Chem 206D. A. Evans
Matthew D. Shair Wednesday,December 11, 2002
http://www.courses.fas.harvard.edu/~chem206/
Reading Assignment for this Lecture:
Introduction to Organosilicon Chemistry
Chemistry 206
Advanced Organic Chemistry
Lecture Number 33
Introduction to Organosilicon Chemistrya73 Silicon Bonding Considerations
a73 The Silicon–Proton Analogya73 C=O Addition of Organosilanes
a73 Sigmatropic Rearrangements of Organosilanesa73 Anionic (Brook) Rearrangements
a73 Peterson Olefination Reactiona73 Survey of Silicon (and related) Protecting Groups
Masse, C. E.; Panek, J. S. "Diastereoselective reactions of chiral allyl- and allenylsilanes with activated C-X pi-bonds." Chem. Rev. 1995, 95, 1293-1316.
Ager, D. J. "The Peterson olefination reaction." Org. Reactions 1990, 38, 1-224
Fleming, I.; Barbero, A.; Walter, D. "Stereochemical control in organic synthesis using silicon-containing compounds." Chem. Rev. 1997, 97, 2063-2192. (Web)
Moser, W. H. "The Brook Rearrangement in Tandem Bond Formation Strategies," Tetrahedron 2001, 57, 2065-2084 (handout)
Colvin, E. "Silicon in Organic Synthesis," Butterworths, 1981
KHMDS
THF, -78 °C
Calter, M. A. Ph. D. Thesis, Harvard University, 1993.
94%
Bu3Sn Bu3Sn
OMe
TBSO
Me
OH
OMe
OH OTBS
Explain what drives this rearrangement. TBS = SiMe
Me
CMe3
OTMSRO P
OR R P
O O
RO OR
SiR3
R P
OTMSO
RO OR
The C=O addition illustrated in eq 1 proceeds while the carbon analogue (eq 2) does not. Explain
(1)
R H
O
OMeRO P
OR R P
O O
RO OR
Me
R P
OMe O
RO OR
(2)
Me
OLi Me3Si
O
X
Me
H
H
O
OSiMe3
XTakeda, Org. Lett, 2000, 2, 903-1905
Provide a mechanism for the indicated transformation
Problems to Contemplate
Bois, et al. "SiliconTethered Reactions" Chem. Rev. 1995, 95, 1253-1277. (Handout)
Carey & Sundberg, Advanced Organic Chemistry, 4th Ed. Part B Chapter 9, " C–C Bond Forming Rxns of Boron, Silicon & Tin", 595–
680.
Chem 206D. A. Evans Bonding Considerations: Carbon vs Silicon
Bonding Considerations: Carbon vs Silicon
C–C C–Si83 76 Si–Si53 C–O Si–O
86 108
C–H Si–H83 76
C–F Si–F116 135
Average Bond dissociation eneregies (Kcal/mol)
C–C C–Si1.54 1.87 C–O Si–O1.43 1.66
Average Bond Lengths (?)
pi Si–Si = 23 kcal/molpi C–Si = 36 kcal/molpi C–C = 65 kcal/molThis trend is even more dramatic with pi-bonds:
σ? C–Siσ? C–C
σ C–Siσ C–C
Bond length = 1.87 ?Bond length = 1.534 ? H3C–SiH3 BDE ~ 76 kcal/molH3C–CH3 BDE = 83 kcal/mol
better than
Group IV Electronegativities (Pauling)
Carbon Silicon Germanium Tin Lead2.55 1.90 2.01 1.96 2.33
+2 Oxidation state becones increasingly more stable
C Siδ+δ–
Hypervalent 5-Coordinate Silicon Compounds
Akiba, "Chemistry of hypervalent Compounds" Wiley-VCH, Chapters 4-5, 1999
Penta-coordinate silicates are commonly observed
Nucleophilic substitution at Silicon
F F–SiMe3+
OSiMe3
KOCMe3
O K
Me3Si–OCMe3
Duhamel et al. J. Org. Chem. 1996, 61, 2232
OSiMe3
MeLi
O Li
Me3Si–Me
Stork et al. JACS. 1968, 90, 4462, 4464
THF
THF
–20 ° 2h
Thermal Rearrangements One may readily access divalent intermediates
SiMeMe Si CH2MeMe H2C CH2thermolysis
H
SiMeMe thermolysis Si Me
Me
SiMe Me
H
Colvin, pp 7-9
C-SP3
Si-SP3
C-SP3C-SP3
SiC Si CCCCC
MeSiF4 NEt4 Ph3SiF2 NR4
RO–SiMe3 RO
K. Scheidt, D. A. Evans Chem 206Hypervalent Silicon Ate-Complexes
1.689 ?
1.647 ?
Inorg. Chem. 1984, 23, 1378 J. Am. Chem.Soc. 1987, 109, 476
SiPhPh
O
F3C CF3
F
SiF PhPh
F
CF3
F
S(NMe2)3
J. Organomet.Chem. 1981, 221, 137.
SiF FPh
F
F
1.668 ?
1.604 ? 1.597 ?
Acta Crystallogr. Sect. C 1984, 40, 476
Cl
Me
O
2.104 ?
2.198 ?
Chem 206D. A. Evans Bonding Considerations: Carbon vs Silicon
Carbonyl addition Reactions1970 DAE Objective: Develop a reagent that will transform
aldehydes into protected cyanohydrins in one step
R H
O SiR3
G+ R G
OSiR3
H R G
OSiR3
Li
R3Si G Candidates Carbonyl Adducts
R3Si CN R CNOSiR3H
R3Si OSO2Ar R SO2ArOSiR3H
R3Si OPR2 R POR2OSiR3H
Carbonyl Anion EquivalentG = carbanion-stabilizing FG
Thermal C=O addition of TMSCN is not a clean reaction
+
Me3Si CN
C5H11 HOSiMe3CN50 C°Me HO C4H9 HOSiMe3+
ratio: 65:35
2-5 hr
The prospect of catalysis was investigated
C5H11 HOSiMe3CN1-5 min
ZnI2
reaction was instaneous and quantiltative
1-5 min
CN–
Principle established that normally inaccessible cyanohydrin derivatives may now be accessed
MeMeMe OTMS
CN
>95% yield(ZnI
2 catalysis)
Me Me
TMSO
Me
CN
92% yieldonly 1,2-addition
(ZnI2 catalysis)
O
TMSO CN
>95% yieldonly 1,2-addition
(CN– catalysis)
with Truesdale, Carroll, Chem Commun. 1973, 55; J. Org. Chem.. 1974, 39, 914Tetrahedron Lett 1973, 4929 (first discussion of Nu catalysis)
+
Me3Si CN
Me H
O
"The Silicon Advantage"
R R
O X CN+ R
R
O–X
CN ?HSi > ?HH
From the preceding case, it is clear that ?HSi is more exothermic than ?HH
R R
ONucleophilic Catalysis
C N
R ROCN
Me3Si CN
R ROTMSCNC N +
LiNR2
Chem 206D. A. Evans Carbonyl Addition Reactions-2
Explain the following observations
O
O
C N+
OH
OH CN
THF/H2O
O
TMSO CN
TMSCN
O
O
+ benzeneC N
1-4 addition
1-2 addition
R1 R2OSiMe3SRRS–ZnI2R1 R2SRSR
with Truesdale, Grimm, Nesbitt, JACS 1975, 97, 3229
JACS 1977, 99, 5009
Me3Si SR
R1 R2
O
+
Me3Si OEtO
N2R H
O CN– or F–
OEt
O
N2R
OTMS
1-5 min
with Truesdale, GrimmJOC 1976, 41, 3335
R H
O OTMS
RO POR
+
R P
O O
RO OR
SiR3
R P
OTMSO
RO OR
with Hurst, TakacsJACS 1978, 100, 3467
Non-catalyzed processes may also occur if a proper geometry for atom transfer can be achieved
R
O
PO
R
ORTMSO
RO R
OTMS
PORORO
"The Proton–Silicon Correlation"
a73 Organosilanes undergo carbonyl addition processes in direct analogy with their proton counterparts but with an attendant greater exothermicity.
a73 Organosilanes undergo a range of thermal rearrangements processes in direct analogy with their proton counterparts.
X
H
X
H k(Si) =10+6 K(H)
A. J. Ashe III, JACS 1970. 92, 1233
O
OMe3SiOMe
MeMe Me CO
OSiMe3OMe
Me Me
Meheat Colvin, pp 37-8
a73 Organosilicon hydrides undergo transition metal catalyzed hydrosilylation processes in direct analogy with normal hydrogenation reactions
R N
O SiR
3
SiR3 R N
O
SiR3
SiR3
Yoder et al., JACS 1974. 96, 4283
?G* 15-22kcal/mol
Si transfer is intramolecular
Me3Si C N C N SiMe3
rt
H–HH–SiR3 R Me R Me HR Me SiR3
Rh(I) catalysis Rh(I) catalysis
"Hydrosilylation of C–C Bonds". T. Hayashi In Comprehensive Asymmetric Catalysis, Jacobsen, E. N.; Pfaltz, A.; and Yamamoto, H. Editors; Springer Verlag:
Heidelberg, 1999; Vol I, 319-332.
Chem 206D. A. Evans Carbonyl [1,2] & [1,3] Sigmatropic Rearrangements
"The Brook Rearrangement(s)"[1,3]-Sigmatropic Rearrangements
Y C X
R3Si
R Y C XR
R3Si
Np Si Ph
OMe
Ph
Y = C; X = O
110 °C
Ph
ONp Si
Me
Ph
Np
Si
PhO
Me
Ph
Complete retention of Si stereochemistry was noted.
Ea = 28 kcal/mol
A. G. Brook Accts. Chem. Research 1974, 7, 77-84
Brook speculates that a hypervalent Si intermediate might be involved in the rearrangement.
Y = C; X = C
Np Si
CH2Me
Ph H
500 °C
H2C H
Ph Si
Me
Np
Inversion of Si stereochemistry was noted.
Ea = 48 kcal/mol
H. Kwart et al., JACS 1973. 95, 8678
Theoretical calculations lead to the conclusion that the concerted [1,3] sigmatropic rearrangement with retention of Si-configuration should
represent the lower energy pathway.
Yamabe, JACS 1997, 119, 808
At the present time these rearrangements are not well studied,
A. G. Brook Accts. Chem. Research 1974, 7, 77-84
C OHR3SiPhPh C OHPhPh
SiR3Et2NH
DMSO
Et2NH
C OR3SiPhPh C O
SiR3
PhPh
Ea ~ 8-11 kcal/mol
H N H
Et Et
H N H
Et Et
Brook has documented that retention at Silicon & inversion at Carbon occur.
Transformations Involving the Brook Rearrangement
Moser, W. H. "The Brook Rearrangement in Tandem Bond Formation Strategies," Tetrahedron 2001, 57, 2065-2084
R SiR3
O
Acylsilanes
Li R El(+)
RR
3Si
O
R R O R
Li R3Si Li
El(+)
R
O
R
R3Si El
[1,2] Si
SiR3
O
Cl
O Li SiR
3 Cu(I)R R R2BH[Ox] SiR3R
Chem 206D. A. Evans
Transformations Involving the Brook Rearrangement
Moser, W. H. "The Brook Rearrangement in Tandem Bond Formation Strategies," Tetrahedron 2001, 57, 2065-2084
R SiR3
O Li R El(+)
RR
3Si
O
R R O R
Li R3Si Li
El(+)
R
O
R
R3Si El
[1,2] Si
ROR3Si s-BuLi ROR3Si Li
ROLi
SiR3
ROR3Si
El
El(+)
OR These reagents are useful homoenolate anion equivalents R CH2(–)O
"Metalated Allylic Ethers as Homoenolate Anion Equivalents". Evans, D. A.; Andrews, G. C.; Buckwalter, B. JACS 1974, 96, 5560.
Si–Variant: Still & MacDonald JACS 1974, 96, 5561
Brook Equilibrium
C OLiMe3SiPhPh C OLiPhPh SiMe3THF
C OLiMe3SiHPh C OLiHPh SiMe3THF
Reich JACS 1980, 102, 1423 (see footnote 8)
Reich JACS 1980, 102, 1423
R SiR3
O
Li (CH2)4–I
R C
OTMS
R
OH3O+
Intramolecular alkylations may be carried out:
SiR3
O
PhS R
OLi OSiMe3
OHRPhS
Takeda JACS 1993, 115, 9351; Synlett 1994, 178; SynLett 1997, 255
OPhS
LiO SiR3
R
[1,2] Si
OPhS
OSiMe3
R
SiR3
O
PhS
OLi
R
OSiMe3
OLi
R
Me3Si
PhS
LiO SiR3
O
R
[1,2] Si
PhS
OSiMe3
O
R
PhS
OSiMe3
OLi
R
[3,3]
Tetrahedron 2001, 57, 2065-2084, footnote 16
Transformations Involving the Brook Rearrangement
Chem 206D. A. Evans Transformations Involving the Brook Rearrangement
Me
OLi Me
3Si O
X
Me
H
H
O
OSiMe3
XTakeda, Org. Lett, 2000, 2, 903-1905
Me
HRO
CHO
Me Me
The natural product target: The key reaction
The Peterson Olefination Reaction
The key paper: Peterson, J. Org. chem. 1968, 33, 780-784 C NSi P
It was Peterson's intent to find a silicon analog to the Wittig rxn.The reaction concept is outlined below:
R R
OMe
3Si CH2M
OM
R R
Me3Si
O
R R
Me3Si MOM
R
R
Me3Si
Me3Si CH2MgCl R RO O–MgCl
R R
Me3Si these adducts are
quite stable
Magnesium alkoxides: Stable
Na & K alkoxides: Eliminate
OH
R R
Me3Si KH
R
R OK (Na)Me
3Sirt
Elimination could also be effected with dilute acid
10% H2SO4
R
R OHMe
3Sirt
analogy provided by Whitmore et al. JACS 1947, 69, 1551
Me3Si CH2 SMe nBuLiTMEDA Me3Si CH SMeLi
Me3Si CH SMeLi OPh Ph C
Ph Ph
MeS
carbanion-stabiizing groups facilitate elimination
H
OH
R R
Me3Si
Mechanistic aspects of Beta-OH Elimination
Me3Si
OH
PrH
PrH
H+
Pr
H
Pr
H Anti Elimination
Me3Si OK
PrHPrH
KH
H
Pr
Pr
H Syn Elimination
Hudrlik et al. JACS 1975, 97, 1464 Colvin chapter 12, pp 141
Ager, D. J. "The Peterson olefination reaction." Org. Reactions 1990, 38, 1-224
R3Si OH
PrHR
HMe
3Si
O
PrH
H KH RH PrH
reaction is stereospecificnote site of nu attack. Why?
The β-Effect (lecture 31)
The β-Effect (lecture 31)
R2CuLi
Chem 206D. A. Evans The Peterson Olefination Reaction
Boeckman, Tet. Lett 1973, 3437
a73 Simple Examples: Taken from Organic Rxns review
NaH orTsOH
This reagent is better that H2C=PPh3 for hindered ketones
>90%O Me3Si CH2MgBr
OH SiMe
3 CH2
Me
OMeH HMeH2C
Me
Chan, Tet. Lett 1978, 2383
Nozaki, JACS 1974, 96, 1620
>95%
>90%
O
Me3Si OEtO
O
OEt
Me3Si SiMe3OH
O
O
O
O
Me
Me
MeHOMe
OHMe
OH
OH OMe
OHMe
O
O
Miyakolide (+)-1
HH
O
OPMB O
OMeMe
O
Xp 1
9
O
OPMB
OMeMe
O
Xp 1
9 CO
2Me
entry base solvent E : Z1
23
4
LDANaHMDS 73 : 2718 : 82
66 : 3366 : 33LDALDA
TMS OMeO
Conditions–78 °C
19-E
with Ripin, Halstead, and Campos JACS 1999, 121, 6816-6826.
Miyakolide presents an interesting olefin geometry challenge
Chan, Chem. Commun 1982, 969
R
OH
SiMe3Me3Si B O
O MeMe
Me
R
Me R
Hudrlik, JACS 1981, 103, 6251
Me3Si H
n-Hexyl
O OH
CMe3
OLi n-HexylMe3Si CMe3
O
O
CMe3n-Hexyl
OH
CMe3n-Hexyl
OH
n-Hexyl
Me3Si CMe3OH
LiN(TMS)2
t-BuLiMgBr
2 SOCl2 THF
Et2OTHFPhMe
H+
KHRCHO
BF3?OEt2 KH
Chem 206D. A. Evans The Peterson Olefination Reaction
O Me N
O NO
Me
OTMSTMSO
MeMe
OTMS O
O
O
Me
OTMSTMSO
MeMe
OTMS O
N
O NO
Me
Me3Si
KN(TMS)2
(E):(Z) = 13:1
O
O
Me
OTMSTMSO
MeMe
OTMS O
N
O NO
Me
(t-Bu)Me2Si
t-BuLi (E):(Z) = 1:7
Bell et al. Tetrahedron 1994, 50, 6643
Reaction may be altered significantly with an attendant chenge in stereoselection
SiMe3R
O
O OH
LiN(TMS)2
TMSClCH
2N2
R CO2Me
SiMe3
OH
syn:anti = 96:4
(See Lecture 15)
Ireland Enolate Claisen Coupled to Peterson Olefination
R CO2Me R CO2Me
KH BF3?OEt2
Sato et al. Chem. Lett 1986, 1553
Application to Leucasandrolide: Rychnovsky JACS, 2001, 123, 8420
O OMe O
Me OH
Me
Me
O
O
O OMe O
Me OH
Me
Me
O
HO
The seco acid
OH
The Pivotal Step:
O O
Me
OBn
H
O SiMe3
TBSO
O OH O
Me
OBn OTBS
BF3?OEt2
base, 78%
5.5:1 ratio
Bunnelle-Peterson Allylsilane Synthesis
R O R
O
Me3Si CH2M
R
2
SiMe3
SiMe3
OH
M = Li → M = CeCl2
silica gel R SiMe3
Me
THPO SiMe
3
90% Ph
SiMe3
Me93%
TMSO SiMe3
TBSO
TMSO
O OEt
TBSO
TMSCH2MgCl
CeCl3silica gel 87%
Chem 206ROH Protecting GroupsJ. Leighton, D. A. Evans
By far the two most common methods:
2 equiv of imidazole are required relative to R3SiCl.
Silyl Ethers:
trimethylsilyl triethylsilyl
triisopropylsilyl
tert-butyldimethylsilyl
tert-butyldiphenylsilyl
(TMS) (TES) (TBS or TBDMS)
ndi-tert-butyldimethylsilylene
Formation:
R3Si-Cl, imidazoleDMF, R.T.
CH2Cl2, 0 °CR3Si-OTf, 2,6-lutidine
Corey, E. J.; Venkateswarlu, A. J. Am. Chem. Soc. 1972, 94, 6190.
Corey, E. J. et al., Tetrahedron Lett. 1981, 22, 3455.
Me Si ORMeMe Et Si OREtEt t-Bu Si ORMeMe
t-Bu Si ORPhPh i-Pr Si ORi-Pri-Pr SiO O
t-But-Bu
R’R
R OH R OSiR3
R OH R OSiR3
Cunico, R. F.; Bedell, L. J. Org. Chem. 1980, 45, 4797-4798.
SiR3
76 min
137 min
TBS
TIPS
Half-life
THF, 22.5 °C2 equiv TBAF
5% NaOH in EtOH90 °C
Half-life
TBS
TIPS
TBDPS
1 h
14 h
< 4 h
SiR3
SiR3
< 1 min
18 min
244 min
TBS
TIPS
TBDPS
Half-life
22.5 °C1% HCl in EtOH
Relative stabilities:
TES ~102 times more stable to acidic hydrolysis than TMSTBS ~104 times more stable to acidic hydrolysis than TMS
Me OSiR3 Me OH
OSiR3 OH
Me OSiR3 Me OH
(TBDPS) (TIPS) (DTBS)
Chem 206ROH Protecting Groups-2J. Leighton, D. A. Evans
77%CH2Cl2, 0 °C
TESCl, DMAP
Selective Protection:
Askin, D.; Angst, D.; Danishefsky, S. J. Org. Chem. 1987, 52, 622.
91%CH2Cl2, -78 °C
TBSOTf, 2,6-lutidine
Evans et al.JACS 1999, 121, 7540-7552.
95%DMF, RT
TBDPSCl, imidazole
Donaldson, R. E.; Fuchs, P. L. J. Am. Chem. Soc. 1981, 103, 2108.
80%DMF, RT
TBSCl, imid.
Me
Me
OHOH
MeMe
Me
Me
OTBDPSOH
MeMe
Me
OTMS
H
OH
OH Me
OTMS
H
OTBS
OH
HO
HO
SO2Ph HO
TBSO
SO2Ph
MeO Me
O OH
OTIPS
OH
MeO Me
O OH
OTIPS
OTES
CH2Cl2, 0 °CTBSOTf, 2,6-lutidine 92%
TMS-NEt2 has been reported to selectively protect equatorial alcohols in the presence of axial alcohols:
Weisz, I. et al. Acta. Chim. Acad. Sci. Hung. 1968, 58, 189.
TBSOTf, 2,6-lutidineCH
2Cl2, -78 °C71%
White, J. D. et al., J. Am. Chem. Soc. 1989, 111, 790.
TMS-NEt2acetone, -45 °C
Yankee, E. W.; Bundy, G. L. J. Am. Chem. Soc. 1972, 94, 3651.
OTBS
Me
CO2Me
MeOTBS
OHHO
Me
Me
OTBS
Me
CO2Me
MeOTBS
OTBSHO
Me
Me
HO
HO
CO2MeMe
Me OH HO
TMSO
CO2MeMe
Me OH
NMe
OOH OH
Me Me
NMe
OOTBSOH
Me Me
O
O
Bn
O
O Evans, Ng JACS 1993, 115, 11446
Chem 206ROH Protecting Groups-3J. Leighton, D. A. Evans
Evans, D. A.; Dart, M. J. Unpublished
CH2Cl2, -10 °CTBSOTf, 2,6-lutidine 83%
Selective Protection:
TESCl, imidazoleDMAP
CH2Cl2, -78 °C
98%
> 80%
TBSOTf, 2,6-lutidineCH
2Cl2, 0 °CMe NMe
OOH OH
Me Me
Me N
Me
OOTBSOH
Me Me
O
O
Bn
O
O
Bn
Me N
Me
OOH OH
Me Me
Me N
Me
OOH OTBS
Me Me
O
O
Bn
O
O
Bn
O OO O MeO OMe H Me H
O
HOH
Me OH Me
MeO
Me
OO O MeO OMe H Me H HOH
Me OTESMe
MeO
Me
Evans, Ng JACS 1993, 115, 11446
Evans, Ratz JACS 1995, 117, 3448
Selective Deprotection:
100%
Calter, M. A. Ph. D. Thesis, Harvard University, 1993
94%
HF?pyr, pyridine
O O
Me OMe
Me
OTMSMe
TMSO
Me
Me
OMe
O O
Me OMe
Me
OHMe
TMSO
Me
Me
OMe
O
O
PivO
Me Me
OTBS
O
OTBS
Me
OMe
(NCCH2CH2O)2PO
O
O
PivO
Me Me
OH
O
OTBS
Me
OMe
(NCCH2CH2O)2PO
Evans, Gage, Leighton JACS 1992, 114, 9434
K2CO3MeOH
THF
Chem 206ROH Protecting Groups-4J. Leighton, D. A. Evans
Nakaba, T.; Fukui, M.; Oishi, T. Tetrahedron Lett. 1988, 29, 2219, 2223.
90%
TBAF, THF
Hart, T. W.; Metcalfe, D. A.; Scheinmann, F.J. Chem. Soc., Chem. ommun. 1979, 156.
76%4 h, 20 °C
(8:8:1) 44
Selective Deprotection:
CO2H
C5H11H
OTBSTESO
HTESO CO2H
C5H11H
OTBSHO
HTESO
CO2MeO
Me Me Me
O O
Me
OTBS
MeMe
OTBSO N3
Me
Me Me Me Me
CO2MeO
Me Me Me
O O
Me
OTBS
MeMe
OHO N3
Me
Me Me Me Me
KHMDSTHF, -78 °C
Calter, M. A. Ph. D. Thesis, Harvard University, 1993.
100%
1,2-Migration:
Mulzer, J.; Schollhorn, B. Angew. Chem., Int. Ed. Eng. 1990, 29, 431-432.
1,3-Migration:
4:1
1. MeOTf,2. DIBAl-H, CH
2Cl2, -78 °C
KHMDSTHF, -78 °C
94%
94%66%
80%
?
Calter, M. A. Ph. D. Thesis, Harvard University, 1993.
Bu3Sn Bu3Sn
OMe
OTBS
Me
OH
OMe
OH
Me
OTBS
Me OH
OTBDPS
Me OTBDPS
OH
O OPiv
H OTBS
Me
Bu3Sn
OMe
OH
Me
OTBS
Bu3Sn MgBr
Bu3Sn
OH
OTBS
Me
OPiv Bu
3Sn
OMe
OTBS
Me
OHNt-Bu t-BuMe
RT
AcOH:THF:H2O
K2CO3MeOH
Ref.Reagents
Tetrahedron Lett. 1989, 30, 5713.
J. Am. Chem. Soc. 1989, 111, 1923.
Chem. Pharm. Bull. 1987, 35, 3880.
BF3?OEt2, EtSH
1. BCl3, -78 °C to 0 °C.2. MeOH, -78 °C.
TMSBr, C6H5SMe
3. Lewis Acids
See Greene, p. 49.
Synthesis 1981, 396.
J. Org. Chem. 1978, 43, 4194.
J. Org. Chem. 1979, 44, 3442.
Tetrahedron Lett. 1986, 27, 2497
Cyclohexene
Cyclohexadiene
HCO2H
i-PrOH
Ref.Hydrogen Source
Hydrogen Source
Ag2O, BnBr4.
Van Hijfte, L.; Little, R. D. J. Org. Chem. 1985, 50, 3940.
Cruzado, C.; Bernabe, M.; Martin-Lomas, M. J. Org. Chem. 1989, 54, 465.
Review: David, S.; Hanessian, S. Tetrahedron, 1985, 41, 643-663.
2. BnBr, N-methylimidazole1. (Bu3Sn)2O, PhMe, ↑↓
3.
Ar = 4-MeO-Ph:
Ar = Ph:
Yonemitsu, O. et al., Tetrahedron Lett. 1988, 29, 4139.
Iversen, T.; Bundle, K. R.J. Chem. Soc., Chem. Commun. 1981, 1240.
cat. TfOH
2.
2. BnBr/PMBBr1. NaH, DMF, 0 °C
1.Principle Methods for Benzylation of Alcohols:
ROH Protecting GroupsJ. Leighton, D. A. Evans Chem 206
Ar = Ph: CH2Cl2
Ar = 4-MeO-Ph: Et2O
n nCH2Cl2, 0 °CTakano, S. et al., Synthesis 1986, 811-817.
Via Benzylidene Acetal:
Principle Methods for Deprotection:
10% Pd on C, H2EtOH/EtOAc/AcOH1. Hydrogenation
2. Transfer Hydrogenation
10% Pd on C
R OH R OBn
R OH R OBn
R PMB
R PMB
R OH R OBn
R OH R OBn
Ar O
O
NH
CCl3
O
R1 R2
Ar H
OH O Ar
R1 R2
R OBn R OH
R OBn R OH
R OBn R OH
DMF
DIBAl-H
20:1 CH2Cl2:H2O
extended conjugated polyenesstyryl
DDQ is incompatible with:
Chem 206J. Leighton, D. A. Evans ROH Protecting Groups
Selective Benzylation:
NaH, BnBrDMF, -70 °C
97%
Fukuzawa, A. et al. Tetrahedron Lett. 1987, 28, 4303.
Cruzado, C.; Bernabe, M.; Martin-Lomas, M. J. Org. Chem. 1989, 54, 465.
2. BnBr, N-methylimidazole1. (Bu3Sn)2O, PhMe, ↑↓92%
+
+?
?
-1 e-
? -1 e-
ROH + ArCHO
DDQ =
20:1 CH2Cl2:H2O
PMB Deprotection:
Yonemitsu, O. et al., Tetrahedron 1986, 42, 3021.
n n
DDQ, CH2Cl23 ? mol sieves *
Other Oxidants: NBS, Br2, CAN ((NH4)2Ce(NO3)6).Acta Chem. Scand. Ser. B, 1984, B38, 419.
J. Chem. Soc., Perkin Trans. I, 1984, 2371.
Br
OH
Me
H OH
Br
OH
Me
H OBn
O
OOH
OHHO O
OOH
OBnBnO
R O
OMe
O
O
CNCl
Cl CN
R O
OMe
R O
OMe
OH
R O
O
R
OPMBOH O
OMe
H
R O
OMe
H
R O
OMe
H
R
Ar
R
N
C
R
Me Me
Me
R R’
OPMB
R R’
ODDQ
H2O
DDQ
-H+
Ng, H. P. Ph. D. Thesis,Harvard University, 1993
81%
NaBH(OAc)3, AcOH
Et2O, 0 °C(c-hex)2BCl, EtNMe2
14 10
84%
14
14 1010
(Xq)
48
C1-C8 Subunit
1
14 10
C9-C17 Subunit
17
33
11
Polypropionate Fragment
Spiroketal Fragment
117
8
Rutamycin B(Streptomyces aureofaciens)
25
51
8
17
11
33
20
20
25
Chem 206J. Leighton, D. A. Evans ROH Protecting Groups
817
1
11
H
Et
O
OH O
Me OH
O
Me OH
O
Me
Me
H
H
MeH
O
MeHO
Me
OH
CO2H
B(OH)2Et
OH
I Me
O
Me
OH
Me
OH
Me
O
Me MeMe
Me
Me
OH
H Me
OHOH
Me
OH
H
H
X HMeMe
OH
Me
OOR
MeMe
O
Me
OH CO2R'
O
O
Me ON
O
HMe
O
CO2HOH
Ph
I
Me
O
Bn Me
Ph
OH
XqMeMe
O O
OH
Me Me Xq
OH
Ph Me
Me
O
Me
OH
Me
OH
Me
O
Me Me
14 1097%Swern Ox.1014
100% DIBAl-HCH2Cl2, 0 °C
100%CH2Cl2, 0 °C
TBSOTf, 2,6-lut.14 10
91%CSA, DMF
1014
94%Et2O, 0 °C
LiBH4, H2O 14 101014
Selective silylation was unsuccessful.
? 1014
ROH Protecting GroupsJ. Leighton, D. A. Evans Chem 206
14 10
20
33
11
17
8
1
5
25
25
5
1
8
17
11
33
20
HF?pyrpyridine, THF 99%
1. Cl3C6H2COCl DMAP, Et3N, benzene
2. (aq.) HF, CH3CN, H2O
84%
Rutamycin B
OOH
Me Me Xq
OH
Ph Me
OPMBO
Me Me H
TBSO
Ph Me
OOH
Me Me Xq
OH
Ph Me
OHOH
Me Me
O
OH
Ph Me
O
Me Me
OH
Ph Me
PMPMeO
OMe
OMe
OO
Me Me
TBSO
Ph Me
PMP
OHPMBO
Me Me
TBSO
Ph Me
OPMBO
Me Me
TBSO
Ph Me H
Me
MeTBSO
Me
TBSO Me
OH
Me
OTESOH
Me
Me
O
OTBSMe
O
OTBS
HH
HO
Me
Et
H
O
Me
MeTBSO
Me
TBSO Me
OH
Me
OHOH
Me
Me
O
OTBSMe
O
OTBS
HH
HO
Me
Et
H
O
H
Et
O
OH O
Me OH
O
Me OH
O
Me
Me
H
H
MeH
O
MeHO
Me
OH Me
Me
After protonation of the amine, coulombic repulsion insulates against formation of another cationic site in the vicinity.
94%
20:1 CH2Cl2:H2OR = PMB
R = H13
17
21
20:1 CH2Cl2:H2O
21
17
8 13
1
70%92 h(aq.) HF, CH3CN, H2O
21
25
17
8
37
33 30
26
13
1
No Reaction
24 h(aq.) HF, CH3CN, H2O
Evans, D. A.; Gage, J. R.; Leighton, J. L. J. Am. Chem. Soc. 1992, 114, 9434-9453.
ROH Protecting GroupsJ. Leighton, D. A. Evans Chem 206
1
13
26
3033
37
8
17
25
21
(+) Calyculin A
Me2NMeO NHOH
OH O Me
N
O
O
O
OH
Me
OMe
MeMe
MeMe
OHOH
CN
Me
Me
Me
OP
O(HO)
2
Me2NMeO OMe
OMe OMeMe
2NMe2N
TBSO
TBSO O
MeO MeOTESO
TESO O
OH
OH O
Me2NMeO NHOTES
TESO O Me
N
O
O
O
OTBS
Me
OMe
MeMe
MeMe
OTBSOTBS
CN
Me
Me
Me
O(PMBO)2P
O
O
O
OTBS
Me
OMe
MeMe
MeMe
OTBSOTBS
CN
Me
Me
Me
PMBO
OTBS
O
O
OTBS
Me
OMe
MeMe
MeMe
OTBSOTBS
RO
OTBS
PivO
DDQ
DDQ X
DEIPS =
Aloc =
30% overall
1. Pd(Ph3P)4, HCO2NH4, THF
2. Dess-Martin Periodinane
3. HF?pyr, pyridine, THF
Romo, D.; Meyer, S. D.; Johnson, D. D.; Schreiber, S. L.
J. Am. Chem. Soc. 1993, 115, 7906-7907.
Rapamycin
74%THF, RTHF?pyr, pyridine
Evans, D. A.; Kaldor, S. W.; Jones, T. K.; Clardy, J.; Stout, T. J. J. Am. Chem. Soc. 1990, 112, 7001-7031.
Cytovaricin
ROH Protecting GroupsJ. Leighton, D. A. Evans Chem 206
O
O
Me
OMe H
H
HMe
H O
MeHHH OOH
OH
HO
O
H MeO
H
H
MeOH
H
Me
OH
Me OH
OH
Me
OH
O
O
Me
TBSO
Me
SiO
O
H
HMe
H O
MeHHH ODEIPSO
TESO
TESO
O
H MeO
H
H
MeOTES
H
Me
Me
OTES
Me
O
t-Bu
t-Bu
Me OMe
O
N
O
O
OTBS
Me
OAloc
H
H
OTIPSOAloc
MeMe
Me ODEIPS
Me
OAloc
OMe
Me
OMe
Me OMe
O
N
O
O
O
Me
H
H
OHO
MeMe
Me OH
Me
O
OMe
Me
OMe
O
H OH
O
O
Et
Si
Et
i-Pr
~97.5% per protecting group
35%
1. DDQ, t-BuOH-CH2Cl2; Ac2O, DMAP, pyr.
2. aq. HClO4, THF, 8 days
3. LiOH, H2O/MeOH/THF, RT, 20 h
4. TBAF, THF/DMF, RT, 90 h
5. AcOH, H2O, RT, 36 h
Kishi, Y. et al., J. Am. Chem. Soc. 1989, 111, 7525, 7530.
Palytoxin Carboxylic Acid
ROH Protecting GroupsJ. Leighton, D. A. Evans Chem 206
MeO
HO O
O Me
O O
Me
O
O
O
O
OH
OHOOO
H2N
OH
Me
OH
HO OH
OHMe OH
OH OH
OH OH
OH
OH
OH
OH
OHHO
OHMe
OHHO
OH
OH HO
OH
OH
HO OH
OHMe
HOHO OH
Me HO
OHHO
OH
OH
OH
OHOH
OH
O
O Me
O O
Me
O
O
O
O
O
OOOO
N
OAc
Me
OAc
PMBO OPMB
OPMBMe OMe
OBz OBz
OAc OTBS
OTBS
OTBS
OTBS
TBSO
OTBSTBSO
OTBSMe
OTBSTBSO
OTBS
OTBS PMBO
OPMB
OPMB
PMBO OPMB
OPMBMe
BzOBzO OAc
Me TBSO
OTBSTBSO
OTBS
OTBS
OAc
OTBSTBSO
OTBS
Me3Si(CH2)2O O
H
MeMe
"That outpost of empire Australia,produces some curious mammalia,
the kangaroo rat,the blood-sucking bat,
and Aurthur J. Birch, inter alia."