Chem 206D. A. Evans
Useful LIterature Reviews
a73 Problems of the Day
Matthew D. Shair Wednesday, September 25, 2002
http://www.courses.fas.harvard.edu/~chem206/
Bucourt, R. (1973). “The Torsion Angle Concept in Conformational Analysis.” Top. Stereochem. 8: 159.
Chemistry 206
Advanced Organic Chemistry
Lecture Number 4
Acyclic Conformational Analysis-1
a73 Ethane, Propane, Butane & Pentane Conformations
a73 Introduction to Allylic Strain
a73 Reading Assignment for week
A. Carey & Sundberg: Part A; Chapters 2 & 3
Glass, R. R., Ed. (1988). Conformational Analysis of Medium-Sized Ring Heterocycles. Weinheim, VCH.
Juaristi, E. (1991). Introduction to Stereochemistry and Conformational Analysis. New York, Wiley.
Juaristi, E., Ed. (1995). Conformational Behavior of Six-Membered Rings: Analysis,Dynamics and Stereochemical Effects. (Series: Methods in Stereochemical
Analysis). Weinheim, Germany, VCH.
Kleinpeter, E. (1997). “Conformational Analysis of Saturated Six-Membered Oxygen-Containing Heterocyclic Rings.” Adv. Heterocycl. Chem. 69: 217-69.
Schweizer, W. B. (1994). Conformational Analysis. Structure Correlation, Vol 1 and 2. H. B. Burgi and J. D. Dunitz. Weinheim, Germany, V C H
Verlagsgesellschaft: 369-404.
Eliel, E. L., S. H. Wilen, et al. (1994). Stereochemistry of Organic Compounds. New York, Wiley.
O
OPredict the most stable conformation of the
indicated dioxospiran?
R. W. Hoffmann, Chem. Rev. 1989, 89, 1841-1860Allylic 1-3-Strain as a Controlling Element in Stereoselective Transformations
diastereoselection 98:2
EtO Me
O
n-C4H9
OTs
H Hn-C4H9
O Me
EtO
Can you predict the stereochemical outcome of this reaction?
Acyclic Conformational Analysis-1
R. W. Hoffmann, Angew. Chem. Int. Ed. Engl. 2000, 39, 2054-2070Conformation Design of Open-Chain Compounds
F. Weinhold, Angew. Science 2001, 411, 539-541"A New Twist on Molecular Shape"
LiNR2
Chem 206D. A. Evans Acyclic Conformational Analysis-1
The following discussion is intended to provide a general overview of acyclic conformational analysis
Ethane & Propane
The conformational isomerism in these 2 structures reveals a gratifying level of internal consistency.
? E = +3.4 kcal mol-1 (R = Me)
staggered conformation
? E = +3.0 kcal mol-1 (R = H)
+1.4 kcal mol -1+1.0 kcal mol -1
Incremental Contributions to the Barrier.
+1.0 kcal mol -1
1 (H?Me)2 (H?H)
3 (H?H)
propane
ethane
δ E (kcal mol -1)Eclipsed atomsStructure
For purposes of analysis, each eclipsed conformer may be broken up into its component destabilizing interactions.
Van derWaals radii of vicinal hydrogens do not overlap in ethane
In propane there is a discernable interaction
Ethane Rotational Barrier: The FMO View
One can see from the space-filling models that the Van der Waals radii of the hydrogens do not overlap in the eclipsed ethane conformation. This makes the
steric argument for the barrier untenable.
One explanation for the rotational barrier in ethane is that better overlap is possible in the staggered conformation than in the eclipsed conformation as
shown below.
σ* C–HLUMO
σ C–HHOMO
In the staggered conformation there are 3 anti-periplanar C–H Bonds
σ C–HHOMO σ* C–HLUMO
σ C–H
σ? C–H
In the eclipsed conformation there are 3 syn-periplanar C–H Bonds
σ? C–H
σ C–H
Following this argument one might conclude that:
R
C
HH
C
H
H
HH
RH
H
H
H
C C
C CC
H
C
H
C C
HH
MeMeMe Calculate the the rotational barrier about the C1-C2 bond in isobutane
H H
eclipsed conformation
a73 The staggered conformer has a better orbital match between bonding and antibonding states.
a73 The staggered conformer can form more delocalized molecular orbitals. J. P. Lowe was the first to propose this explanation
"A Simple Molecuar Orbital Explanation for the Barrier to Internal Rotation in Ethane and Other Molecules"
J. P. Lowe, JACS 1970, 92, 3799
F. Weinhold, Angew. Science 2001, 411, 539-541"A New Twist on Molecular Shape"
H
H
Chem 206D. A. Evans Acyclic Conformational Analysis: Butane
The 1,2-Dihaloethanes
X = Cl; ?H° = + 0.9–1.3 kcal/molX = Br; ?H° = + 1.4–1.8 kcal/mol
X = F; ?H° = – 0.6-0.9 kcal/mol
Observation: While the anti conformers are favored for X = Cl, Br, the gaucheconformation is prefered for 1,2-difluroethane. Explain.
X
C
XH
HH
H
H
C
XH
HH
X
Discuss with class the origin of the gauche stabiliation of the difluoro anaolg.
pKeq0
-1
-2
0
–1.4
1.0
10
100
?G?Keq
? G?298 = 1.4 pKeq
pKeq = – Log10Keq
? G?298 = –1.4 Log10Keq
? G? = –2.3RT Log10K
At 298 K: 2.3RT = 1.4 (?G in kcal Mol–1 )
? G° = –RT Ln KRelationship between ?G and Keq and pKa
–2.8 kcal /mol
Recall that: or
Since
Hence, pK is proportional to the free energy change
+3.6
+5.1
+0.88Ref = 0
G
E1 E2
n-Butane Torsional Energy Profile
? E = ?
Eclipsed atoms δ E (kcal mol -1)
+1.0 kcal mol -11 (H?H) +2.8 kcal mol -12 (H?Me)
? E est = 3.8 kcal mol -1
The estimated value of +3.8 agrees quite well with the value of +3.6 reported by Allinger (J. Comp. Chem. 1980, 1, 181-184)
eclipsed conformationstaggered conformation
Using the eclipsing interactions extracted from propane & ethane we should be able to estimate all but one of the eclipsed butane conformationsButane
HC
Me
H HH
Me
C MeH HH
Me
H
MeC
Me
C H H HH H H
HH Me
Me
Me
C
MeH
C
H
H
HH
HH
H
Me
Me
ener
gy
A
From the energy profiles of ethane, propane, and n-butane, one may extractthe useful eclipsing interactions summarized below:
Hierarchy of Eclipsing Interactions
δ E kcal mol -1+1.0
+1.4+3.1
eclipsed conformationstaggered conformation
+2.2
Incremental Contributions to the Barrier.
+2.01 (Me?Me)2 (H?H) δ E (kcal mol
-1)Eclipsed atoms
? E = +5.1 kcal mol-1
From the torsional energy profile established by Allinger, we should be able toextract the contribution of the Me?Me eclipsing interaction to the barrier:Butane continued
Acyclic Conformational Analysis: ButaneD. A. Evans Chem 206
MeC
H
C H H MeH Me H
HMe H
H
C CX Y
HH H H
X YH H
H MeMe Me
Eclipsed Butaneconformation
General nomenclature for diastereomers resulting from rotation about a single bond
R
C
R
R
C
R
R
CR
sp
sc
(Klyne, Prelog, Experientia 1960, 16, 521.)
sc
acac
ap
C R
R
CR
R
C
R
R
0°
+60°
+120°
180°
-60°
-120°
Torsion angle Designation Symbol0 ± 30°
+60 ± 30°+120 ± 30°
180 ± 30°-120 ± 30°
-60 ± 30°
± syn periplanar+ syn-clinal
+ anti-clinalantiperiplanar
- anti-clinal- syn-clinal
± sp+ sc (g+)
+ acap (anti or t)
- ac- sc (g-)
Energy MaximaEnergy Minima E2G
E1A
E1G
n-ButaneConformer
Nomenclature for staggered conformers: C HH HH
Me
Me
C HH MeH
H
Me
C HMe HH
H
Me
trans or tor (anti) gauche(+)or g+ gauche(-)or g-
Conformer population at 298 K: 70% 15% 15%
Let's extract out the magnitide of the Me–Me interaction
2 (H?H) + 1 (Me?Me) = +5.11 (Me?Me) = +5.1 – 2 (H?H)
1 (Me Me) = +3.1
~ 2.2
It may be concluded that in-plane 1,3(Me?Me) interactions are Ca +4 kcal/mol while 1,2(Me?Me) interactions are destabliizing by Ca 2.2 kcal/mol.
~ 3.7 ~3.9 ~ 7.6
Estimates of In-Plane 1,2 &1,3-Dimethyl Eclipsing Interactions
1,3(Me?Me) = + 3.7 kcal mol -1
? G° = +5.5 kcal mol -1? G° = X + 2Y where:
X = 1,3(Me?Me) & Y = 1,3(Me?H)
Estimate of 1,3-Dimethyl Eclipsing Interaction
1,3(Me?Me) = ? G° – 2Y = 5.5 –1.76 = + 3.7 kcal mol -11,3(Me?H) = Skew-butane = 0.88 kcal mol
-1
The double-gauche pentane conformationn-Pentane
Acyclic Conformational Analysis: PentaneD. A. Evans Chem 206
Me Me MeMe Me MeMeMe
Me Me
H H
H H
Me H
H H
H Me Me H
H Me
H H
Me Me
Me Me
Me MeMe Me
Me
Me Me
Me
Rotation about both the C2-C3 and C3-C4 bonds in either direction (+ or -):
tg+ g-g+ g-t
g-g-
tg-
g+g-
g+t
g+g+ t,t
From prior discussion, you should be able to estimate energies of 2 & 3 (relative to 1).On the other hand, the least stable conformer 4 requires additional data before is
relative energy can be evaluated.
Anti(2,3)-Anti(3,4)
1
1
1
1
3 3
3
3
5 5
5
5
Gauche(2,3)-Anti(3,4)
Gauche(2,3)-Gauche(3,4)Gauche(2,3)-Gauche'(3,4)double gauche pentane
1 (t,t)
4 (g+g–) 3 (g+g+)
2 (g+t)
The new high-energy conformation: (g+g–)
X Y
Acyclic Conformational Analysis: Natural ProductsD. A. Evans Chem 206
The syn-Pentane Interaction - Consequences
(R. W. Hoffmann, ACIE 1992, 31, 1124-1134.)
R R'
Me Me
R R'
Me Me
R R'
H MeMe H
Me Me
R' HH R
R Me
H R'Me H
Me R'
R HH H
≡
≡
tt g-g-
tg gt
or
or
Consequences for the preferred conformation of polyketide natural products
Analyze the conformation found in the crystal state of a bourgeanic acid derivative!
Me
Me Me
OH
Me
O
OR
Bourgeanic acid
Ferensimycin B, R = MeLysocellin, R = H
Lactol & Ketol Polyether Antibioitics
RHO O O
O
Me Me
OH O
Et
Me
HOH O
Me Me
Me OH Et EtOHH
Me
The conformation of these structures are strongly influenced by the acyclic stereocenters
Alborixin R = Me; X-206 R = H
O O O O
OHMe
Me
Me OH
Me Me
O C
Me
OH OHOH
O O
Et OHMe
H
MeOH
Me
MeH
R
Internal H-Bonding
The conformation of these structures are strongly influenced by the acyclic stereocenters and internal H-bonding
O O O O
OHMe
Me
Me OH
Me Me
O C
Me
O OHOH
O O
Et OHMe
H
MeOH
Me
MeH
R
Metal ion ligation sites (M = Ag, K)
M
Synthesis: Evans, Bender, Morris, JACS 1988, 110, 2506
D. A. Evans Chem 206
O O O O
OHMe
Me
Me OH
Me Me
O C
Me
OH OHOH
O O
Et OHMe
H
MeOH
Me
MeH
Internal H-Bonding
O O O O
OHMe
Me
Me OH
Me Me
O C
Me
O OHOH
O O
Et OHMe
H
MeOH
Me
MeH
R
Metal ion ligation sites (M = Ag, K)
M
Conformational Analysis: Ionophore X-206/X-rays
X-ray of Ionophore X-206 ? H2O X-ray of Ionophore X-206 - Ag+ - Complex
D. A. Evans Chem 206Conformational Analysis: Ionophore X-206/X-ray overlay