Chemistry 206
Advanced Organic Chemistry
Handout–32C
Recent Applications of the Prins Reaction in
Stereoselective Synthesis
Matthew D. Shair Monday ,
December 9, 2002
Eileen Shaughnessy
Evans Group Seminar
March 19, 1999
Prins-Pinacol methodology
Prins-Pinacol syntheses
Tetrahydropyran synthesis
Other uses of the Prins reaction in synthesis
I.
II.
III.
IV.
Recent Applications of the Prins Reaction in
Stereoselective Synthesis
Eileen Shaughnessy
Evans Group Seminar
March 19, 1999
Prins reaction: Adams, D.R.; Bhaynagar, S. D. Synthesis 1977, 661
Prins and carbonyl ene reactions: Snider, B. B., Comprehensive Organic Synthesis, 1991, Vol. 2
Bicyclic THF synthesis: Dave MacMillan, Evans Group Seminar, 1996
Approaches to 2,-6-Disubstituted THP Derivatives: Duke Fitch, Evans Group Seminar, 1997
O
R
1
H
R
2
R
1
R
2
OH
OO
R
1
R
2
R
2
R
1
R
2
OH
- H+
HX
R
1
R
2
OH X
O
OMe
Ph
Me
Me
Me
O
Ph
-
Cl
4
SnO
O
Ph
-
Cl
4
SnO
O
Ph
O
+
The Prins Reaction
R
1
CHO
X
-
+
+
Lewis Acid
>95% ee
Prins pinacol
Prins-Pinacol:
Prins:
32C-01 1/19/00 8:15 PM
OHR
1
R
OH
OR
1
R
OH
OHR
1
R
O
R
2
R
2
O
OR
R
2
R
1
OR1 R2
O
R
H
+
H
+
Stereoelectronic Aspects of the Prins Reaction
from MacMillan Seminar, 1996
+
+ R
2
CHO
- H
+
Cannot undergo cyclization
Can undergo cyclization
OLAMe
O
R
OLAMe
OR
O
R
LAO
O
LAO
R
O R
OLAMe
O
R
O
Oxocarbenium Ion Formation
+ +
10 - 14 kcal/mol
+
+
(E)-Oxocarbenium ion (Z)-Oxocarbenium Ion
+
Prins pinacol
32C-02 3/18/99 9:41 PM
O
OMe
Ph
Me
Me
Me
O
Me
Me
Ph
Me
O
Me
O
O
O
Ph
-
Cl
4
SnO
O
Ph
-
Cl
4
SnO
Ph
-
Cl
4
SnO
-
Cl
4
SnO
O
Ph
Ph
O
O
Ph
O
Evidence for Prins-Pinacol Mechanism
from MacMillan Seminar, 1996
+
+
+
+
SnCl
4
, CH
2
Cl
2
-78 °C → -23 °C
>95% ee
enantiopure
racemic
Prins
[3,3]
fast
pinacol
aldol
O
OMe
Me
OMe
Me
MeHO
OH
OMe
O
Me
O
OMe
Me
Me
Me
Me
Me
Me
Me
O
Me
OMe
Me
Me
O
Me
Ph
Examples of Stereoselective THF Formation
SnCl
4
, CH
2
Cl
2
-70 → -23 °C
82%
7:1 anti:syn
BF
3
?OEt
2
(E)-CH=CHPhCHO
CH
2
Cl
2
, -55 °C
97%
SnCl
4
, CH
2
Cl
2
-70 → -23 °C
82%
anti
syn
from MacMillan Seminar, 1996
32C-03 3/18/99 9:51 PM
Overman: Laurenyne Synthesis
JACS, 1988, 110, 2248
O
Cl
Me
(-)-Laurenyne
O
Cl
OTs
HO
Cl
OTs
O
TMS Cl
OTs
EtO
OTBDPS
TBDPSO
OEt
TBDPSO
PPTS (cat.)
CH
2
Cl
2
, 98%
1. SnCl
4
(2 equiv.), 0 °C, CH
2
Cl
2
2. TBAF
37% yield, one isomer, 4 g scale
OH
1. (+)-DET, Ti(OiPr)
4
, tBuOOH
4 ? sieves, 78%
2. Et
3
NHCl, Ti(OiPr)
4
, CH
2
Cl
2
3:1 regioselectivity, 92%
3. TsCl, pyridine, 88%
TMS
TMS
Overman: Laurenyne Synthesis
JACS, 1988, 110, 2248
O
Cl
Me
(-)-Laurenyne
O
Cl
OTs
TBDPSO
O
Cl
OTs
O
H
O
Cl
OTs
Me
1. HF, pyridine, rt
2. PCC, NaOAc, CH
2
Cl
2
3. TMSOTf, Et
3
N, 0 °C,
Pd(OAc)
2
, CH
3
CN
56%
1. DIBAL
2. MsCl, Et
3
N
3. NaBH
4
, HMPA
65%
1. NaCN, DMSO, 95 °C
2. DIBAL
3.
TIPS
TIPS
n-BuLi, HMPA
THF, -78 °C
3:1 E:Z
4. TBAF
20 steps, 0.6% yield from 1,1-TMS-Br-ethylene
32C-04 3/18/99 9:54 PM
Overman: Ring-Enlarging THF annulations
JACS, 1991, 113, 5365
O
R
H
H
O
RCHO, H
+
-H
2
O
O
( )
n
R
+
OH
OH
( )
n
OH
-H
+
( )
n
OH
OH
O
O
R
1
O
R
1
O
R
1
CHO
52-85 %
SnCl
4
, -70 °C, 1 h
48-76%
OH
OH
O
O
Me
SnCl
4
, -70 → -23 °C
75-93%
MeCHO
O
Me
O
R
2
R
2
R
3
R
4
R
3
R
4
R
2
R
3
R
4
Overman: Ring-Enlarging THF annulations
JACS, 1991, 113, 5365
OH
O
O
RCHO
RSO
3
H
OH
O
R
+
HO
O
OH
R
+
O
HO
+
O
OH
R
+
O
O
O
O
R
R
R
R
32C-05 3/22/99 9:30 AM
Overman: Ring-Enlarging THF annulations
JACS, 1991, 113, 5365
OH
OH
PTSA or
BF
3
?OEt
2
40 -70%
O
O
+ R
1
CHO
SnCl
4
, -70 °C → rt
80%
O
O
O
O
O
O
R
1
O
O
Me
Ph
Lewis Acid
no desired product
some epimerization of acetal carbon
X
R
1
R
1
Me
Ph
O
O
OH
R
HO
R
+
+
cis-only
cis-fused trans-fused
Overman: Ring-Enlarging THF annulations
JACS, 1991, 113, 5365
R
3
OH
OH
O
R
1
R
2
BF
3
?OEt
2
or PTSA
45-74%
O
O
R
2
R
1
R
3
? In reactions with ketones, only substrates with nucleophilic alkene substituents rearrange successfully.
? Acetals derived from the cis-1,2-cyclobutandiols do not undergo ring-enlarging furan annulation under a variety of conditions.
O
R
R
3
HO
+
O
R
R
3
HO
+
O
R
HO
R
3
X
O
O
R
3
or
R
X = F or SO
2
R
32C-06 3/22/99 9:31 AM
Overman: Possible [3,3] rearrangement
JACS, 1991, 113, 5365
Ph
OH
OH
O
HPh
O
O
Ph
Ph
2:1 mixture of epimers
O
OH
Ph
Ph
+
O
Ph
OH
+
or
O
Ph
HO
Ph
+
O
O
Ph
Ph
Ph
O
Ph
OH
+
Ph
O
Ph
H
OH
[3,3]
Two possible mechanisms explain the formation of the minor diastereomer:
Overman: Spiroannulations
Tetrahedron, 1997, 53, 8927
OTMS
XR
+
XR
OTMS
+
ab
O
O
XR
XR
Prins
OTMS
OMe
OMe
TMSOTf, DTBMP
CH
2
Cl
2
, rt, 82%
O
RuCl
3
?3H
2
O
NaIO
4
, CCl
4
MeCN, H
2
O
68-88%
O
O
bond a
bond b
1.5:1 mixture
DTBMP = 2,6-t-butyl-4-methylpyridine
OMe
32C-07 3/18/99 10:27 PM
Overman: Spiroannulations
Tetrahedron, 1997, 53, 8927
TMSOTf, DTBMP
CH
2
Cl
2
, rt, 70%
RuCl
3
?3H
2
O
NaIO
4
, CCl
4
MeCN, H
2
O
68-71%
OTMS
OMe
OMe
OTMS
MeO OMe
OMe
OO
O
TMSOTf, DTBMP
CH
2
Cl
2
, rt, 28%
RuCl
3
?3H
2
O
NaIO
4
, CCl
4
MeCN, H
2
O
68-77%
O
OTMS
SEt
SEt
Me
2
SSMeBF
4
CH
2
Cl
2
, 0 → 23 °C
63%
O
SEt
NNHC(S)NH
2
SEt
NH
2
NHC(S)NH
2
HOAc, rt, 80%
one isomer relative stereochemistry
established by X-ray structure
1.4:1 mixture
OMe
O
stereochemistry determined
by X-ray structure
1.5:1 mixture
Overman: Spiroannulations
Tetrahedron, 1997, 53, 8927
X
HR
1
+
X
H
R
1
+
OR
+
XR
1
a
b
OR
+
XR
1
a
b
XR
1
O
XR
1
O
? Axial orientation of the side chain gives good overlap in either the anti or synclinal trajectories.
? If pinacol rearrangement occurs rapidly, only A and B will be formed.
? Destabilizing interactions between the SEt and the axial C-6 hydrogen in the synclinal trajectory
result in the exclusive formation of the A epimer.
OR
A
B
O
6
32C-08 3/22/99 9:47 AM
Overman: Synthesis of trans-Kumausyne
JACS, 1991, 113, 5378
O
AcO
Et
Br
trans-Kumausyne
OH
OH
O
H
H
O
OBn
O
H
H
OBn
O
O
BnOCH
2
CHO
RSO
3
H, rt
69%
m-CPBA
72%
4:1 regioselectivity
1. H
2
, Pd-C, 88%
2. Swern, 100%
O
H
H
O
O
Me
TMS
BF
3
?OEt
2
-78 °C → rt
73%
1.
2. TBSCl
O
H
H
O
O
Et
OTBS
O
HO
Et
OTBS
H
O
DIBAL
-78 °C
97%
CHO
Overman: Limitations
JACS, 1988, 110, 2248
O
Cl
Me
(-)-Laurenyne
Cl
TMS
O
O
2
2-propyl
2-propenyl
18-24% under SnCl
4
conditions
no reaction under a variety of conditions
O
TMS Cl
OSitBuMe
2
OEt
2-propyl
2-propenyl
30% under SnCl
4
conditions
gives only acetal cleavage
O
TMS Cl
OR
Et
EtO
X
X = Br
X = SMe
X = OAc
X = Me
R = TBS
R = TBS
R = TBS
R = Me
decomposition, acetal cleavage
O
TMS Cl
OTBS
EtO
MeEtO
O
TMS Cl
OTBS
MeEtO
+
O
TMS Cl
OTBS
2
O
OTBS
Me
? Unsaturation or heteroatoms at the β or γ positions of the acetal initiator are not tolerated in these reactions.
24%
retro-Aldol
Cl
32C-09 3/22/99 9:40 AM
Overman: Magellanine Synthesis
JACS, 1993, 115, 2992
TESO
CH(OMe)
2
O
OMe
H
SnCl
4
, (1.1 equiv.)
CH
2
Cl
2
, -78 → -23 °C
57%
N
O
OMe
H
1. OsO
4
(cat.), NaIO
4
dioxane-H
2
O, rt
2. Ph
2
CHNH
3
Cl
NaBH
3
CN
i-PrOH, rt, 60%
CHPh
2
1. Cl
3
SiMe, NaI
MeCN, 80 °C
2. TBSCl, imidazole
DMF, rt, 76%
3. H
2
, Pd(OH)
2
, EtOAc
4. (BOC)
2
O, Et
3
N
DMAP, 89%
N
O
H
BOC
Me
N
O
Me
OH
H
(-)-Magellanine
OTBS
OTES
O
R
+
1. LDA, TMSCl, THF, -78 °C, 85%
2. LiMe
2
Cu, TMEDA, TMSCl
-78 → -23 °C
Pd(OAc)
2
, MeCN, CF
3
CO
2
H
Overman: Synthesis of trans-Kumausyne
JACS, 1991, 113, 5378
O
AcO
Et
Br
trans-Kumausyne
O
HO
Et
OTBS
H
O
1. TMSOTf, Et
3
N
2. Pd(OAc)
2
, 53%
3.
O
TMSO
Et
OTBS
- 100 °C → 0 °C
88%
Cl
Cl
1. n-BuLi, NH
4
Cl, 98%
2. citric acid, MeOH
3. Ac
2
O, pyr., 92%
(EtO)
2
PLi
O
Cl Cl
O
AcO
Et
OTBS
1. HF-pyr., 100%
2. PPh
3
, CBr
4
2,6-di-t-butyl pyridine
benzene, 40 °C, 40%
trans-Kumausyne
32C-10 3/18/99 10:41 PM
Overman and MacMillan: Synthesis of a Eunicellin Diterpene
JACS, 1995, 117, 10391
O
HH
Me
AcOHO
(-)-7-Deacetoxy-alcyonin
acetate
TMSOH
OH
ds = 9:1
O
OTIPS
TMS
CHOH
BF
3
?OEt
2
(3 equiv.)
CH
2
Cl
2
, -55→ -20 °C
79%
OHC OTIPS
Me
OHC
TMSO
OMe
Me
Me
I
1. t-BuLi, THF, -78 °C
2. PPTS, MeOH
64%
O
OPiv
+
single stereoisomer
O
Me
Me
Me
R
1
R
2
+
HO
6 steps, 39% yield from (S)-carvone
Overman: Laurencin Model Studies
JACS, 1995, 117, 5958
SPh O
OPiv
OMe
O
Me
PhS
PivO
O
Et
Br
OAc
BF
3
?OEt
2
(2 equiv.)
t-BuOMe, 0.05M
-78 → -30 °C, 5h
(+)-Laurencin
O
SPh
RMe
BF
3
?OEt
2
(3.5 equiv.)
t-BuOMe, 0.2M
-78 → -10 °C, 4h
+
Me
2
BBr (2.5 equiv.)
CH
2
Cl
2
, 0.05M
-78 → o °C, 4h
87%
40%
trace
4%
7%
-
O
SPh
RMe
-
-
trace
O
Me
R
RO
PhS
H
+
32C-11 3/22/99 9:42 AM
Overman: Laurencin Synthesis
SPh
OAc
O
Me
OPiv
OMe
O
OAc
Et
PhS
PivO
O
Et
Br
OAc
BF
3
?OEt
2
(3 equiv.)
t-BuOMe, 0.05M
-78 → -40 °C, 7h
57% ( 5 g scale)
(+)-Laurencin
(+)-Laurencin
24 steps, 2% yield from allyl alcohol
JACS, 1995, 117, 5958
SPh
OAc
O
Me
OPiv
+
SPh
OAc
OBF
3
-
Me
OPiv
MeOBF
3
-
MeO
+
desired product
SPh
OR
1
OR
2
A: R
1
= H, R
2
= Ac
B: R
1
= Ac, R
2
= H
By products include the THP
product (7%), internal vinyl
sulfide acetals (18%) and
hydroxy vinyl sulfide acetates
A and B
Overman: Trisubstituted Tetrahydropyrans
JACS, 1999, 121, 1092
Ph OH
OH
+ RCHO
(2 equiv.)
SnCl
4
(0.5 equiv.)
MeNO
2
, -25 °C
25 mM
OORR
CHO
PhPh
racemic
Yield of A + B
65
50
58
32
34
RCHO
PhCH
2
CH
2
CHO
PhCH2CHO
i-PrCHO
(E)-PhCH=CHCHO
PhCHO
B
A
CHO
7:3 mixture of epimers
ORPh
O
CHOPh
n
Yields were considerably lower due to the
formation of oligomers:
32C-12 3/18/99 10:55 PM
Overman: Trisubstituted Tetrahydropyrans
JACS, 1999, 121, 1092
Ph OH
OHMe
+ RCHO
CF
3
SO
3
H or SnCl
4
MeNO
2
, -25 °C
OO
O
COMe
RR
R
X
Me
OH
COMe
PhPh
Ph
racemic
GC ratio of A:B
18:1
11:1
6:1
14:1
9:1
6:1
8:1
Yield of A
81
73
61
65
76
68
61
RCHO
PhCH
2
CH
2
CHO
MeCHO
PhCH
2
CHO
i-PrCHO
t-BuCHO
(E)-PhCH=CHCHO
PhCHO
with TfOH
Yield of A
65
66
56
68
50
59
76
GC ratio of A:B
10:1
10:1
8:1
12:1
10:1
8:1
6:1
with SnCl
4
B C
A
Reaction of enantiopure starting material with isobutyraldehyde gives a 68% yield of A with >99% ee
Taddei: Synthesis of 4-Halo-Tetrahydropyrans
Taddei, TL, 1987, 28, 973
JOC, 1988, 53, 911
Chan,TL, 1987, 28, 3441
TMS
+ 2 RCHO
O
X
RR
X = Cl, BrAlX
3
R
1
CHO
R
1
OTMS
R
2
CHO
R
1
OTMSO
R
2
? Aldehydes: acetaldehyde, propanal, hexanal, benzaldehyde
Yields: 43 - 86%
? Consecutive addition of different aldehydes gives unsymmetrical products. The use
of TiCl
4
minimizes the formation of symmetrical halotetrahydropyrans. Yields of
unsymmetrical THPs = 41-62%
? Chan developed a similar reaction using alkoxy-allylsilanes and AlCl
3
, TiCl
4
, and SnCl
4
.
-AlX
2
OTMS
O
R
1
+
X
-
R
2
32C-13 3/18/99 11:01 PM
Markó: Spiroketal Formation
TL, 1997, 38, 2895
O
RH
TMS
O OEt
O
Cl
R
OH
( )
n
TiCl
4
CH
2
Cl
2
, 0 °C
RCHO
C
6
H
13
CHO
(C
2
H
5
)
2
CHCHO
C
6
H
13
CHO
(C
2
H
5
)
2
CHCHO
( )
n
n
1
1
2
2
Yield (%)
62
77
60
60
OR
O
( )
n
1. NaBH
4
, HMPA, ?
2. HgO, I
2
CCl
4
, ?, hν
64 - 77%
O
H
R
H
OTiX
3
Cl
-
+
Markó: Synthesis of Okadaic Acid Model Fragment
TL, 1997, 38, 2895
Me
CHO
Me
Me TMS
OOEt
TiCl
4
, CH
2
Cl
2
, rt
59%
O
Me
Cl
Me
Me
OH
O
Me
Me
Me
O
O
Me
Me
Me
OH
NaBH
4
HMPA
97%
+
+
HgO, I
2
CCl
4
, ?, hν
61%
O
Me
O
O
MeOH
O
O
OH
H
H
O
Me
H
OHO
2
C
Me OH
Me
OH
H
H
Okadaic Acid
32C-14 3/18/99 11:06 PM
Li: InCl
3
-catalyzed Prins Cyclizations
TL, 1999, 54, 1627
RH
O
R
OH
InCl
3
CH
2
Cl
2
O
Cl
RR
R
Ph
4-Me-Ph
3-Me-Ph
2-Me-Ph
4-Cl-Ph
4-F-Ph
4-Et-Ph
CH
3
(CH
2
)
6
Yield (%)
81
79
76
88
70
78
73
73
? This reaction compliments the TiCl
4
/AlCl
3
mediated reactions which
give very low yields with aromatic aldehydes.
Li: Sc(OTf)
3
-catalyzed Prins Cyclizations
Chem.Comm., 1999, 291
RH
OOH
Sc(OTf)
3
CHCl
3
O
OH
R
R
Ph
4-Me-Ph
3-Me-Ph
2-Me-Ph
4-Cl-Ph
4-F-Ph
4-Et-Ph
2-F-Ph
3-F-Ph
2-Cl-Ph
3, 4-Cl-Ph
3-Br-Ph
1-napth
Yield A(%)
14
18
13
20
15
16
10
19
12
13
17
14
9
O
O
R
A B
Yield B (%)
63
64
62
58
68
69
56
50
57
71
49
72
70
? Aliphatic aldehydes are less
effective in this reaction.
32C-15 3/18/99 11:10 PM
Jung: Prins Reaction Catalyzed by Silyl Triflates
JOC, 1997, 62, 9182
R
2
R
3
R
1
OH
OH
R
2
R
3
R
1
CHO
OH
O
TBSO
H
R
2
R
1
Swern
TBSOTf
DTBMP
CH
2
Cl
2
R
1
= R
2
= R
3
= Me
R
1
= R
2
= Me, R
3
= Et
R
1
= H, R
2
= Ph, R
3
= Me
R
2
R
3
R
1
CHO
OTES
R
2
R
3
R
1
CHO
OH
TBSOTf
DTBMP
CH
2
Cl
2
no reaction
Me
Me
Me
OH
OH
Me
Me
Me
CHO
OH TBSOTf
DTBMP
CH
2
Cl
2
no reaction
Swern
TBAF
R
1
= H, R
2
= R
3
= Me
R
1
= R
2
= Me, R
3
= Ph
89%
84%
92%
DTBMP = 2,6-di-t-butyl-4-methylpyridine
Paquette: Studies toward Trixikingolide
JOC, 1989, 54, 3334
H
O
H
H
OH
Cl
H
SnCl
4
CH
2
Cl
2
, 0 °C
H
H
OH
Ph
H
Cl
OH
H
OH
Cl
H
25%
23%
4.4%
Phenylation occurred when the reaction was
performed in benzene:
H
O
H
1. Na, NH
3
, THF
2. PCC, 3? sieves
"high yield"
R
2
Me
H
R
1
Me
++
32C-16 3/18/99 11:15 PM
Paquette: Unsuccessful ring closure
JOC, 1989, 54, 3334
H
OMe
O
O
H
7300 atm, 57%
Me
2
AlCl, CH
2
Cl
2
H
O
O
Me
Me
Me
H
H
OMe
O
Me
Br
O
O
OMe
O
Me
H
O
CO
2
CH
3
Me
Br
conformation adopted in the solid-state
? There was no reaction at atmospheric pressure using a
variety of Lewis acids.
? Reaction at high pressure with stannic chloride
polymerized the starting material.
? Conformation needed for desired cyclization:
? Aldol ring closure was also unsuccessful.
Me
CO
2
Me
O
H
-
MX
n
X
+
32C-17 3/22/99 9:25 AM
Rychnovsky: Cyclization of 4-Allyl-1,3-Dioxanes
TL, 1996, 37, 8679
TiCl
4
(2 equiv.), CH
2
Cl
2
, -98 °C
95%, 95:5
i-Pr
OAc O
OAc
i-Pr
Other conditions: 1. BF
3
?OEt
2
, HOAc, cyclohexane
2. Ac
2
O, Et
3
N, DMAP
Yields: 41 - 95%, > 67:33
C
6
H
13
OAc O
OAc
Me
Me
i-Pr
OH O
X
i-Pr
X = Ph 60%
X = F 26%, 2:1
1. BF
3
?OEt
2
, HOAc, benzene
2. Ac
2
O, Et
3
N, DMAP
C
6
H
13
OO
C
6
H
13
OAc O
Cl
i-Pr
i-Pr
Rychnovsky: Desymmetrization of C
2
-Symmetric Diol
JOC, 1997, 62, 3022
OO
1. VinylMgBr, CuI
2. CSA, CH
2
Cl
2
BnO
OMe
OMe
80%
OO
OBn
OOAc
OBn
OAc
1. BF
3
?OEt
2
, HOAc
cyclohexane, rt
2. Ac
2
O, DMAP, Et
3
N
42-51%
OO
Me
OOAc
Me
OAc
1. BF
3
?OEt
2
, HOAc
cyclohexane, rt
2. Ac
2
O, DMAP, Et
3
N
80%
OOAc
OBn
OAc
OAc
Br
1. (DHQD)
2
-PYR
OsO
4
, K
3
Fe(CN)
6
2.
AcO
Br
O
67%
Me
O
H
OHOHOHOHOH OH OH
O
O
Me
Me
Me
OH
17-Deoxyroflamycoin
no antifungal activity
17
17
11
Influence of acetal substituent:
32C-18 3/19/99 10:12 AM
Rychnovsky: Hemiacetal Cyclizations
TL, 1998, 39, 7271
R
O
O
R
1
1. DIBAL
2. Ac
2
O, pyr.
DMAP
80-96%
CH
2
Bn
O
OAc
R
1
O
Cl
CH
2
Bn
I
Lewis Acid
O
Cl
C
6
H
13
OCF
3
OMeC
6
H
13
OC
6
H
13
O
OH
MeC
6
H
13
O
OH
C
6
H
13
OMe
Cl
Cl
Ph
ClCl
Cl
O
X
R
1
R
80%
79%
80%
8:1
95%
7:1
65%
1:1.5
90%
97%
3:1
91%
5:1
Using TiCl
4
, CH
2
Cl
2
, -78 °C:
Using 1. TFAA, HOAc, CH
2
Cl
2
, 0 °C to rt
2. K
2
CO
3
, MeOH
Cl
R
OH
R
1
CO
2
H
couple
X-
Rychnovsky: Synthesis of Model Phorboxazole Fragment
TL, 1998, 39, 7271
Ph OH
OC
5
H
11
HO
O
DCC, DMAP
80%
OC
5
H
11
O
O
Ph
1. DIBAL
2. Ac
2
O, pyr
DMAP, 81%
OC
5
H
11
OPh
OAc
SnBr
4
CH
2
Cl
2
, -78 °C
75%OC5H11OPh
Br
+
O
O
N
O
O
O
O
Me
Me
Me
N
O
O
OH
OMe
OH
R
1
R
2
R
32C-19 3/19/99 10:14 AM
Mikami: Siloxy Effect
Tetrahedron, 1996, 52, 7287
OSiMe
2
i-Pr
Me
O
MeMeO
2
C
OH
OP
O
MeO
2
CH
SnCl
4
, CH
2
Cl
2
-78 °C
O
MeO
2
C
OH
Me
P
dimethylthexylsilyl
TIPS
DIMS
benzyl
Yield (%)
48
33
67
32
R
3
SiO
O
O
MeO
H
Me
SnCl
4
+
Proposed Transition State:
O
MeO
2
CH
SnCl
4
, CH
2
Cl
2
-78 °C
64% yield, 4:1 cis selective
R
3
SiO
O
O
MeO
H
Me
SnCl
4
+
OP
Me
O
MeO
2
CH
SnCl
4
, CH
2
Cl
2
-78 °C
P = 2,6-dichlorobenzyl
MeO
2
C
OH Me
OP
Mikami: Siloxy Effect
Tetrahedron, 1996, 52, 7287
OSiMe
2
i-Pr
O
MeO
2
C
OH
O
MeO
2
CH
SnCl
4
, CH
2
Cl
2
-78 °C
67% yield, 3:1 cis selective
Me Me
Me O
OMe
mostly ene product
OSiMe
2
i-Pr
O
MeO
2
CH
SnCl
4
, CH
2
Cl
2
-78 °C
O
MeO
2
C
OH
69% yield, >95% anti selective
O
MeO
2
CH
SnCl
4
, CH
2
Cl
2
-78 °C
32C-20 3/19/99 10:19 AM