensations.” Top. Stereochem. 13: 1.
Heathcock, C. H. (1984). The Aldol Addition Reaction. Asymmetric Synthesis. Stereodifferentiating Reactions, Part B. J. D. Morrison. New York, AP. 3: 111.
Oppolzer, W. (1987). “Camphor Derivatives as Chiral Auxiliaries in Asymmetric Synthesis.” Tetrahedron 43: 1969.
Heathcock, C. H. (1991). The Aldol Reaction: Acid and General Base Catalysis. Comprehensive Organic Synthesis. B. M. Trost and I. Fleming. Oxford,
Pergamon Press. 2: 133.
Heathcock, C. H. (1991). The Aldol Reaction: Group I and Group II Enolates. Comprehensive Organic Synthesis. B. M. Trost and I. Fleming. Oxford,
Pergamon Press. 2: 181.
Kim, B. M., S. F. Williams, et al. (1991). The Aldol Reaction: Group III Enolates. Comprehensive Organic Synthesis. B. M. Trost and I. Fleming. Oxford,
Pergamon Press. 2: 239.
Franklin, A. S. and I. Paterson (1994). “Recent Developments in Asymmetric Aldol Methodology.” Contemporary Organic Synthesis 1: 317-338.
Cowden, C. J. and I. Paterson (1997). “Asymmetric aldol reactions using boron enolates.” Org. React. (N.Y.) 51: 1-200.
Nelson, S. G. (1998). “Catalyzed enantioselective aldol additions of latent enolate equivalents.” Tetrahedron: Asymmetry 9(3): 357-389.
Mahrwald, R. (1999). “Diastereoselection in Lewis-acid-mediated aldol additions.” Chem. Rev. 99(5): 1095-1120.
Stereoselective Aldol Reactionsw in the Synthesis of Polyketide natural Products, I. Paterson et al. in Modern Carbonyl Chemistry, pp 249-297, J.
Otera, Ed. Wiley VCH, 2000 CCB Library
Ager, D. J., I. Prakash, et al. (1997). “Chiral oxazolidinones in asymmetric synthesis.” Aldrichimica Acta 30(1): 3-12
a73 Assigned Reading
O
Me
O
MeOEt
O
MeOH
O
MeMe
Me R OH
O
OH
Me
MeMeO
O
Me
OH
NMe2H
H
O
HO
Me
SR
O
O
Me
OH
SRR
O
R SR R SR
O
Me
O
R
O
Me
O
Me
OH
SR
H
H NMe2OH
Me
O
MeO Me
O
Me
OH
O
O
OHHOMe
Me Me
OH Me
O
OEt Me
O
Me
OH
Me
O
MeOEt
O
MeOH
OH
MeMe
MeHO OH
HHMe
Me Me
OH
OH Me
O
OEt Me
O
Me
OHMe
OH
OH
Me
OH
Me
O
Me Me
OH
Me
OH
Me
O
O
Me
OH
Me
OH
MeMe
O
Me
OH
Me
OH
OHMe
OOHOHOOHOH
OH
O
SR
Me
HO
O
C OSRH
Me
O O –
C OO
CMeH C SR
O –
C ORSMe
R SR
OH
Me
O
SR
OH
Me
OH
Me
O
R
O
Me
O
SRR
"Nature, it seems, is an organic chemist having some predilection for the aldol and related condensations."
J. W. Cornforth
D. A. Evans The Aldol Reaction: Polypropionate Biosynthesis Chem 206
Erythromycin Seco Acid
Retro-biosynthesis
Erythromycin A, R = OHErythromycin B, R = H
The overall acylation is stereospecific
The Acylation Event
The stepwise Option
Decarboxylation-Acylation could either be stepwise (Option A) or concerted (Option B).
Erythromycin Seco Acid
a54a54a54a54
a54– CO2
ReductionAcylation
Polypropionate Biosynthesis: The Elementary Steps
Reduction
The 7 Propionate Subunits
Acylation
– CO2
Recent overview: Staunton, Angew. Chem. Int. Edit. 1991, 30, 1302-1306
See Lecture 23; page 23-08 for first laboratory example
"That Outpost of Empire, Australia
Produces some Curious Mammalia
The Kangaroo Rat
The Blood-sucking Bat
and Aurthur J. Birch, inter alia."
erythronolide aglycon
NO
Me
O O
Me
O
Bn
N O
Me
OO
Me
O
Bn
O
HO
Me
SR
O
O
Me
OH
SRR
O
R SR
OR
Me
O
MeOEt
O
MeOH
OR
MeMe
Me H OH
R SR
O
Me
O
R
O
Me
O
Me
OH
SR
Me
OH
OH
Me
OH
Me
O
Me Me
HO OH
Me
OH
Me
O
O
Me
OH
Me
OH
MeMe
O
Me
OH
Me
OH
OH
Me
R SR
OH
Me
O
SR
OH
Me
OH
Me
O
R Sn(OTf)2
HO2C
OMe
Me
O
Me Me
OH
Me
OH
Me
OMe O
Me
Me MeMe
OMe
Me
OMe
Me
O
OHO2C O
Me
OMeMe
Me
OMe
Me
OHMe
O
O
Me
Me O O
OMeMe Me
OMe
Me
Me OH
HHH
OH
O
Me
Me
O
Me
O
OMe
Me
Me
O
Me
OMe
OHO2C O
Me
OMeMe
Me
OMe
Me
OHMe H
XC
O
Me
O
MeHR
O
OO
Me OMe
R–CHO
TiCl4
N
O
MeO
O
Bn OH
Me
R
O
O
Me
Me
OOBn
O
N
O Me
O
D. A. Evans Polypropionate Biosynthesis: A Laboratory Simulation Chem 206
a54a54a54a54
a54– CO2
ReductionAcylation
Polypropionate Biosynthesis: The Elementary Steps
Acylation
– CO2
Erythrolide B The 7 Propionate Subunits
Polypropionate & Polyacetate Biosynthesis: Develop a Laboratory Simulation
?
The Laboratory Mimic:
Aldol(–)
Cane, Celmer, Westley JACS 1983, 105, 3594
Reduction
Latter Stages of Lonomycin Biosynthesis
95:5 (85% yield)
EtN(iPr)2
93:7 (86% yield)
EtN(iPr)2
with Ratz, Huff, & Sheppard, JACS 1995, 117, 3448
See Lecture 23; page 23-08:
with M. Ennis JACS 1984, 106, 1154.
Dipropionyl Synthon
Rough correlation between enolate stucture & product stereochemistry for alkali and alkaline earth enolatesDuBois 1965-67:
Stereocontrol optimal for "large" X; the reaction is not general.
OMgBr
OMgBr
Ph O
MgBrOH
Ph
OMgX
Ph
H H
Ph
OMgX
H
O
Ph MgBr
O
O
Me
X
M
O M
X Me
R2CHO
Ph OH
O O
OH
Ph
Ph
OH OH
Ph
Ph
OH
O
MeX
O M
O M
i-PrMgBr
PhCHO
H3O+
R2CHO
H R
O
O
RH
CH
Me
X
H
M L
L
O
O
R2
OC
O
MH
L
L
R2
X
Me
H
O
X
Me
R
OH
OH
R
Me
X
O
Me
O
X
OH
R2
R2
OH
X
O
Me
OH
R
Me
X
O
O
X
Me
R
OH
Mukaiyama in Organic Reactions, 1982; Vol 28, pp 203-331
Chem 206The Aldol Reaction: Early ContributionsD. A. Evans
General Reviews of the Aldol Literature:
Evans in Topics in Stereochemistry, 1982; Vol 13, pp 1-115
Heathcock in Asymmetric Synthesis, 1984; Vol 3, pp 111-212
Comprehensive Organic Synthesis, 1991; Vol 2
Group I & II metal enolates: Heathcock; Chapter 1.6, pp 181
Group III metal enolates: Masamune; Chapter 1.7, pp 239
Transition metal enolates: Paterson; Chapter 1.9, pp 301
(Z) Enolate
(E) Enolate anti diastereomers
Control relative stereochemical relationships syn diastereomers
Zimmerman 1957:
Proposed chair-like geometry for the Ivanov Reaction
ratio, 75:25
? ?
Zimmerman recognized that diastereoselection should be a function of the relative sizes of the substituents on the carbonyl component.
He also speculated on the role that the metal center might play in controlling the process.
The only flaw in the study was that he failed to determine whether the aldoladducts were stable to the reaction conditions.
Zimmerman, J. Am. Chem. Soc 1956, 79, 1920
anti diastereomer
favored
?
syn diastereomer
?
Zimmerman-Traxler Model for (Z) Enolates
syn:anti
X = C6H5
X = CMe3
48 : 52M = Li
M = Li > 98 : 2
> 95 : 5M = MgBr
80 : 20M = Li
M = AlEt2 50 : 50
Heathcock 1977
DuBois 1972
House 1971
Ph
O
Me
Ph
OH
OH
Ph
Me
O
Ph
El
X Me
O
PhCHO
PhCHO
OH
R
Me
X
O
O
X
Me
R
OH
OBChx2
Ph
Me
MePh
OB-9-BBN
O
X
Me
R
OH
OH
R
Me
X
O
MO
MeH
X
9-BBN-Cl
Et3N
Et2O
H R
O
O
Ph Me
O
MeX
El
O
MeX
M
O M
X
Me
B–CM–C
R2
OH
X
O
Me
Me
O
X
OH
R2
B–OM–O
OC
O
BH
L
L
R2
X
Me
H
CH
Me
X
H
B L
L
O
O
R2
O M
O M
(t)BuS
Me
R2CHO
R2CHO
MeX
O BL2
Chem 206The Aldol Reaction: Boron EnolatesD. A. Evans
Evans et al. JACS 1979, 101, 6120-6123; JACS 1981, 103, 3099-3111
anti diastereomer
favored
?
syn diastereomer?
Why Boron?
syn:anti
X = C6H5
X = CMe3
48 : 52M = Li
M = Li > 98 : 2
> 95 : 5M = MgBr
80 : 20M = Li
M = AlEt2 50 : 50
Heathcock 1977
DuBois 1972
House 1971
disfavored
DuBois 1972M = BBu2 > 97 : 3
M = BBu2 > 97 : 3
> 97 : 3M = BBu2
M = Li 80 : 20X = Et
Yamamoto 1977
M = BBu2 33 : 67 (ether)
17 : 83 (pentane)M = BBu2
M = BCy(thex) 6 : 94 (CH2Cl2)
<5 : 95 (pentane)M = B(Cyp)2
1.9-2.2 ? 1.4-1.5 ? 1.5-1.6 ?2.0-2.2 ?To tighten up the transition state.Design TS where control can come
exclusively from metal center
Masamune, Tet. Lett 1979, 1665, 2225, 2229, 3937
Are (E) enolates intrinsically less diastereoselective?
Now that there are good methods for preparing (E) enolates,it appears that both enolate geometries are nearly equivalent.Dialkylboron chlorides (Brown)JACS. 1989, 111, 3441-3442.
J. Org. Chem. 1992, 57, 499-504. J. Org. Chem. 1992, 57, 2716-2721.
J. Org. Chem. 1992, 57, 3767-3772.
J. Org. Chem. 1993, 58, 147-153.
Chx2BCl
JACS. 1989, 111, 3441-3442.
~99% (E) 95% anti
~99% (Z) 98% syn
DIPEA
Et2O
It appears that there is not a great difference in aldol diastereoselectivity
Dissection of the Aldol Problem: Selection of one enantioface
antidiastereomers
syn diastereomers
Relevant stereochemical information could be included in either X or M
Control attack on the two enolate enantiofaces
El(+)
El(+)
Evans, Masamune, 1979-81
Evans/masamune, 1979-81
O B
O
R
N
O
R
Me
O
L L
B
LL
O
Me
RO N
O
R
O
O
NO Me
O
R R
O
N MeO
O Li Br-CH
2R R
MeR
NO
O O O B O
O
R
N
O
X
R R
R
H
Me2CHCHO
O
N Me
OR
O
BL2
O BL2O
R
MeNOO
O
N
R
O
R
Me
OH
H
ROB
RR
N
O
Me
O
R
O
O B OO
NO Me
R
R R
R
H
R
O
N MeO
O B
R R O
N
O
O
R Me
R
OH
O B O
O
R
N
O
Me
R R
R
H
OH
Me
RN
O
R O
O
O BO
R
NO R
Me
O
L L
RCHO
Bu2B-OTf Et3N
R
N
O
H O
Me
H
R
O B L
L
O
H
O
BO
L
L
H
R
H
Me
N
O
O H
R
O
O
N
R
O
R
X
OH OH
X
RN
OO
O
R
disfavored product diastereomer: The destabilizing interaction?
disfavored
favored
Model for Asymmetric Induction (unpublished)
??G? (273 K) ~ 2.6 kcal mol -1
How can we rationalize these data ?
The Alpha substituent, X, plays pivotal role in aldol diastereoselection
+
Substituent Ratio
> 300 : 1
60 : 1
1 : 1
X = Me
X = SMe
X = H
Result discovered but not predicted diastereoselection > 98%
The aldol reaction selects for the opposite enolate diastereoface
LDA
Face selectivity predicated on chelate organization
RCHO
Chelate organization precluded, therefore face selectivity uncertain
Imide Enolates: The problem of enolate face selectivity
J. Am. Chem. Soc 1981, 103, 212-2129
D. A. Evans The Aldol Reaction: Boron Imide Enolates Chem 206
O
N
O
O
Bn
R
El
O
Bn
N
O
OMe
Me
MeO N
O
Me
O
O
Bn
O
N
O OBn
OMe
O
O
NH
NH2
OBocHN
O
N3
Bn
O O
LiO2H
LiOH
LiOOH
LiOOH
OR'
O
R
El
El
R
O
N
Bn
O–C(O)OR'H
N
O
OPhH2C
O
BnMe
Me
O
Me
O
OHMeO
HN
O
O
Bn
N3
O
BocHN O
NH2
NH
O
O
OMe
OBnO
OH
LiOH
LiOOH
HN O
O
Bn
RCOSR
R
Bn
O
N O
Me
OOH
N
H
H
H H
H
OTBS
Et Me
O
O
OTIPS
OTES
O
O
O
Bn
O
O
OMe
N3
O OCMe3
N
O
Bn O
RCHO
Me3Al
Me(OMe)NHMe
NMe
O
O
O
Me
Ph
OMeMeO
LiSEt
Ti(OBn)4
OH
N
O
Me
OMe
Me
R
X
H
H
H H
H
OTBS
Et Me
O
O
OTIPS
OTES
O
Bn-SLi
O
O
OMe
N3
O OCMe3
OBn
MeO OMeO
Me SBn
R
Me
O
R
OP
Et3SiH
HOH/THF
M. Bilodeau, unpublished results
complete hydroytic selectivity possible
for recent examples see, J. Am. Chem. Soc 1992, 114, 9434-9453
R–metal
O-Protect
THF, 0 °C
90-94%
Damon, Tet. Lett. 1990, 31, 2849-2852
Trans-thioesterification:
Trans-esterification
(OF-4949 Synthesis) JACS 1989, 111, 1063
Transamination to Weinreb Amides (see Handout 23A)
(OF-4949 Synthesis) JACS1989, 111, 1063
90-93% yield
89% yield
Fukuyama, J. Am. Chem. Soc 1990, 112, 7050-7051
X = H
X = SEt
(Lepicidin Synthesis) J. Am. Chem. Soc 1993, 115, 4497-4513
97%
THF, 25 °C
96%
*5% Pd/CaCO3/PbO
Substrate Reagent Exo:EndoRatio
06 : 89
96 : 04
0 : 100
76 : 16
Exo:EndoRatioReagentSubstrate
Product distribution a function of attacking nucleophile (Tet. Lett. 1987, 28, 6141)
pKa 20
Imides may suffer attack at either of the two C=O functions (eq 1, eq 2)
endocyclic
* *
(2)
(1)R'O
–
*
exocyclic
R'O–
Imide Hydrolysis
D. A. Evans The Aldol Reaction: Imide Transformations Chem 206
RMH
RL
C
H
R
H
Me
O
OM
L
L
O
M O
C
H
Me
H
R
RMH
RL
L
L
?
?
O M
RL
RM
Me
O
Me
RM
RL
M
O
Me
RM
RL
M
R-CHO
Me
OH
RR L
RM
O
RL R
RM Me
OHO
O OH
MeRM
RRL
MeR1
O
Me
TBSO
TBSO
O
Me R3NRCHO
n-Bu2BOTf
tBuMe2Si Me
O
Me Me
O
tBuMe2Si
R
Me
OH
TBSO
Me
O
MeMe
Me
Me
Me Me
O
Me
TBSO
TBSO
O
Me
OH
Me
Me
Me
O
TBSO Me2CHCHO
TiCl4EtNiPr
2
TiCl4EtNiPr
2
Me2CHCHO
RCHO
RCHO
Me2CHCHO
TiCl4EtNiPr
2
R
OH
Me
R
O
TBSO
TBSO
Me
O
R1 R
Me
OH
Ph
Et
BnOCH2CH2
Me2CH
OH
Me
O
Me
TBSO
Me
Me
Me
Me
Me
Me
Me
Me
TBSO
Me
O
Me
OH
Diastereoselection: 95:5 (80-90%)Evans, JACS 1991, 113, 1047.
This system does not give a completely clean (Z) enolate 63:37 - 84:16
83:17 - 85:15
72:28
91:9 - 94:6
Bu
9-BBN
(-)-Ipc
(+)-IpcPaterson, McClure, Tet.Lett. 1987, 28, 1229.
L2BOTf
iPr2NEt
Enders ACIEE 1988, 27, 581. Diastereoselection = 96-98%
Bu2BOTf,
iPr2NEt
Examples:
General Reaction for Syn Aldols: M = B, Ti
D. A. Evans The Aldol Reaction: Syn Aldol Rxns of Chiral Ethyl Ketones Chem 206
L DiastereoselectionEvans, JACS 1991, 113, 1047.
RCHO
disfavored
favored
RCHO
The Transition States:
Evans, JACS 1991, 113, 1047. Diastereoselection: 99:1 (81%)
Masamune, JACS 1981, 103, 1566.
97:3
98:2
96:4
>99:<1
TBS = SiMe2tBu Diastereoselection
M = B, Ti
H
RL R
M
C
H
R
Me
H
O
OM
L
L
O
M O
C
H
H
Me
R
RLRM
H
L
L
?
?
O M
RL
RM Me
O
MeRM
RL
M
O M
RL
RM
Me R-CHO
R-CHO
O
RM
R L R
OH
Me
Me
OH
RR L
RM
O
O OH
MeRM
RRL
Me
Me
O
Me
TBSO
Me
Me
Me
O
Me
TBSO
Me
NO
Me
O O O
MeBn
RL R
RM Me
OHOO
MeRM
RL
M
CC CHRL
Me Me
HO M
OH
RRL
O
MeMe
Me Me
O
RL R
OH
RL
O
MeMe
BnO
O
MeMe
Bn Me
OOO
Me
NO
RCHO
RCHO
RCHO BnO
O
MeMe
R
OH
Me Me
O
BnO
Me
Me
O
Me
TBSO
Me
Me
OH
Me
Me
Me
O
Me
TBSO
Me
Me
OH
Me
Xq R
O O
Me Me
OH
BnO
O
MeMe
R
OH
Xq R
O O
Me
OH
Me
D. A. Evans The Aldol Reaction: Anti Aldol Rxns of Chiral Ethyl Ketones Chem 206
General Reaction for
Syn Aldols:
Examples:
96:4 (75%)
94:6 (90%)
Diastereoselectionmajor : Σ others
(Chx)2BCl
Et3N
iPrCHO
iPrCHO
(Chx)2BCl
Et3NGeneral Reaction for
Anti Aldols:
Evans, JACS 1991, 113, 1047.
RCHO
disfavored
favored
RCHO
The Transition States:
syn-anti diastereomer
anti-anti diastereomer
favored ?
(E) Enolate Facial Bias
disfavored ?
syn-anti diastereomer
D. A. Evans, H. P. Ng, J. S. Clark, D. L. Rieger Tetrahedron, 1992, 48, 2127-2142.
(Chx)2BCl
Et3N
iPrCHO
diastereoselection 84:16
However, the preceding precedent does not extend to these systems:
I. Patterson, J. M. Goodman, M. Isaka Tetrahedron Lett. 1989, 30, 7121-7124.
(Chx)2BClEt
3N
diastereoselection 95:5
An analogous case:
These enolates do not comply with steric analysis: → electronic effects?
Tetrahedron, 1992, 48, 2127-2142.
O
SCEt3Me
TfO–B
Me
Me
O BR*2
Me
SCEt3
O
SCEt3
BR*2
n-PrCHO
i-PrCHOt-BuCHO
c-C6H11CHO
PhCHO
n-PrCHO
i-PrCHOt-BuCHO
c-C6H11CHO
PhCHO
RCHO
RCHO
O
SCEt3
Me
BR*2
HO
R SCEt3
O
O
SCEt3R
HO
Me
Cl–B
Ph
Ph Me B
Me
Me
B
O
H
OMe
H
R
S
R
Me
Me
O
BO
Me
Me
S
Me
H
H
R
R
HO
Me
R
HO
Me
R SCEt3
O
O
SCEt3R
Me
HO
R
Me
HO
Reetz Tetrahedron Lett. 1986, 4721
See analogous study by Reetz
disfavored
Chem 206The Aldol Reaction: Metal-Centered ChiralityD. A. Evans
Yield, %
8281
7195
78
ee % (corrected)
87 (91)87 (92)
94 (98)86 (90)
88 (92)
+ RCHO -78 °C
3 → 10 h
ee % (corrected)
93 (98)95 (99)
96 (99.9)93 (98)
96 (99.8)
anti/syn
33:130:1
30:132:1
33:1
Yield, %
9185
9582
(71)
3 → 36 h
-78 °C+ RCHO
(95 % ee)
DIPEA
Masamune, Sato, Kim, Wollmann J. Am. Chem. Soc. 1986, 108, 8279-8281.
0 °C, 1 h
favored
Masamune, Sato, Kim, Wollmann J. Org. Chem. 1987, 52, 4831
Analogous Carbonyl Allylation
favored
+ RCHO syn:anti, 96:4
enantioselection: 95-97%
Chem 3D
MeCH2-
Me2CH-
(R)
(R)
Me2CH-
(R)
Br
Me
(X)
(X)
(R)
94 : 6Ph-
Yield
Ratiosyn:anti
86 %
91 %
68 %
98 : 2
>98 : 2
% ee
97
95
>98
83
91
% ee
82 %
84 %
Yield
Ph-
Br 91
96
% ee
2 : 98 65 %
86 %
chex-
Ratiosyn:anti
Yield
Ph- 2 : 98
Me
2 : 98Ph-
Yield
Ratiosyn:anti
chex-
93 %
82 %6 : 94
% ee
94
75
O
SCEt3
B
Me
R
R
N B N SS
O O O OBr
CF3
F3C CF3
CF3Ph Ph
RCHO
O
tBuO
Me
O
MePhS
R
R
S RH
RH
Me BOO
PhS Me
O B
*R2
Me
tBuO
O B
*R2
HO
Me
R SCEt3
O
Me Me
O
X
OtBu
O
O
SPhMe
RCHO
RCHO
RCHO
O
OtBuR
X
HO
R
OH
SPh
O
O
Me
OH
Me
R
Chem 206The Aldol Reaction: Metal-Centered ChiralityD. A. Evans, D. H. Ripin
favored
Masamune-Reetz Analogy:
a73 Metal-Based Chiral Auxilliary:
1
References:
(Corey) JACS. 1989,111, 5494 (Corey) JACS. 1990,112, 4977
(Corey) TL. 1991,32, 2857(Corey) TL. 1993,34, 1737.
1, Triethylamine
a73 Enolization:
1, Hunig's Base
Either enolate geometry possible with proper choice of base, solvent, and substrate.
A mechanistic proposal for enolization control is presented in paper
(Corey) JACS. 1989,111, 5494
enolization
a73 Chiral Acetate Aldol Reaction JACS 1989,111, 5494.
a73 Chiral Anti Aldol Reaction: JACS 1990,112, 4977; TL 1991,32, 2857.
a73 Chiral Syn Aldol Reaction JACS 1989,111, 5494.
Does this reagent perform in accord with the Masamune-Reetz analogy?Note: The sulfonamide nitrogens are pseudo-tetrahedral
enolization
enolization
PhCH3 / Hexane
-78?C
CH2Cl2 -78?C
Me3SiO
O
Me
Me
O
tBuMe2SiO
O M
RL
RO
Me
O
Me
RO
RL
M
Me2CHCHO
TiCl4EtNiPr
2
R-CHO
R-CHO
OH
Me
Ph
O
Me3SiO
tBuMe2SiO
O
Me
OH
Me
Me
O
RO
R L R
OH
Me
Me
OH
RR L
RO
O
NO
Me
O O O
Bn
Me
RCHO
RCHO
RCHO
TiCl4i-Pr
2NEt
Sn(OTf)2Et
3N
O
Li O
RL
O
Me
Ph
HH
R
O
Li O
L
Me
L
R
RL
BnO
O
MeMe
Sn(OTf)2
Et3N
RCHO
RCHO
RCHO
PhCHO
PhCHO BnO
O
MeMe
R
OH
Me
R
OO OH
Xq
Me
Me
Xq
OHO O
R
Me
OH
R
Me Me
O
BnO
Me
R
OO OH
Xq
Me
BnO
O
MeMe
R
OH
Tetrahedron Lett. 1988, 29, 585-588
Tetrahedron Lett. 1992, 33, 4233-4236
Tetrahedron Lett. 1989, 30, 7121-7124 anti-anti
anti-syn
syn-syn
(+)(IPC)2-OTf
i-Pr2NEt
(Chx)2BClEt
3N
JACS, 1990, 112, 866; Tetrahedron, 1992, 48, 2127-2142.
(Chx)2BClEt
3N
syn-syn
anti-syn
anti-anti
Complimentary aldol reactions may be obtained by changing metal as well as enolate geometry
Thorton, Tet. Let. 1990, 31, 6001
Chelation possible for R = Bn, TMSbut marginal for TBS
LDA
?
LDA
Nonchelate Reaction
Diastereoselection: 90:10
Masamune, JACS 1981, 103, 1566 (boron enolate) Diastereoselection: 99:1
Evans, JACS 1991, 113, 1047 (titanium enolate)
D. A. Evans The Aldol Reaction: Chelate vs Steric Control Chem 206
Reference Rxn
Chelate-OrganizedVariant
chiral reagent needed
Paterson & co-workers