http://www.courses.fas.harvard.edu/~chem206/
1
1
Me
OH
Me
2
O
O
Me
Me
Ph Me
Me
O
Me
Me
MeO
O
Me
MePh
Me
HO
3
MeHN
R
O
Me
H
Me
H
H
Chem 206D. A. Evans
Matthew D. Shair Monday,November 25, 2002
Reading Assignment for this Week:
Ambiphilic Functional Groups–3: Hydrazone-Based Transformations
Relevant Background Reading
Chemistry 206
Advanced Organic Chemistry
Lecture Number 28
Ambiphilic Functional Groups–3
Hydrazone-Based Transformations
a73 Wolff-Kischner Reduction
a73 Wharton Rearrangement
a73 Eschenmoser-Tanabe Fragmentation
a73 Reduction of Tosyl Hydrazones: "The Alkene Walk"
a73 Tosyl Hydrazone-Based Fragment Coupling
a73 The Shapiro Reaction
a73 Bamford-Stevens Reaction
Hutchins, R. O. (1991). "Reduction of C=X to CH2 by Wolff-Kishner and Other Hydrazone Methods". Comprehensive Organic Synthesis. Trost and Fleming.
Oxford, Pergamon Press. 8: 327.
Shapiro, R. H. (1976). “Alkenes from Tosylhydrazones.” Org. React. (N.Y.) 23: 405.
Addlington, R. M. and A. G. M. Barrett (1983). “Recent Applications of the Shapiro Reaction.” Acc. Chem. Res. 16: 55.
Chamberlin, and Bloom (1990). “Lithioalkenes from arylsulphonyl-hydrazones.” Org. React. (N.Y.) 39: 1.
Bergbreiter, and Momongan (1991). "Hydrazone Anions". Comprehensive Organic Synthesis. Trost and Fleming. Oxford, Pergamon Press. 2: 503.
Cume Question, November, 2000
Sorensen and coworkers recently reported the synthesis of (–)-hispidospermidin (Sorensen
JACS. 2000, 122, 9556). The Shapiro Reaction, along with methodology developed by
Whitesell, was use in the construction of intermediate 3 from the indicated building blocks 1
and 2 (eq 1).
(eq 1)
(–)-hispidospermidin2,4,6-triisoproylbenzene-
sulfonyl hydrazine,
HCl, CH3CN, 75% IntermediateA
MgBr2, -78 °C
then add 255%
IntermediateB n-BuLi (2.05 equiv)Shapiro Reaction: Chamberlin, and Bloom. “Lithioalkenes from arylsulphonyl-hydrazones.” Org. Reactions 1990, 39: 1. (handout)
Wolff-Kishner & Related Reactions: Hutchins, (1991). "Reduction of C=X to
CH2 by Wolff-Kishner and Other Hydrazone Methods". Comprehensive Organic Synthesis. Trost and Fleming. Oxford, Pergamon Press. 8: 327. (in library)
R2C N N
H(RDS)*
–N2 R
2C
H
R2C
H
H
tBu
N N
iPr
H H
A C(+)
N N:–
HR
R
O iPr
HO PhH
THF
R H
N N:–
R
H
iPrN
N
tBu
iPrN
N
tBu
LiO H Ph
H
PhCHO
R H
N N:
R
A C(–)
tBu
N N
iPr
H
Me2N N
CH2
A C(–)
CH3CO2
Me Me
Me
O
O
RMe
H
HH
R
N
R'
O O
CH2Cl2
Me H
N NH
tBu
O
OCH3Me
O
OCH3
Me
Me
O
O
OCH3
Me
Me
N N H
tBu
O
OCH3
Me
Me
N N
tBu
H
H+, H2OA C(–)
A C(+) R2C N NH2 N NHR2C
A C(–)
A C(–)
OH
OH
RO–H
RO–H
Me2N N
R
NO2
R'
H
O
R'
NO2
R
H H
H
Me R
Me
MeMe
HO
N NHR2C
H
RO
A C(+)
Chem 206Hydrazone Transformations-1
Hydrazone Anions: A useful Reversed Polarity Equivalent
a20a20
(+)
(–)
(–)
n-BuLi, 0°C
2. H+/H2O
95% 1. n-BuLi
J. E. Baldwin, et al. JCS Chem. Comm. 1983, 1040.
1. n-BuLi, -78°C
J. E. Baldwin, et al. JCS Chem. Comm. 1984, 1095.
58%
Lassaletta, J-M, et al.Tet. Lett. 1992, 33, 3691.
(40-92%)
R=alkyl or arylR'=H or alkyl
+
1. O3; 2. DMS
For particulary hindered ketones: anhydrous hydrazine or formation of hydrazone under acid catalysis (hydrazine/hydrazine dihydrochloride), then basify.
Under these forcing conditions, saponification, epimerization, and methyl ether cleavage can occur.
Barton, D. H. R., Ives, D. A. J., and Thomas, B. R. J. Chem. Soc. 1955, 2056.
N2H4,NaOCH
2CH2OCH2CH2OH,(HOCH
2CH2)2O
Wolff-Kishner Reduction Procedures
reflux and then heat to 210°C
+
Mechanism
D. A. Evans, N. Finney
RT, ca. 24h
hydrolysis
Me Me
O
O
CO2CH3
O
O
O
OMe
O Me
O
Me
BrCH2 Me
Me
H
N N
H
Br Me
-B
Me Me
CHO
–N2
–HBr
BrCH2 Me
NNH
Me
W-K
–N2
Me
Me CH2
O
O
Me
O
O
Me
H
A C(–)
MeMe
Me
Me Me OH
MeMe
Me Me
Me
O
Me
O
Me Me
Me
Me
OO
N2H4
CH3OH, ?
R
R
R
NNH
R
O
O N
Me
Me
MeMe
HN
H
A C(+)
NH2NH2?H2O
N2H4
Me Me
Me
Me
OH
:B
OH
H
RRRR
OH
Me
Me
MeMe
–N2
Me Me
Me
Me
OH N NH
OH
Me
Me
MeMe
A
Chem 206Hydrazone Transformations-2
L. H. Zalkow, N. N. Girotra J. Org. Chem. 1964, 29, 1299.
1. LAH
2. H+/H2O
3. CrO3
Elimination of -Leaving Groups
D. H. Gusyafson, W. F. Erman J. Org. Chem. 1965, 30, 1665.
N2H4, H+
Wolff-Kishner
Wolff-Kishner
S. M. Kupchan JACS 1967, 89, 6327.
ca. 40%, 3:2 β:α 76%
Some procedural improvements:
G. Stork et al. JACS 1977, 99, 7067.
20%
For stable hydrazones, strongly basic conditions favor the ionic pathway.
–N2, H?
?
This example illustrates the 2 possible modes for the decomposition of A.
30%
The Wharton Rearrangement
C. Dupuy, J. L. Luche Tetrahedron Lett. 1989, 44, 3437.
KDA, KOtBu, etc.
D. A. Evans, N. Finney
radicalpathway polarpathway
TsNHNH2 LAH (xs)
THF, ?THF, ?
CHO
N NHTs
H
N N Ts
H
CH3
H
N NHTs
H
N N
–H
R
C
R
NNHTs
Me
H–
Me
N N
Ph
Ph
OR
B
RO
NH
Ts
NC
H
R
R
OAc
O
BH
O
R–H
R C
R
H
N NH
Ph
Ph
NN
MeR
Me
R C
R
H
N
B
NH
Ts
RO OR
–N2
C H
H
R
R
NaOAc?3H2O
Ph
Ph
NN
MeR
Me
N N
R
Chem 206Hydrazone Transformations-3
–
–
L. Caglioti, M. Magi Tetrahedron 1963, 19, 1127.
–Ts–
H+/H2O
Tosylhydrazones – Better Than Hydrazones
Tosylhydrazones are isolable, stable, and easily prepared.
The presence of the tosyl leaving group strongly biases the system towards polar reaction pathways under hydridic reducing conditions.
Further Refinements
Very mild reduction with NaBH3CN under slightly acidic conditions (pH 4-5).
No reduction in the absence of acid; carbonyl, nitro, nitrile FGs unaffected.
Aromatic, sterically hindered carbonyls very poor substrates.
NaBH3CN, CH3CO2H 94%
R. O. Hutchins, et al. JACS 1973, 95, 3662.
59%
G. W. Kabalka, et al. J. Org. Chem. 1975, 40, 1834.
–
+
-stilbene
LAH
A. R. Chamberlin, et al. Tetrahedron Lett. 1991, 32, 1691.
Another Interesting Leaving Group
D. A. Evans, N. Finney
NNH
NaBD3CN
Me
TsNHN
N HNH
Ts
NaBH3CN
NNH
Ts
H
H-
+
CH3
O O
O
H
N TsN
CH3
O
O
CH3
Ph
N
NH2
O
PhN
N
H
CH3
–N2
CH3
N
O
N Ph
H
NO
CH3
N
H
TsH
CH3
O
Ph CH2
H3C CHO
?
O S
O
Ar
Me
NNHTs
Me
Me Me
Me O
Me
O
Me
Me
H D
Me
H
Me
Me Me
Me
Chem 206Hydrazone Transformations-4
+
+
+
94%
HOAc
Et2O, 0°C
A. Eschenmoser, et al. Helv. Chem. Acta 1967, 50, 708.
TsNHNH2, AcOH
+
The Eschenmoser–Tanabe Fragmentation
CH2Cl2, RT
A. Eschenmoser, et al. Helv. Chem. Acta 1967, 50, 2108.
:
+
68%
D. A. Evans
Tosylhydrazone Reductions: The Alkene Walk
C. Djerassi, et al. JACS 1976, 98, 2275.
16 cases reported: Hutchins, et al. JOC 1975, 40, 923
84%
81%
This has been developed into a reliable reduction
base
O
H
H
MeO
AcO
Me
O
CO2Et
N
H
H
MeO
AcO
Me
H N
Ts
H
–HSO2Ts
–OAc
[H]
AcO
MeO
H
H Me
H
CO2Et
H
N
H
H
MeO
AcO
Me
N H
RCH2 OH
NO2
SO2–NHNH2
OH
OH
OMe
MeO
Bu
OH
Me N
O
OH
EtO2CN NCO2Et
Ph3P, –30 °C
a71
RCH2 H
RCH2 N S
O
O
Ar
NH2
Bu
H
Me N
O
Me
OMe
MeO
RCH2
RCH2 N N–H
Ina71
a71
Me
S
O
O–
Ar
Chem 206Hydrazone Transformations-5
Sulfonylhydrazone Reductions: Alcohol Deoxygenation
~0 °C
80%
86%
86%
The intervention of radicals has been implicated (again):
10 cases reported: A. Myers, et al. JACS 1997, 119, 8572.
D. A. Evans, N. Finney
Compactin,
Wendler, N. L., et al. Tet. Lett. 1982, 23, 5501.
1. NH2NHTs, THF, 25°C
Alkene Walk: Syntheses
1. NH2NHTs, THF, 25°C
2. CB
3. NaOAc?3H2O
(60%)
Topiramate, Maryanoff, B. E., et al. Tet. Lett. 1992, 33, 5009.
The stereochemical course of the hydrazone reduction may be stereospecifically transferred via the 1, 3-rearrangement
(Mitsunobo Reaction)Org Rxns Volume 29
2. Catecholborane3. NaOAc?3H
2O
R H
N N TBS
Ts
R H
O
R' Li
R R'
LiN N TBS
Ts
R R'
R R'
N NH O CHO
O
O
O
OMe
Me
Me
Me
R' Li AcOH
CF3CH2OH A
RO Ph
Me
MeRO Me
N NHSO2AR
H
Ph
Me
LI
HEt
Li
H
Me
Li
Me
H
Me CHO
Me
H
Me H
Et
Li
H
Me CHO
Me
H
Me
Me
Li
Me
H
Bu
Bu
OHHO
OHHO
Me
Me
MeO OMe
MeO OMe
Me
ROBu
Bu
Me
Me
I
OMeMeO
Bu
MeO OMe
Me
RO
BuNN
TBS
Ts
O
O
O
O
OMe
Me
Me
Me
NN
SO2Ar
TBS
Me
Li
Me
H
RLi
Me
Me
H
Me H
Et
CH3
O
O
O
O
OMe
Me
Me
Me
H
Me
Et
Me
Me
H
Me H
Me
Et
O
O
O
O
OMe
Me
Me
Me
H
Et
Me
O
O
O
O
OMe
Me
Me
Me
N
Me
Me
H
N
H
D. A. Evans, N. Finney Chem 206Hydrazone Transformations-5
Tosylhydrazone-Based Fragment Coupling
TBS = t-BuMe2Si–
–78 °C
–78 → rt
The monoalkyl azene A decomposes via a radical pathway
95%
16 cases reported: A. G. Myers etal. JACS, 1998, 120, 8891.
50:50 79%
<5:95
1) H2NNHTs
2) Et3N, TBSOTf
3) RLi
Ratio Z:E
81%
Yield
Stereoselective Construction of Trisubstituted Olefins
(Z)
4) AcOH, F3CCH2OH
(as above)
82%, >20:1
90%, ca. 2:1
(as above)
(E)
Cylindrocyclophane-F
t-BuLi (1.8 eq.)ether, -78 °C
(73%)
A Complex Application: A. Smith etal. JACS 1999, 121, 7423
A. G. Myers, P. J. Kukkola JACS, 1990, 112, 8208.
nBuLi nBuLi
nBuLi
R R’
N NHTs R R’
BuLi
Me
O
Me Me
Me Me
Me
O
Me
Me
O
Me
HMe Me
H
O
O
N
NHTs
N N Li
SO2Ar
N N Li
Li
MeO NNHTs
Me
H
Me C5H11
NTrisHN
O
OMeMe
Me CO2Et
O
S
O
O
NR
H Li
S NR
O
O
Me
Me
Me
SO2
Me
Me
Me
N N Li
SO2Ar
Li
THF
BuLi
EtO2C
Me
Me
Me O
OMeMe
O
H
Me
MeH
Me
O
C5H11
Li
Li
C5H11
H
Me
MeO
CO2EtMe
Me C5H11
LiGeneral Reviews:Trost, Ed., Comprehensive Organic Synthesis 1992, Vol 6, Chapters 4.3 .
Shapiro, Organic Reactions 1976, Vol 23, pp 405-507.
Trost, Ed., Comprehensive Organic Synthesis 1992, Vol 6, Chapters 4.6.
the Triisopropylsulfonyl (Trisyl) group is used (Roberts Tet. Let. 1981, 22, 4895). Trisyl =
(5 %)(95 %)
1. TsNHNH2
2. LDA
via trianion
via dianion
2. LDA
1. TsNHNH2
2. K2CO3, ?
1. TsNHNH2
Bond J. Org. Chem. 1978, 43, 154.
In THF solution regiochemical ratios generally reflect the starting hydrazone geometries
Grieco J. Org. Chem. 1977, 42, 1717.
Nemoto et. al. JCS, Perkin Trans. 1 1985, 927.
80 %
nBuLi, THF
65 %
2. LDA
1. TsNHNH2
Deprotonation of the monoanion occurs predominantly at the kinetically more acidic site giving after elimination the less substituted alkene product.
(100 %)
1. TsNHNH2
2. MeLi, Et2O
(2 %)(98 %)
+2. MeLi, Et
2O
1. TsNHNH2Regiochemistry
–TsLi
Mechanism:
+ N2
2. Quench
1. Strong Base
Chem 206D. A. Evans The Shapiro Reaction-1
(E):(Z) = 4:1
TMEDA/hexane
+
4 : 1
Side Reaction
ClN
NHTris
C6H13
OHR’R
SiMe3
C6H13
R’ R
O
Me3SiCl
RCH2Br
Li Cl
Br+
C6H13
Li
CH2R
C6H13
C6H13
Br
CO2
Me2NCHO
C6H13
CO2H
CHO
C6H13
N N
Me
HPh
TBS
Ts
O
O
Me
Me
H
H
O
O
O
O
O
O
N N(TBS)Ts
Li H
Me
Et
N
H
H N
Ts
TBS
Ph C4H9
Me
Me
MeMe
NNHTris
Me
HO
Me
MeMe
HO
Me
Me Me
Me
Me Me
OH
MeOH
HO
Me Me
Me
MeMe
Me
Me Me
Me
NNHTs
OMeMe SMe
Me OMe
O
CO2Me
H NH2N
Ph
H
CO2Me
N
OMeMe
N
Ph H
CO2Me
OMeMe
BuLi
-N2
RCHO
H
H
Me
Me
O
O
N N
Me
C4H9Ph
H
H
O
O
O
O
O Et
Me
H
HO
Li
Me Me
Me
C4H9
Ph
Me
Myers, J. Am. Chem. Soc. 1990, 112, 8208
>20:1 (E):(Z)
81 %
+
2. HOAc
(E):(Z) = 12:1
-"TsTBS"1. nBuLi
Aphidicolin
van Tamelen J. Am. Chem. Soc. 1983, 105, 142.
82 %
2. nBuLi, TMEDA
1. TsNHNH2, TsOH
Applications
The Shapiro Reaction-2D. A. Evans Chem 206
Trapping of the intermediate alkenyllithium
TMEDA/hexane
75 %
loroxanthin Baütikofer Helv. Chim. Acta. 1983, 66, 1148
BusLi
TMEDA/hexane-78°C
0°C
82 %
Bloom Tet Lett. 1984, 25, 4901
Carbonyl Transposition
1. 2.1 equiv. nBuLi
2. MeSSMe
TMEDA/THF 2 eq. HgCl2
82 %
Nakai Chem. Lett. 1980, 1099
Shapiro alternatives
2.7 eq. LDA
0°C THF
- styrene
(Juvabione) Evans J. Am. Chem. Soc. 1980, 102, 774
3. 1 3quiv BuLiwarm
Me
HO Br
Me
N
NHEtO
2C Me
O
Me
N
NEtO
2C
HBr
H
Me
N
NEtO
2C
H
H
Me
N
NHEtO
2C
1
1
Me
OH
Me
Me Me
O
H2N N
SO2Ar
H
Me Me
N
N SO2ArH
Me Me
Li
2
O
OMe
MePh
MeMe
O
N N
Me Me
N
N SLi
Li
Ar
O
O
Me
Me
MeO
OMe
MePh
Me
HO
Me Me
N
N Li
3
MeHN
R
O
Me
H
Me
HH
S Ar
O
O
Me Me
Li
Me
H
Br
H
O
H2N–NHCO2Et
Me Me
MgBr
Br
H3O+
Me
Me
MeO
OMe
MePh
Me
HO
2
O
OMe
MePh
MeO
Me
Mg
XX
3
The Shapiro Reaction-ApplicationsD. A. Evans Chem 206
A Recent Aplication of the Shapiro Reaction
Cume Question, November, 2000
Sorensen and coworkers recently reported the synthesis of (–)-hispidospermidin (Sorensen JACS.
2000, 122, 9556). The Shapiro Reaction, along with methodology developed by Whitesell, was use
in the construction of intermediate 3 from the indicated building blocks 1 and 2 (eq 1).
(eq 1)
(–)-hispidospermidin2,4,6-triisoproylbenzene-
sulfonyl hydrazine,
HCl, CH3CN, 75% Intermediate
A
MgBr2, -78 °C
then add 255%
IntermediateB n-BuLi (2.05 equiv)
n-BuLi (2.05 equiv)
Part A (8 points). Provide a mechanism for the Shapiro Reaction of 1 to intermediate B in the space
below. Feel free to use a simplified analog of 1 such as 2,2-dimethylcyclopentanone to answer this
question.
Part B (7 points). Provide a mechanism for the transformation of intermediate B to the illustrated
product 3. Use 3-dimensional representations to illustrate the stereochemical aspects of this
individual step.
MgBr2, -78 °C
then add 2
Front (Re) face of C=Oblocked by Aryl moiety
Back(Si) face of C=Oattacked by Nu
(eq 1)
Mattox-Kendall Dehydrohalogenation (Paquette, Reagents, Vol 5, p 3509)
AOAc, heat
Problem: The syn relationship between Br and H renders the direct dehydrohalogenation with base
unfavorable (relative to other potential reactions. Solution; proceed via the hydrazone.
AOAc, heat
tautomerization
MeMe
Me N NHTs
MeMe
Me N NHTs
MeMe
Me
Me
Me
CH2NaOMe, diglyme
55%
ca. 180 °C
45%
CH3Li, Et2O, 0 °C quantitative
CH3
NNHTs
R R'
N NHTs
R R'
N NTs
R'R
CH3
NNHTs
CH3
?
CH3
CH3
CH3
R R'
N
N
CH3
R R'
N NNHX
N N
Ph
BnTMS
Ha Hb
R'R
MeMe
Me
TMS Bn
TMS Bn
R
Ha
R'
Hb
Ha
Hb
R'R
D. A. Evans Chem 206
base
–
products
–
+:
R. H. Shapiro Org. React. 1976, 23, 405.
:
An Alternate Decomposition Pathway for Tosyl Hydrazones
Bamford-Stevens vs. Shapiro
NaOCH3, NMP, ? 63% 27%
4% trace
2 eq. BuLi, 0 °C
98%
The Bamford-Stevens Reaction
1,2 Ha
1,2 Hb
66% (4:1 E:Z)
T. K. Sarkar, et al. JCS Chem. Comm. 1992, 1184.
PhCH3, 145°C
Directed Bamford-Stevens
PhCH3, 145°C
Rh2(OAc)4
66% (14:86 E:Z)