Chem 206D. A. Evans
Matthew D. Shair Friday, December 20, 2002
http://www.courses.fas.harvard.edu/~chem206/
Reading Assignment for this Lecture:
Introduction to Photochemistry
Chemistry 206
Advanced Organic Chemistry
Lecture Number 36
Introduction to Photochemistry
a73 Introduction to Electronic Excitationa73 Franck-Condon Principle, Jabolonski Diagram
a73 Photochemistry of Olefins and Dienesa73 Photochemistry of Carbonyl Compounds
a73 Norrish Type-I & II Processesa73 Paterno-Büchi Reaction
a73 [2 + 2] Photocycloaddition of Olefins
Carey, and Sundberg, Advanced Organic Chemistry, Part A fourth Edition, Chepter 13, "Photochemistry", pp 743-789
"New insights into an old mechanism: [2 + 2] photocycloaddition of enones to alkenes.", Schuster, D. I.; Lem, G.; Kaprinidis, N. A. Chem. Rev. 1993, 93, 3.
"Stereoselective intermolecular [2+2]-photocycloaddition reactions and their application in synthesis.", Bach, T. Synthesis 1998, 683-703.
"[2+2] photocycloaddition/fragmentation strategies for the synthesis of natural and unnatural products.", Winkler, J. D.; Bowen, C. M.; Liotta, F. Chem. Rev. 1995, 95, 2003-
2020.
"Synthetic Applications of Intramolecular Enone-Olefin Photocycloadditions.", Crimmins, M. T. Chem. Rev. 1988, 88, 1453.
"The meta photocycloaddition of arenes to alkenes.", Cornelisse,Chem. Rev. 1993, 93, 615.
Worthwhile General Reviews
Chem 206, 1999 Final Exam Question. Provide a mechanism for the followingtransformation that explains the observed stereochemistry (Marshall, JOC, 1971, 214).
HO
Me hν
PhH O
Me
"Stereoselective intermolecular [2+2]-photocycloaddition reactions and their application in synthesis.", Bach, T. Synthesis 1998, 683-703.
(handout)
"[2+2] photocycloaddition/fragmentation strategies for the synthesis of natural and unnatural products.", Winkler, J. D.; Bowen, C. M.; Liotta, F.
Chem. Rev. 1995, 95, 2003-2020. (handout)
O
Me
hν
Me
OMechanism??
NO2
O HN
O R
hν R–NH2 + CO2 NO
CHO
The above reaction forms the basis of a photo-labile protecting gtroup strategy for amines and alcohols
Chem 206B. Breit, D. A. Evans Introduction to Photochemistry
Background ReadingCarey, and Sundberg, Advanced Organic Chemistry, Parts A
Third Edition, Chepter 13, "Photochemistry", pp 729-765
"New insights into an old mechanism: [2 + 2] photocycloaddition of enones to alkenes.", Schuster, D. I.; Lem, G.; Kaprinidis, N. A. Chem. Rev. 1993, 93, 3.
"Stereoselective intermolecular [2+2]-photocycloaddition reactions and their application in synthesis.", Bach, T. Synthesis 1998, 683-703.
"[2+2] photocycloaddition/fragmentation strategies for the synthesis of natural and unnatural products.", Winkler, J. D.; Bowen, C. M.; Liotta, F. Chem. Rev. 1995, 95, 2003-
2020."Synthetic Applications of Intramolecular Enone-Olefin Photocycloadditions.", Crimmins, M.
T. Chem. Rev. 1988, 88, 1453."The meta photocycloaddition of arenes to alkenes.", Cornelisse, J. Chem. Rev. 1993, 93,
615.
Worthwhile General Reviews
10-5–10-6 kcal/mol2-12 kcal/mol
40-140 kcal/molElectronic StatesFunctional Groups
H & C ConnectivityNMRInfrared
Ultraviolet-Visible
Energy RangeInformationBasic Types
a73 Important Regions of the Electromagnetic Spectrum
Electrons are excited to higher energy levels when a molecule absorbsa photon of energy equal to the energy difference between the ground-
state electronic level and the excited state electronic level.
E = hν = h cλ
a73 Light-induced electron excitation
E (kcal/mol) = 2.86 x 10+4
Knowing the absorption wavelength in nm, you can calculate the the energy
λ( in nm)
for λ = 200 nm: E = 143 kcal
for λ = 700 nm: E = 40.9 kcal
for λ = 200 nm: E = 143 kcal
for λ = 700 nm: E = 40.9 kcal
?E electronic
σ? A–B
σ A–B
r 0 internuclear distance
Consider a simple diatomic molecule A–B
A B
a73 Morse Curve
Pote
ntial
Energ
y
r 0 (internuclear distance)
E electronic
?E vibration
excited state
ground state
a73 Franck-Condon Principle: Upon light-induced electronic excitation, only the electrons are reorganized; the heavier nuclei stay in their ground-state
geometry. (Vertical Transitions)
Time scale: electron excitation: 10-15 s Time scale: nuclei movement: 10-12 s
B
A
Chem 206B. Breit, D. A. Evans Introduction to Photochemistry
Summary of Photochemical Processes
Energ
y
r 0 (internuclear distance)
S0
S1
T1
Excitation(+ hν1) Fluorescence(– hν2)
Intersystemcrossing
Phosphorescence(– hν3)
nonradiativedecay
(–?)
Substrates Absorption max (nm)190–200
220–250250–270
270–300270–280
310–330280–300
250–280
Simple alkenesAcyclic dienes
Cyclioc dienesStyrenes
Saturated ketonesUnsaturated ketones
Aromatic ketones (aldehydes)Aromatic compounds
Pyrex Glass 300 nmabsorbs
Quartz Glass 200 nmabsorbs
transmits
transmits
Hg lamp 254 nm, 313 nm, 366 nm
M = 2S + 1 S = Σ s M: multiplicityS: total spin
s: spin of a single electron (±1/2)
S0 S1 or S2T
1
allowedforbiddenS
0
σ σ?pi pi*
n pi*
vacuum UV only (?E large)
UV(VIS) allowedforbidden (Does not mean impossible. Implies only that
probability for that particular transition is low.)
Selection RulesNot all excitations/transitions are allowed (have high probability):
(a) Spin-forbidden: Transitions between states of different multiplicity M
(b) Space-forbidden: transitions between orbitals which do not overlap.
a73 Sensitizer: e.g. acetophenone, benzophenone
Small ?E between S0 & S1. Facile excitation into S1 followed by ISC into T1.Interaction with substrate:
Substrate (S0) + Sens. (T1) Substrate (T1) + Sens. (S0)
a73 Triplet-Quencher: e.g. O2, piperylene Me
Reacts immediately with molecules in T1 excited state, depopulate T1
Quencher (S0) + Substrate (T1) Quencher (T1) + Substrate (S0)
400 nm
400 nm
Spins Paired: Singlet State: S = Σ s = (+1/2 –1/2) = 0Spins Unpaired: Triplet State: S = Σ s = (+1/2 +1/2) = 1
Substrate reacts via S1 excited state.
Substrate reacts via T1 excited state.
Substrate reacts vi S1 excited state.
Chem 206B. Breit, D. A. Evans Introduction to Photochemistry
Jablonski Diagram
Chem 206D. A. Evans Introduction to Photochemistry
Photochemical Reactions
Frontier MO Description
Fleming, I. "Frontier Orbitals and Organic Chemical Reactions", Chapter 6, "Photochemical Reactions"
Reactions of Olefins
pi*
pi
concerted
The [2 + 2] cycloaddition of two olefins exhibits the option of being concertedif one of the olefins reacts out of its photochemically excited state.
a54
bonding
bonding
HOMO
+ energy
a54
+
light a54
pi
pi* newHOMO
light
Consider [2 + 2] cycloaddition: Photochemical activation
LUMO
CC CC
CC
CC
C C
C
C
C
C
CC
CC
The rotatory motion of ring closure may be reversed by photo-activation
controtation1e-
Ψ4 (hexatriene HOMO)2e-
2e-1e-
2e-2e-
2e-
light
Hexatriene:
disrotation
Ψ3 (hexatriene HOMO)
HMe H Me
H
Me
H
Me
Me
H
H
MeMe
HMe H
Ψ4
Excited State Geometry
pi*
pipi
pi* newHOMO
light CRH
R
H
Excited state (1S and 3T)
Rotation
Me
Me
RO
R
H
Me
Me
RO
R
heat
disrotation
light
controtation Me
Me
RO
R
H
One of the first cases where heat and light induced electrocyclizations followed different pathways.
Havinga, Tetrahedron, 1961, 16, 146.
Me
Me
RO
R
H
Me
Me
RO
R
H
Ψ4
Ψ1
Ψ3
Ψ3
Ψ1
Chem 206B. Breit, D. A. Evans Introduction to Photochemistry
Hmm2 = – 33 kcal/moltrans-cyclohexene
cis-cyclohexene
Me
Me
MeMe OO hν
benzenet-BuOH MeCH
2
MeMe OO
85% yield
Evans et. al. unpublished results, 1972
HO
Me hν
PhH O
Me
(Marshall, JOC, 1971, 214).
Cis–Trans Isomerization
Cis & trans olefins may be interconverted by either direct or sensitized irradiation
CRH
R
HCR
H C HR hνsensitizer
3
CHR C HR
sensitizer: benzene
(0S)benzene hν (1S)-benzene (3T)-benzene(0S)-olefin (0S)-benzene(3T)-olefin
Me hν
sensitizer
Me
(trans-cyclohexene)
Me
H
Me
H
ORSensitized Photohydration
CH2
HReview: Marshall, Accounts Chem. Res 1969, 2, 33
Ground state trans cyclohexene is now sufficiently basic to deprotonate alcohols
Me
H
Me
H
OR
CH2
H
Product Partitioning
Me
Me
Me
MeMe
Me
Me
Me
Me hνsensitizer
HOH tBuOH
28%
72%
70%
30%
Kropp, JACS 1966, 88, 4091Marshall, JACS 1966, 88, 4092
Me
Me Me
hν
xylenet-BuOH/H2O
Me
CH2Me50%
Marshall
Me
Me Me
Me
MeMe
–H+
ROH
ROH
RO
Chem 206B. Breit, D. A. Evans Introduction to Photochemistry
Excited State Geometry of Dienes
CCH C HRC
HRH
light CH
R
HCC HRH
Allylmethylene diradical
CCH C RHC
HHR
light
cis-cis
CCH C HRC
HHR cis-trans
CCH C HRC
HRH trans-transnot observed
Explain why trans-trans isomer is not observed in this photosiomerization
CH
Me
HCC HHH
CCH C HMeC
HHH
light Me Me
H
Me
H
direct
H2C
Me
Ph
Ph
hυ
PhPhsensitized
hυ
directPhPh
Rationalize the course of the sensitized transformation
O
H H
hν
Photochemistry of Carbonyl Compounds
Photochemical excitation of carbonyl group: n → pi*
*
planar pyramidal
dipole: 2.34D dipole: 1.56D
pi*
pi
n
groundstate n - pi*singlet n - pi*triplet pi - pi*singlet pi - pi*triplet
Note the diradical character of the excited states. Photochemicallyexcited carbonyl compounds undergo many of the reactions typical of
radical species.
n → pi*
S1
T1
C O
HH
80–85 kcal/mol
75–80 kcal/mol
C O
C O
Chem 206B. Breit, D. A. Evans Introduction to Photochemistry
Norrish-type I reactions ( -cleavage)
O
R R' hνn → pi*
O
R R'
*
occurs from bothS1 and T1
O
R + R'
Regioselectivity of bond cleavage: Depends on relative stability of the two radicals formed.
O
Barton, JACS 1985, 107, 3607.
Ph hν
O
Ph
Hhere: benzyl vs. phenyl radical
O
Ph
Ph
hν
Ph
Ph
- CO Quinkert, TL 1963, 1863.
C/O and C/N bond cleavage: Photo–Fries rearrangement
O
O
R hν OH
O
R
OH
R
O
+
1 : 1
O
O
R
phenoxy radical(resonance stabilized)
solvent cage
O
O
R O
O
R
Reaction occurs readily if stabilized radicals are formed.
Ph
H
O
Σ products(decarbonylation,
recombination, disproportionation)
NPh
O
hν
N
OH
NH
O
N
O
Chem. Ber. 1969, 342.
Norrish-type II reactions
Photo-excitation of carbonyl is followed by hydrogen atom abstraction.
Acc. Chem. Res. 1971, 4, 168.
Intermolecular (Reaction with solvent)
Ar
O
R hν
O
Ar R
* S-H OH
Ar R
*
+ S
Dim.
OHOH
Ar ArR R
OHOH
Ar RR ArPinacol-type productsIntramolecular (a) Photoenolization
CH2R
O
Ph
C
O
Ph
H CHROH
Ph
CHR
OD
Ph
CHR
O
Ph
hν
*
H-Abstr.
D
C/N bond cleavage: Aza–Fries rearrangement
HR
Chem 206B. Breit, D. A. Evans Introduction to Photochemistry
Norrish-type II reactions continued...gamma H Abstraction"Femptosecond Dynamics of Norrish Type-II Reaction: Nonconcerted Hydrogen Transfer
and Diradical Intermediiacy", Zewail et. al., Angew. Chemie, Int. Ed. 2000, 39, 260
Me
O
Me
OH
+76
+37 MeOH
+26OHMe
lifetime: 900 ns
a73 Rxn may take place out of either singlet or triplet statea73 Fragmentation to enol is favored entropically
a73 The decomposition of the diradical is essentially barrierlessa73 Fragmentation to enol is favored entropically
a73 Fagmentation similar to McLafferty Rearrangement in mass spectroscopy
Me Me
O
barrier+88
Remote hydrogen abstraction
O
Me H
Me
H
R
O CH2
O
hν
O
Me H
Me R
O CH2
OH H(D)
O
Me H
Me R
O CH2
OH
H(D)
Breslow, Acc. Chem. Res. 1980, 13, 170.
H H
H
hν
Paterno-Büchi Reaction
Photochemical [2+2] cycloaddition of ketones/aldehydes with olefins: The general reaction:
O
R + hν
O
R +
*
aliphatic via S1 aromatic via T1
O
R
triplet orsinglet diradical
general: via most stable diradical.
O
R
Oxetane
With some aliphatic aldehydes stereospecific reactions have been observed:
O
Me
*S1
O
O
Me
Me
Me
Me
H Me
H Me
O
Mevia singlet-
diradical
bond formationfaster than
rotation!
Me
Me
JACS 1991, 93, 1277; TL 1964, 1425; JACS 1968,
90, 6863; JACS 1972, 94, 8761.
Aromatic aldehydes/ketones show stereo-convergent behavior:
T. Bach, Liebigs Ann. 1997, 1627.(a) simple diastereoselectivity
R2
R1 OTMS
R1 OTMS
R2
O
Ph
*T1+
O
Ph
*T1+
Ar O R1
OTMS
R2
life time long enoughto undergo bond rotation
O R2
OTMSR1Ph
T1
ISC to S1
recomb.
thermodyn.most stable
product formedAr
HH
R2R1 OOTMS(Main product also for R2 = H)
dr > 9:1
Reviews: Scharf, ACIEE 1991, 30, 477; Ynoue, Chem. Rev. 1992, 92, 741.
H
H
H
H
CH2
Chem 206B. Breit, D. A. Evans Introduction to Photochemistry
Induced facial diastereoselectivity
R1 OTMS
Me
RL* PhCHOhν O
OTMSR1Ph
RL
MeH
up to 95:5(rel. config. atC1–/C3)
controls rel. config.
1
3 H
OTMSR1
Me
RL
OArH
A1,3 minimizedBach et al.
Application in natural product synthesis
O
Me Me
O
OBn+ hν
O
Me
O
Me
H
OBn
head to head, exo
(±) Asteltoxin
Schreiber, JACS 1984, 106, 4186;Science 1985, 857; JACS, 1983, 105,
660.
Transannular reaction
OAcO AcO
O
Mehν
Paterno-Büchi Reaction conbtinued....
H
"Stereoselective intermolecular [2+2]-photocycloaddition reactions and their application in synthesis.", Bach, T. Synthesis 1998, 683-703.
Photocycloaddition of Enones
"New insights into an old mechanism: [2 + 2] photocycloaddition of enones to alkenes.", Schuster, D. I.; Lem, G.; Kaprinidis, N. A. Chem. Rev. 1993, 93, 3.
"[2+2] photocycloaddition/fragmentation strategies for the synthesis of natural and unnatural products.", Winkler, J. D.; Bowen, C. M.; Liotta, F. Chem. Rev.
1995, 95, 2003-2020.
"Synthetic Applications of Intramolecular Enone-Olefin Photocycloadditions.", Crimmins, M. T. Chem. Rev. 1988, 88, 1453.
Reaction Regiochemistry
O
hνR
O R
++
head-to-head (HH)
Favored: R = EWG
HN
O
Me
Me
R hν
R = CNR = OEt
HN
O
Me
Me
R HN O
Me
Me R
82 : 1805 : 95
O
Rhead-to-tail (HT)
Favored: R = Donor
Ring Fusion Stereochemistry
O
OMe
hν
MeO
O
OMeOMe
H
H49%
+
O
OMeOMe
H
H21%
+ 6% other products
Corey JACS 1964, 86, 485
It is hard to rationalize the trans ring fusionstereochemistry through the intervention of a
1,4-diradical
Chem 206B. Breit, D. A. Evans Introduction to Photochemistry
Photocycloaddition of Enones continued.....
O OO hν
O
O
O hν O
n–pi*
a70
These diradicals, formed in approximately equal amounts, partition to products and reactants
Products
Identifiable Intermediates
H
O
H
O
hν a70
T1H2C C CH2
H
O
96%a73 Intramolecular reactions work nicely
O
Me
Me
Me
hν O
Me
Heathcock, JOC 1985, 50, 4135.
CH3O
CH3 Me
hν CH3
CH3
CH3O
Oppolzer, JACS 1978, 100, 2583.
Me
Me
Photochemical Rearrangement of 4,4-Dialkyl-Substituted Cyclohexenones
Review: Schuster in "Rearrangements in Ground and Excited States", Vol. 3, de Mayo (Ed.), Academic Press, NY 1980, Chapter 17.
The reaction:
O
R R
2
34 4 3
2
O
R R
a73 Reaction is stereospecifica73 can be described as a concerted [pi2
aσ2a] CA
O
R1 R2 H HR2R1
O
a73 for R1, R2 = Aryl non-concerted mechanisms compete
Inversionof
Configuration
O
H3C n-Pr
O
Me n-PrExample
hν
hν
Cyclohexadienone Rearrangement
Zimmerman, ACIEE 1969, 8, 1; Acc. Chem. Res. 1978, 11, 65; de Mayo, Chapter 18.
O
Ph Ph
hν
PhPh
O
O
T1
Ph Ph
O
Ph Ph
O
Ph Ph
O
Ph
Ph
Chem 206D. A. Evans, T. B. Dunn [2+2] Photocycloaddiltion: Synthetic Applications
H
(±)-Epiprecapnelladiene
Pattenden, G., et al. J. Chem. Soc., Chem. Comm. 1980, 1195.Pattenden, G., et al. J. Chem. Soc., Perkin Trans. I 1983, 1913.
OMe
OMe
O
OBz
Me
Three steps
56%
OMe
OBz
H
hν, Pyrexhexane, rt, 6 h98%
1) LiHMDS, MeI2) KOH, DMSO
MeH
H
MeMe O
O
36%
Me
H
MeMe
Me
Six steps
28%
Stereochemical rationale (Pattenden)
O
OBz
H Me
H
O
OBz
H Me
Irradiation of the enol acetate resulted in a 92:8 mixture, presumably due to the smaller size of
the acetate versus benzoate. One diastereomer
Epiprecapnelladiene
(+)-Longifolene and (+)-Sativene
Oppolzer, W., et al. J. Am. Chem. Soc. 1978, 100, 2583.Oppolzer, W., et al. Helv. Chim. Acta. 1984, 67, 1154.
3 steps
77%
O
O
OBnOCOOH
H
hν, Pyrex,cyclohexane,
rt, 2 h
3:2 epimeric mixture at starred carbon
95% ee
H2, Pd/CAcOH
96%
O
OCO2Bn
O
OCO2Bn
H
HO H
O
H
H
Me Me
Me
Me
MeMe(+)-Longifolene
(+)-Sativene
Six steps47%
Ten steps
18%
85% ee
H
*
Chem 206D. A. Evans, T. B. Dunn [2+2] Photocycloaddiltion: Synthetic Applications
H
(±)-Pentalenene, (±)-Pentalenic Acid & (±)-Deoxypentalenic Acid from a Common Precursor
COOEt
O
Me
Me
COOMe
Me
O
MeMe
Me
COOMeCOOEt
H
hν, uranium glasshexane, rt, 36 h
73%
9
Me O
CO2R
Me Me
COOEt H
Me O
CO2R
Me Me
COOEt
HH
Consistent with predominant stereochemistry at C-9
Stereochemical rationale (Crimmins)
Crimmins, M.T., et al. J. Org. Chem. 1984, 49, 2076.Crimmins, M.T., et al. J. Am. Chem. Soc. 1986, 108, 800.
C-9 drMe
Eti-Pr 13:117:1>20:1
O
MeMe
Me
COOMeCOOEt
H
9
+
COOMe
COOMeMe
Me
3 steps44%
Varying the size of the indicated alkyl group
influenced the stereoselectivity
major (93%)
minor (7%)
R=H, R'=Me, Pentalenene, nine steps, 27%
R=OH, R'=COOH, Pentalenic acid, eight steps, 42%
R=H, R'=COOH, Deoxypentalenic acid, eleven steps, 22%
R
MeMe
Me H
R'
H
StepsMe
Me OH COOMe
COOEt
Me
Li, NH3, THF90%
Crimmins, M.T. et al. J. Am. Chem. Soc. 1999, 121, 10249.Crimmins, M.T. et al. Tetrahedron Lett. 1989, 30, 5997.
(±)-Ginkgolide B
8 steps
OO COOEt
TESO
OO
TESO
COOEthν, uranium glasshexane, rt, 18 h
100%t-Bu
O
EtOOC
t-Bu
OO
t-Bu
O
O
4 steps49%
OO
t-Bu
O
O
OH
OMe OMe
O O
O
O
OO
O
t-Bu
H
OHHOH
MeHO
dimethyldioxirane
2) MeOH, TsOH,
89%
1) H2O, TsOH
CH(OMe)3
12 steps11%
Ginkgolide B
One isomer
71%
R