Chemistry 206
Advanced Organic Chemistry
Handout–35A
The Use of Fischer Carbenes in Organic
Synthesis
Matthew D. Shair Monday ,December 16, 2002
Brian Connell
Evans Group Seminar, February, 1999
"...every synthetic chemist is well advised to follow this fascinating field with appropriate
attention."
- Schmalz, H.-G., ACIEE, 1994, 303.
The Use of Fischer Carbenes in Organic Synthesis
Brian Connell
Evans Group Seminar
2/12/99
? Introduction and Fundamentals
? Reactions
Outline
? Cyclopropanation
? Diels-Alder Cycloaddition
? Other Cycloadditions
? Dotz Reaction and Analogs
? Photochemistry
? Conjugate Additions
? Other Reactions
"...every synthetic chemist is well advised to follow this fascinating field with appropriate attention."
- Schmalz, H.-G., ACIEE, 1994, 303.
General References:
Wulff,Organometallics, 1998, 3116.
Wulff,Comprehensive Organic Synthesis, Vol. 5, Chap 9.2: Metal Carbene Cycloadditions, Pergamon Press, 1991.
Wulff, Comprehensive Organometallic Chemistry II, Vol. 12, Chap 5.3: Transition Metal Carbene Complexes: Alkyne
and Vinyl Ketene Chemistry, Pergamon Press, 1994.
Hegedus, Comprehensive Organometallic Chemistry II, Vol. 12, Chap 5.4: Transition Metal Carbene Complexes:
Photochemical Reactions of Carbene Complexes, Pergamon Press, 1994.
Introduction
? Definition: electrophilic, heteroatom stabilized complexes having formal metal-to-carbon double bonds
? Group 6 metals (Cr, Mo, W) are the most common metals used.
? First prepared by Fischer (ACIEE, 1964, 580):
Cr(CO)
6
RLi
O
(CO)
5
Cr R
Li
O
(CO)
5
Cr R
N(CH
3
)
4(CH
3
)
4
NBr
"hard" alkylating reagents
(CH
3
)
3
OBF
4
, CH
3
COBr
OCH
3
(CO)
5
Cr
R
can be prepared on
large scale and stored
for long periods
? excellent yields for all steps
? air, silica stable
? crystalline, easy to handle
? colored (yellow to red)
? cheap starting materials (20-50¢/mmol)
B. Connell
Fischer Carbenes Chem 206
01/02 12/20/99 3:49 PM
B. Connell
Fischer Carbenes
Chem 206
Dotz, Synlett, 1991, 381.
Nitrogen Analogs
O
(CO)
5
Cr R
N(CH
3
)
4 H
3
CBr
O
O
(CO)
5
Cr
R
CH
3
O
NR
2
(CO)
5
Cr
R
NHR
2
K
2
Cr(CO)
5
O
R
1
NR
2
O
NR
2
R
1
(CO)
5
Cr
TMSCl
OTMS
NR
2
R
1
(CO)
5
Cr
NR
2
(CO)
5
Cr
R
1
(CO)
5
Cr
OCH
3
CH
3
(CO)
5
Cr
N
CH
3
H
3
C
CH
3
O
N
CH
3
H
3
C
CH
3
Bond Lengths
C
carbene
- O = 1.33 ?
C
carbene
- Cr = 2.04 ?
Cr - CO
cis
= 1.86 - 1.91 ?
Cr - CO
trans
= 1.87 ?
IR Frequencies
vCO ~2070, 1992, 1953 cm
-1
1
H NMR
C
carbene
- CH
3
= ~5
13
C NMR
C
carbene
320-360 ppm
Bond Lengths
C
carbene
- N = 1.31 ?
C
carbene
- Cr = 2.16 ?
Cr - CO
cis
= 1.90 ?
Cr - CO
trans
= 1.85 ?
IR Frequencies
vCO = ~2060, 1970, 1940 cm
-1
1
H NMR
C
carbene
- CH
3
= ~3.2
13
C NMR
C
carbene
= 250-290 ppm
Bond Lengths
C
carbonyl
- N = 1.29 ?
C
carbonyl
- O = 1.23 ?
IR Frequencies
vCO = ~1650 cm
-1
1
H NMR
C
carbonyl
- CH
3
= ~2.1
13
C NMR
C
carbonyl
= ~165 ppm
Selected Physical Data
03/04 12/20/99 4:21 PM
Major Contributors
Kekule-Institut fur Organische Chemie und Biochemie der Universitat Bonn
Born1943
Ph.D. Technical University of Munich (E.O. Fischer) 1971.
Habilitation Technical University of Munich 1980.
Professor of Organometallic Chemistry University of Marburg 1986-1992, Dean of the Faculty 1990-1
Professor of Organic Chemistry University of Bonn since 1992.
Karl's research is focused on the following areas:
? Synthetic Organometallic Chemistry (metal carbenes and planar-chiral arene complexes)
? Physical Organic and Organometallic Chemistry
(distorted fused arenes and cyclophanes: synthesis and structure-chiroptics correlation,transition met
initio-calculations on organometallic complexes and intermediates)
? Metal-Mediated Organic Synthesis (stereoselective C-C formation via metal carbenes, diastereosele
cyclopentannulation)
? Organometallic Catalysis (chromium-catalyzed cyclopropanation, axial-chiral and redox-active biaryl
? Transition Metal Modified Sugars (metal glycosylcarbenes and glycosylidenes: synthesis and applica
disaccharide mimetics,conformation of acyclic metal modified sugars)
Ernst Otto Fischer
Nobel lecture: On the way to carbene and carbyne complexes. Angew. Chem. (1974), 86(18), 651
I was born in Solln, near Munich, on 10 November 1918 as the third child of the Professor of Physics at the Technical C
Fischer (died 1953), and his wife, Valentine, née Danzer (died 1935). After completing four years at elementary school
1929, from which I graduated in 1937 with my Abitur. Following a subsequent period of "work service" and shortly befor
compulsory military service, the Second World War broke out. I served in Poland, France and Russia. In the winter of 1
Chemistry at the Technical College in Munich during a period of study leave. I was released by the Americans in the au
study of Chemistry in Munich after the reopening of the Technical College in 1946. I graduated in 1949. I took up a posi
Professor Walter Hieber in the Inorganic Chemistry Department, and under his guidance I dedicated myself to working o
Mechanisms of Carbon Monoxide Reactions of Nickel II Salts in the Presence of Dithionites and Sulfoxylates". After rec
was invited by Professor Hieber to continue my activities at the college and consequently chose to specialise in the stud
organo-metallic chemistry. I wrote my university teaching thesis on "The Metal Complexes of Cyclopentadienes and Ind
lecturer at the Technical College in 1955 and in 1956 I completed a scientific sojourn of many months in the United Stat
Professor at the University of Munich. After turning down an offer of the Chair of Inorganic Chemistry at the University o
Professor at the University of Munich in 1959 . In 1957 I was awarded the Chemistry Prize by the G?ttingen Academy o
German Chemists awarded me the Alfred Stock Memorial Prize in 1959. In 1960 I refused an appointment as Senior Pr
Inorganic Chemistry at the University of Marburg. In 1964 I took the Chair of Inorganic Chemistry at the Technical Colle
vacated by Professor Hieber. In the same year I was elected a member of the Mathematics/Natural Science section of t
Sciences; in 1969 I was appointed a member of the German Academy of Scientists Leopoldina. In 1972 I was given an
Faculty of Chemistry and Pharmacy of the University of Munich.
Lectures on my fields, particularly those on metallic complexes of cyclopentadienes and indenes, metal-pie-complex s o
di- and oligo-olefins and most recently metalcarbonyl carbene and carbyne complexes, led me on lecture tours of the U
Venezuela, Brazil, Israel and Lebanon, as well as numerous European countries, including the former Soviet Union. In 1
the University of Wisconsin, Madison,Wisconsin, USA; in 1971 Visiting Professor at the University of Florida, Gainesville
Inorganic Chemistry Pacific West Coast Lecturer. In the spring of 1973 I held lectures as the Arthur D. Little Visiting Pro
Institute of Technology, Cambridge, Massachusetts, USA; and that was followed by a period when I was Visiting Disting
University of Rochester, Rochester, New York, USA.
Karl Heinz Dotz
01a contributors1 2/13/99 8:42 AM
University of
Wisconsin-Madison
Born 1942, St. Louis, MO
B.S. 1963, St. Louis
University
Ph.D. 1968, MIT
Chuck received a Ph.D. in
organic chemistry from MIT
in 1968, where he studied
organocopper chemistry
under the direction of
Professor George M.
Whitesides. After spending
6 months at Harvard as an
NSF postdoc with Paul D.
Bartlett he joined the faculty
at Wisconsin. Chuck is
interested in studying the
mechanisms of
organometallic reactions
and in developing an
understanding of
homogeneous catalysis. In
addition, he is trying to
design new organometallic
reagents for synthesis and
new heterobimetallic
catalysts.
University of California at Santa
Cruz
Claude was born in Zurich,
Switzerland. He received his
undergraduate and Ph.D.
degrees from the Swiss Federal
Institute of Technology (ETH)
with Heinrich Zollinger.
Following a postdoctoral year
with Manfred Eigen at the Max
Planck Institute for Biophysical
Chemistry in Gottingen, he
joined the chemistry faculty at
the University of California at
Santa Cruz in 1967, where he
has been a professor of
chemistry since 1977. His main
research interests are in
physical organic chemistry and
center on problems of
mechanism, structure-reactivity
relationships, intrinsic barriers of
reactions, and catalysis in
organic and organometallic
reactions, particularly proton
transfer reactions, nucleophilic
addition to electrophilic alkenes,
nucleophilic vinylic substitution
and reactions of Fischer
carbene complexes.
University of Chicago
Born Eau Claire,
Wisconsin, 1949
B. S. 1971, University of
Wisconsin-Eau Claire
Ph.D. 1979, Iowa State
University
Professor Wulff received
his Ph.D. degree from
Iowa State University in
1979 with Professor
Thomas Barton. After NIH
postdoctoral work with
Martin Semmelhack at
Princeton University, he
accepted a position at the
University of Chicago in
1980. Professor Wulff's
research interests are in
the applications of
organometallics in organic
synthesis as both reagents
and catalysts.
Colorad
Born Cle
B.S, 196
M.A. 196
Ph.D., 1
Lou was
Clevelan
rural Oh
temptati
undergra
Pennsyl
where s
redox ch
Albert H
at Harva
chemistr
and a N
Stanford
studying
homoge
moved t
Universi
today as
His rese
the use
organic
Major Contributors
University of Oviedo
Jose Barluenga obtained his
Ph.D. degree (solvomercuration
of dienes) at the University of
Zaragoza in 1966 under the
direction of Professor V.
Gomez-Aranda. He spent 3.5
years as a postdoctoral fellow at
Max Planck Institut Fur
Kohlenforschung, Mulheim, in the
group of Professor Hoberg
studying aluminum chemistry. In
1970 he took a position as a
research associate at the
University of Zaragoza, where he
was promoted to Associate
Professor in 1972. In 1975 he
moved to the University of
Oviedo as Professor of Organic
Chemistry in the Department of
Organometallic Chemistry. His
major research interest is
focused on the development of
new synthetic methods in the
area of heterocyclic chemistry
and functionalized systems.
Charles P. Casey
Claude F. Bernasconi
William D. Wulff
Jose Barluenga
Louis S
01b contributors2 2/13/99 8:40 AM
B. Connell
Fischer Carbenes
Chem 206
Recurring Themes
OCH
3
R
CO
CO
OC
OC
CO
Cr
The Wall of CO
? (CO)
5
Cr is sterically very large
Resonance
(CO)
5
Cr
OCH
3
R
(CO)
5
Cr
OCH
3
R
?Rotation about heteroatom carbene
bond is restricted by 14-25 kcal/mol
?
53
Cr NMR is consistent with strong
resonance contribution
Hegedus and Dotz JACS, 1988, 8413.
Bernasconi
Chem. Soc. Rev., 1997, 299.
JACS, 1998, 8632.
Kinetic Electrophilicity
(CO)
5
Cr
OCH
3
CH
3
(CO)
5
Cr
OCH
3
CH
3
?Formation of tetrahedral intermediate is 10
9
faster than CH
3
O
–
addition to BnO
2
CCH
3
.
OCH
3
H
HOCH
3
pKa Data
(CO)
5
Cr
OCH
3
CH
3
(CO)
5
Cr
N
CH
3
H
3
C
CH
3
O
N
CH
3
H
3
C
CH
3
? pK
a
= 20.4 (DMSO) ? pK
a
= 35 (DMSO)
Thermodynamic Acidity
? pK
a
(THF) = 8
? pK
a
(H
2
O) = 12.3
equivalent to p-cyanophenol
Casey, JACS, 1974, 1230.
05/06 12/20/99 4:22 PM
B. Connell
Fischer Carbenes
Chem 206
(CO)
5
Cr
OCH
3
CH
3
pyridine
H
3
CO
+ (CO)
5
Cr?pyr
Sensitivity to Acid
(CO)
5
Cr
OCH
3
CH
2
(CO)
5
Cr
OCH
3
CH
2
pyridinium
pyridine
H
reductive elimination
See Hegedus, JACS, 1990, 6255.
(CO)
5
Cr
OCH
3
Ar
CH
3
Li, ClCH
2
I
O
Ar CH
3
80-90%
Metal Removal and Functionalization
Barluenga, TL, 1994, 9471.
(CO)
5
Cr
OCH
3
R
CH
2
N
2
R
OCH
3
(CO)
5
Cr
OCH
3
Ar
Ph
3
PCH
2
H
2
C
OCH
3
Ar
Casey, TL, 1973, 1421.
Casey, JACS, 1972, 6543.
Via similar intermediates:
(CO)
5
Cr
OCH
3
Ar
Cl
(CO)
5
Cr
OCH
3
R
N
2
(CO)
5
Cr
OCH
3
Ar
Ph
3
P
07/08 12/20/99 4:22 PM
B. Connell
Fischer Carbenes
Chem 206
(CO)
5
M
OCH
3
R
3
R
2
R
1
R
1
R
3
R
2
(CO)
5
Cr
OCH
3
R
4
R
4
Nu
(CO)
5
Cr
OCH
3
R
3
R
2
R
1
Nu
R
R
2
= H
OH
OCH
3
R
1
R
3
R
R
R
2
, R
3
≠ H
O
OCH
3
R
1
R
3
R
R
2
R
4
R
1
R
2
R
4
OCH
3
R
3
Bu
3
SnH
Bu
3
Sn
OCH
3
R
3
R
2
R
1
R
R
2
= NR
2
O
R
R
OCH
3
R
3
N
H
3
CO R
4
R
5
R
2
R
3
HN
R
4
R
5
Selected Reactions of Unsaturated Fischer Carbene Complexes
Selected Reactions of Saturated Fischer Carbene Complexes
(CO)
5
M
XR
6
CH
3
XR
6
= OCH
3
, N(R
5
)
2
(CO)
5
M
XR
6
R
OH
RCHO
CH
3
OCH
3
R
1
R
1
O
R
1
OCH
3
CH
3
O
O
H
3
C
R
2
R
3
OCHR
2
R
3
OCHR
2
R
3
R
O
O
OCH
3
CH
3
R
O
N
R
2
R
1
N
O
R
2
R
1
CH
3
XR
6
R
3
SnCl
R
3
Sn XR
6
RX
(CO)
5
M
XR
6
R
R
O
(CO)
5
MXR
6
O
R
09/10 12/20/99 3:51 PM
B. Connell Fischer Carbenes Chem 206
Cyclopropanation
OCH
3
(CO)
5
Mo
n-Bu
CO
2
CH
3
THF, 65 °C
78%
CO
2
CH
3
n-Bu
OCH
3
E:Z
1.9:1
Harvey, TL, 1990, 2529.
OCH
3
(CO)
5
Mo
CH
3
OTBS
25 °C, 49%
TBSO
OCH
3
CH
3
>95% cis
Wulff
Pure Appl. Chem., 1988, 137.
JACS, 1988, 2653.
Cyclopropanation
R
1
OCH
3
(CO)
5
Cr
R
2
M(CO)
4
R
2
OCH
3
Reaction with Alkynes
R
1
M(CO)
4
R
2
OCH
3
(CO)
5
Cr
OCH
3
PhH
reflux
97%
OCH
3
Hoye, JACS, 1988, 2676.
O
OCH
3
(CO)
5
Cr
n-Bu
PhH, 100 °C
81%
O
OCH
3
n-Bu
Harvey, JACS, 1992, 8424.
R
1
11/12 12/20/99 3:54 PM
B. Connell Fischer Carbenes Chem 206
Selective Cyclopropanation
Barluenga
Chem. Commun., 1995, 665.
JACS, 1997, 7591.
n-Bu
Fe
(CO)
5
Cr
OCH
3
88%, 97% de
Fe
OCH
3
H
n-Bu
DMF, 152 °C, 4% BHT
30 min
N
Ph
t-Bu
H
OCH
3
(CO)
5
Cr
Ph
THF, 80 °C, 3 h
OCH
3
Ph
Ph
H
H N
t-Bu
SiO
2
OCH
3
Ph
Ph
H
H O
H
H
O
OCH
3
H
n-Bu
H
O
3
Cyclopropanation
Reaction with Alkynes
Harvey, JOC, 1992, 5559.
O
CH
3
Mo(CO)
5
O
CO
2
Et
PhH
65 °C, 55%
OCH
3
O
H
CO
2
Et
O
O
CH
3
CO
2
Et
H
13/14 12/20/99 3:55 PM
B. Connell Fischer Carbenes Chem 206
[4 + 3] Annulation
N
H
NHt-Bu
Cr(CO)
5
OCH
3Ph
N
H
3
CO Et
Ph NHt-Bu
Et
[2 + 1]
HN
OCH
3
Et
Ph
NHt-Bu
[3,3]
N
H
H
3
CO Et
Ph NHt-Bu
Barluenga
Chem. Commun., 1994, 321.
JACS, 1995, 9419.
JACS, 1996, 695.
Chem. Eur. J., 1996, 88.
-78 °C to -40 °C
91%
(CO)
5
Cr
OCH
3
H
3
CO
(CO)
5
Cr
10
4
times faster than
methyl acrylate
Wulff, JACS, 1990, 4550.
Diels-Alder Cycloaddition
CH
3
H
3
C
25 °C, 3 h
70%
O
OCH
3
H
3
CO
O
CH
3
H
3
C
25 °C, 7 mo
54%
92:8
regioselectivity
70:30
regioselectivity
15/16 12/20/99 3:56 PM
B. Connell Fischer Carbenes Chem 206
O
Si(CH
3
)
2
O
H
3
CO
W(CO)
5
H
3
CO
120 °C, 48 h
25 °C, 2 h
Si(CH
3
)
2
O
H
3
CO W(CO)
5
H
Si(CH
3
)
2
O
H
3
CO O
H
Wulff
JACS 1983, 6726.
JACS 1990, 3642.
Diels-Alder Cycloadditions
CH
3
(OC)
5
Cr
H
3
CO
CH
3
O
H
3
CO
25 °C, 2 h
85%
170 °C, 1 h
22%
Me
H
3
CO
Cr(CO)
5
Me
H
3
CO
O
100%
addition of LA causes decomp
Diels-Alder Cycloadditions
Wulff, JACS, 1990, 3642.
Cr(CO)
5
H
3
CO
CH
3
(CO)
5
CrH
3
CO
H
3
C
25 °C, 2 h
87%
25 °C, 2 h
88%
Me
H
3
CO Cr(CO)
5 9:1
+
Me
OCH
3
Cr(CO)
5
Me
H
3
CO Cr(CO)
5
Me
OCH
3
Cr(CO)
5
+
8.5:1.5
17/18 12/20/99 3:57 PM
B. Connell Fischer Carbenes Chem 206
Asymmetric Exo-Selective Diels-Alder Reaction
Wulff, JACS, 1997, 6438.
CH
3
N
N
O
CH
3
Ph
(CO)
4
Cr
CH
3
OCH
3
TBSO
25 °C, 12 h, 80%
CH
3
N
N
O
CH
3
Ph
(CO)
4
Cr CH
3
OTBS
H
3
CO
>96:4
exo:endo
non-oxygenated dienes give ~85:15 exo:endo
NCH
3
O
Ph
H
3
C
M
H
3
C
C
O
C
O
HC
O
C
O
N
OCH
3
TBSO
Proposed Transition State
[2 + 2] Cycloaddition
O
CH
3
W(CO)
5
H
3
CO
25 °C, 6 h
97%
O
CH
3
W(CO)
5
H
3
C
corresponding ester
does not react
O
CH
3
O
H
3
C
DMSO
10 min
95%
O
180 °C, 16 h
OH
3
CO
O OCH
3
O
O
H
3
C
O
H
3
CO
+
36%
24%
O
CO
2
CH
3
CO
2
CH
3
Wulff, JACS, 1988, 8727.
19/20 12/20/99 3:58 PM
B. Connell Fischer Carbenes Chem 206
[3 + 2] Cycloaddition
CH
3
M(CO)
5
H
3
CO
OH
3
CO
CH
3
TMSCHN
2
25 °C, 2 h
TMSCHN
2
70 °C, 5 d
HN
N
CH
3
OCH
3
(OC)
5
M
76 - 87%
CAN
97%
HN
N
CH
3
OCH
3
O
HN
N
CH
3
OCH
3
O
HN
N
H
3
C
H
3
CO
O
+
30 min
25% 48%
Wulff, JACS, 1986, 6726.
Barluenga TL, 1998, 4887.
Barluenga JCS Perkin I, 1997, 2267.
>300:1 regioselection
Dotz Reaction
(CO)
5
Cr
OCH
3
R
S
R
L
?
–CO
OH
OCH
3
R
L
R
S
(CO)
3
Cr
Dotz
ACIEE, 1975, 644.
New J. Chem., 1990, 433.
ACIEE, 1984, 587.
R
L
R
S
H
3
CO
(CO)
5
Cr
O
Observed Connectivity:
Thermal Reaction of Unsaturated Carbene Complexes
"...one of the most utilized reactions in natural product synthesis involving an organometallic
process."
21/22 12/20/99 3:59 PM
B. Connell Fischer Carbenes Chem 206
Dotz Proposed Reaction Mechanism
(CO)
5
Cr
OCH
3 –CO
?S
?
= +6.2 e.u.
?H
?
= +26 kcal/mol
(CO)
4
Cr
OCH
3 R
S
R
L (CO)
4
Cr
OCH
3
R
S
R
L
(CO)
4
Cr
OCH
3
R
L
R
S
rate-limiting CO dissociation
(CO)
4
Cr
OCH
3
R
L
R
S
(CO)
3
Cr
OCH
3
R
L
R
S
O
O
R
L
R
S
OCH
3
Cr(CO)
3
HO
R
L
R
S
OCH
3
Cr(CO)
3
Barluenga, JACS, 1994, 11191.
800 psi CO HO
R
L
R
S
OCH
3
Cr(CO)
6
+
Dotz Alternative Workup Procedures
HO
R
L
R
S
OCH
3
Cr(CO)
3
air
or FeCl
3
H
2
O
(NH
4
)
2
Ce(NO
3
)
6
(NH
4
)
2
Ce(NO
3
)
6
CH
3
OH
HO
R
L
R
S
OCH
3
O
R
L
R
S
O
O
R
L
R
S
OCH
3
OCH
3
See Wulff, JOC, 1984, 2293.
23/24 12/20/99 4:00 PM
B. Connell Fischer Carbenes Chem 206
Dotz: Large Scale Applicability
(CO)
5
Cr
OCH
3
Ph
1.5 equiv.
n-Bu
THF, reflux, 45-60 min
1.1 equiv. Ac
2
O
1.1 equiv. NEt
3
0.16 equiv. DMAP
OAc
OCH
3
n-Bu
400 g scale
68%
Timko
TL, 1988, 2513.
Org. Synth., 1992, 72.
Dotz: Nitrogen Analog
(CO)
5
Cr
N
CO
2
Et
Barluenga, JOC, 1998, 7588.
PhH
THF, 60 °C
95%
N
Ph
OH
CO
2
Etthen SiO
2
U-66,858
lipoxygenase inhibitor
Wulff, JOC, 1995, 4566.
Biaryl Synthesis
OCH
3
(CO)
5
Cr
R
3
H
R
2
R
1
R
1
R
2
R
1
HO
R
3
R
1
OCH
3
R
3
R
2
OH
OCH
3
+
Wulff, JACS, 1996, 2166.
2 equiv.
The concept works, in moderate to low yield, but the reactions must be run stepwise.
Occasionally CO insertion is suppressed and five-membered rings are formed.
25/26 12/20/99 4:00 PM
B. Connell Fischer Carbenes Chem 206
Synthetic Uses
OCH
3
TMS
OCH
3
OCH
3
Cr(CO)
5
OCH
3
CH
3
H
3
CO
2
C
CH
3
CN, 45 °C, 24 h
66%
OCH
3
TMS
OCH
3
OCH
3
OH
OCH
3
CH
3
CO
2
CH
3
O
OH O
O
OCH
3
CH
3
OCH
3
menogaril
antitumor antibiotic Wulff, JOC, 1998, 840.
Intercepted Intermediates
H
3
C
CH
3
H
3
CO
(CO)
6
Cr
OH
EtEt
O
H
3
C
O
CH
3
Et
Et OCH
3
37%
O
Et Et
OCH
3
Cr(CO)
3
HO
Et Et
OCH
3
Cr(CO)
3
via
CH
3
CH
3
HO
O
H
3
C
O
CH
3
Et
Et OCH
3
H
Wulff, Chem. Commun., 1996, 1863.
27/28 12/20/99 4:05 PM
B. Connell Fischer Carbenes Chem 206
AcO
H
3
CO
OCH
3
Cr(CO)
4
Synthetic Uses
Wulff, Synthesis, 1999, 80.
Ot-Bu
O
CH
2
Cl
2
, 45 °C, 24 h
1)
2) Tf
2
O, pyr
O
Ot-Bu
OTf
OCH
3
CH
3
O
AcO
67%
OHOH
O
O
OH
OCH
3
OH
CH
3
O
disaccaride
H
O
trisaccaride
R
R = CH
3
Chromomycin
R = H, Olivomycin
antitumor antibiotics
O
O
OH
OH OHOCH
3
OH
O
CH
3
Application to Synthesis
Daunomycinone
OTMS
H
3
CO
(CO)
5
Cr
TMS
H
3
CO
(CO)
5
Cr
OTMSTMS
O
O
OCH
3
TMS
OTMS
O
O
O
OCH
3
OTMS
OTMS
O
O
Wulff, JACS, 1984, 434 & 7565.
8 equiv.
1.5 equiv.
50 °C, THF, 3 d
~25%
29/30 12/20/99 4:05 PM
B. Connell Fischer Carbenes Chem 206
N
H
3
C
O
Ph
W(CO)
5
H
3
CO
Dihydrofluorene Synthesis
N
O
OCH
3
H
3
C
Barluenga, Chem Commun., 1995, 1973.
+
N
O
H
3
C
W(CO)
5
OCH
3
N
O
H
3
C
W(CO)
5
OCH
3
N
O
OCH
3
H
3
C
-20 °C to rt
12 h
>95%
Wulff, JOC, 1993, 5571.
Alkyne-Alkene Reactions
(OC)
5
Cr
OCH
3
CH
3
H
3
C
CH
3
CH
3
CN, 70 °C, 3 h
83%
1)
2) H
+
O
H
3
C
CH
3
O
(OC)
5
Cr OCH
3
H
3
C
CH
3
H
3
C
H
3
CO
OCH
3
Cr(CO)
3
CH
3
H
3
C
O
H
3
C
CH
3
H
3
C
OCH
3
H
+
31/32 12/20/99 4:06 PM
B. Connell Fischer Carbenes Chem 206
Merlic, JACS, 1992, 5602.
Ketene Cyclizations
Cr(CO)
5
OCH
3
hν
OCH
3
OH
60 - 90%
Via:
CH
3
O
O
Cr(CO)
4
"Asymmetric" Benzopentaannulation
CH
3
O
H
3
C
CH
3
(CO)
5
WPh
LiPh
MeOTf quench
then
H
3
C
R
*
O
Ph
Barluenga, JACS, 1998, 12129.
OR
*
(CO)
5
W
Ph
Ph
[1,3]
R
*
O
Ph
Ph
(CO)
5
W
R
*
O
Ph
W(CO)
5
MeOTf
H
3
C
W(CO)
5
Ph
H
3
C
R
*
O
90%, 2:1 diastereoselectivity
33/34 12/20/99 4:07 PM
B. Connell Fischer Carbenes Chem 206
"A Versatile [4 + 2 + 1 - 2] Cycloaddition"
Herndon
JACS, 1988, 3334.
TL, 1989, 295.
JOC, 1990, 786.
JACS, 1991, 7808.
JACS, 1992, 8394.
O
OCH
3
R
L
R
S
R
S
R
L
99:1 dioxane:H
2
O
8 h, ?
(CO)
5
Cr
OCH
3
Cr
0
, H
2
O
(CO)
4
Cr
R
L
R
S
OCH
3
(CO)
3
Cr
O R
S
R
L
OCH
3
(CO)
3
Cr
O OCH
3
R
L
R
S
Cr
(CO)
3
O
CH
3
O
R
S
R
L
O
OCH
3
R
L
R
S
H
2
CCH
2
loss of
O
OCH
3
R
L
R
S
(CO)
5
W
OCH
3
same
conditions
O
R
L
R
S
OCH
3
65%
40 - 90%
Furan Synthesis
Herndon, JOC, 1998, 4564.
R
3
R
1
R
2
R
4
O
(CO)
5
Cr
OCH
3
CH
3
1)
2) H
3
O
+
66 - 84%
O
R
4
R
2
R
1
R
3
CH
3
O
R
1
R
2
R
4
O
(CO)
4
Cr
R
3
OCH
3
H
3
C
R
1
R
2
R
4
O
(CO)
4
Cr
R
3
OCH
3
H
3
C
O
R
4
R
2
R
1
R
3
H
3
C
OCH
3
H
3
O
+
35/36 12/20/99 4:08 PM
B. Connell Fischer Carbenes Chem 206
Photochemistry
? Electronic absorption consists of three low-lying bands:
? ~500 nm: spin-forbidden M → carbene π* charge transfer transition
? 360-450 nm: spin allowed M → carbene π* charge transfer transition (visible)
? 300-350 nm: ligand field transition
? In addition, all carbene complexes absorb strongly below 300 nm.
Geoffroy, JACS, 1983, 3064.
(CO)
4
Cr
OCH
3
CH
3
hν
OC
(CO)
4
Cr
O
OCH
3
CH
3
(CO)
4
Cr
H
3
CO CH
3
O
? Exposure to light leads to a reversible CO insertion:
Molecular Orbital Diagram
(CO)
5
Cr
OCH
3
CH
3
(CO)
5
Cr
OCH
3
CH
3
Geoffroy, JACS, 1983, 3064.
? Photolysis results in a formal, reversible,
one electron oxidation of the metal.
HOMO is
metal-d-orbital
centered
LUMO is
carbene carbon
p-orbital centered
37/38 12/20/99 4:09 PM
B. Connell Fischer Carbenes Chem 206
Ketene [2 + 2]
OCH
3
(CO)
5
Cr
CH
3
N
S
hν
N
S
H
3
C
H
3
CO
H
81% Hegedus
Tetrahedron, 1985, 5833.
JOC, 1997, 3586.
Hegedus
JOC, 1995, 3787.
JOC, 1996, 6121.
Organometallics, 1997, 2313.
JOC, 1998, 4691 & 8012.
OCH
3
(CO)
5
Cr
C
8
H
17
NO
O
Ph
hν
NO
O
Ph
C
8
H
17
H
3
CO
O
MCPBA
NO
O
Ph
O
O
C
8
H
17H
3
CO
TBAF
O
O
C
8
H
17H
3
CO
84%, ≥97% de
1) NaOCl
2) NH
3
O
O
H
2
N
O
C
8
H
17
(+)-Cerulenin
92%
90%
30%
100%
O
NO
O
Ph
Ene Carbamate Synthesis
(CO)
5
Cr
HN
CH
3
OH
Ph
2 equiv. NaH
O
PhO OPh
O
N
O
Ph
(CO)
4
Cr
CH
3
PhONa
O
N
O
Ph
(CO)
4
Cr
CH
2
PhOH
O
N
O
Ph
(CO)
4
Cr
CH
2
H
Hegedus, JACS, 1990, 6255.
88%
39/40 12/20/99 4:10 PM
B. Connell Fischer Carbenes Chem 206
Amino Acid Synthesis
Hegedus
JACS, 1990, 2264.
JACS, 1992, 5602.
JACS, 1993, 87.
Acc. Chem. Res., 1995, 299.
JOC 1995, 5831.
JACS, 1995, 3697.
JOC 1997, 7704.
N
(CO)
5
Cr
CH
2
R
H
3
C
H
3
C
Ph
hν, t-BuOH
60-80%
≥97% de
O
Ot-Bu
R
N
CH
3
CH
3
Ph
? Mutiply-labeled amino acids are readily
prepared from (
13
CO)
6
CO and CH
3
OD:
O
13
C
13
C
Ot-Bu
R
N
CH
3
CH
3
Ph
D
Peptide Synthesis
N
(CO)
5
Cr
CH
3
H
3
C
H
3
C
Ph
hν
NH
2
H
3
CCO
2
t-Bu
N
CH
3
CH
3
Ph
O
N
H
CO
2
t-Bu
CH
3
H
3
C
68 - 88% yield
80-96% de
Solid Support
? Reactions have been performed and do work, but are not as practical because the failure to achieve
100% yields and high diastereoselectivity limit this method.
? hard to work with because the polymer "sticks to everything, making quantitative transfer difficult".
Acc. Chem. Res., 1995, 299.
Merrifield Resin: Acc. Chem. Res., 1995, 299.
PEG: JOC 1995, 5831; JOC 1997, 7704.
41/42 12/20/99 4:10 PM
B. Connell Fischer Carbenes Chem 206
Aryl Glycines
(CO)
5
Cr
HN
Ar
OH
Ph
Ph
hν
O
H
N
HO
Ar Ph
Ph
(CO)
5
Cr
H
N
O
Ph
Ph
O
Ar
H
2
, PdCl
2
Ar
H
3
NCO
40 - 95% yield
56 - 98% ee
Aryl glycines cannot be made via
the previous route due to instability
of the required carbenes:
N
(CO)
5
Cr
Ar
H
3
C
H
3
C
Ph
Hegedus, JOC, 1992, 6914.
Tertiary Amino Acids
Hegedus, JOC, 1993, 5918.
N
(CO)
5
Cr
H
O
H
3
C
H
3
C
Ph
N
O
hν
N
O
O
N
O
H
3
C
H
3
C
Ph
1) 0.2 M HCl
2) phosgene
N
O
O
N
O
Ph
O
1) KHMDS
2) RX, DMF
N
O
O
N
O
Ph
O
R
HCl, CH
3
OH
O
CH
3
O
2
C
N
O
Ph
O
R
tertiary amino acids
H
43/44 12/20/99 4:11 PM
B. Connell Fischer Carbenes Chem 206
Zwitterionic Aza Cope Rearrangement
Hegedus, JOC, 1996, 2871.
OCH
3
(CO)
5
Cr
CH
3
N
Bn
hν
71%
Bn
N
O
OCH
3
CH
3
91:8
81:19
(CO)
4
Cr
H
3
CO CH
3
ON
Bn
[3,3]
H
3
CO CH
3
ON
Bn
Michael Reaction
NCH
3
N
O(CO)
4
Cr
R
OLi
-40 °C
NCH
3
N
O
(CO)
4
Cr
RO
R
Ph
CH
3
Yield
81%
92%
syn:anti
99.5:0.5
98.3:1.7
Wulff, JACS, 1993, 4602.
N(CH
3
)
2
(CO)
5
Cr
CH
3
Ob)
a) n-BuLi
O
(CH
3
)
2
N
(CO)
5
Cr DMSO
O
(CH
3
)
2
N
O
71%
85%
-78 °C, 20 min
Heathcock, JOC, 1986, 279.
45/46 12/20/99 4:12 PM
B. Connell Fischer Carbenes Chem 206
NCH
3
N
O
CH
3
Ph
(CO)
4
Cr
H
3
C
Asymmetric Michael Addition
NCH
3
N
O
CH
3
Ph
(CO)
4
Cr
H
3
C
OLi
Ph
-20 °C
CH
3
O
Wulff, Chem. Commun., 1996, 2601.
3:1diastereoselection
NCH
3
N
O
CH
3
Ph
H
3
C
(CO)
4
Cr
a) n-BuLi
b)
O
R
1
R
2
NCH
3
N
O
CH
3
Ph
(CO)
4
Cr
R
1
R
2
O
>96:4 diastereoselection
NCH
3
N
O
CH
3
Ph
(CO)
4
Cr
R
1
CH
3
O
1) CAN
2) NaOCH
3
R
1
CH
3
O
OCH
3
O
90%
80%
Asymmetric Michael Reaction
CH
3
O
H
3
C
CH
3
(CO)
5
Cr Ph
OLi
OCH
3
CH
3
OR
*
(CO)
5
Cr
Ph
CH
3
OCH
3
O
74%, 84% de
OR
*
(CO)
5
Cr
Ph O
89%, 99% de
Ph
OLi
Ph
H
3
C
Barluenga, Chem. Eur. J., 1995, 236.
Ph
CH
3
47/48 12/20/99 4:12 PM
B. Connell Fischer Carbenes Chem 206
Michael Reactions: Selectivity
NCH
3
N
O
CH
3
Ph
C
Cr
CO
CO
OC
OC
H
H
O
R
1
H
R
2
Open Transition States are Postulated
O
CO
CO
OC
OC
CO
Cr
R
CH
3
H
3
CCH
3
Ph
W(CO)
5
EtO
H
3
CCH
3
OHN
H
Pyridine Synthesis
then HBF
4
N
CH
3
O
CH
3
Ph
75%
Ph
(CO)
5
W
EtO
O
CH
3
H
N
CH
3
H
Aumann, Synlett, 1993, 669.
HN
CH
3
O
CH
3
Ph
(CO)
5
W
HBF
4
H
W(OC)
5
EtO
CH
3
NH
H
3
C
O
W(OC)
5
EtO
CH
3
HN
H
3
C
O
W(OC)
5
EtO
CH
3
HN
H
3
C
O
H
H
49/50 12/20/99 4:13 PM
B. Connell Fischer Carbenes Chem 206
Alkylation
OCH
3
(CO)
5
Cr
CH
3
a) n-BuLi
b) MeI
OCH
3
(CO)
5
Cr
CH
2
CH
3
22%
OCH
3
(CO)
4
Cr
CH
3Bu
3
P
a) n-BuLi
b) EtI
65%
OCH
3
(CO)
4
Cr
Bu
3
P
+
CH
3
OCH
3
(CO)
4
Cr
Bu
3
P
CH
3
CH
3
7:3
OCH
3
(CO)
5
Cr
CH
3
a) n-BuLi
b)
OCH
3
(CO)
5
Cr
80%
OTf
Wulff, JOC, 1987, 3263.
Hegedus Org. Synth., 1987, 140.
Wulff, TL, 1989, 4061.
N
(CO)
5
Cr
CH
3
a) n-BuLi
b) EtI
87%
N
(CO)
5
Cr
Bu
3
P substitution often leads to
different reactivity:
TL, 1995, 8159.
CH
3
"Aldol" Reaction
(CO)
5
Cr
OCH
3
CH
3
a) n-BuLi
b) 10 equiv.
PhCHO/BF
3
?OEt
2
(CO)
5
Cr
OCH
3
Ph
OH
81%
(CO)
5
Cr
N
CH
3
a) n-BuLi
b) 1.1 equiv.
PhCHO/BF
3
?OEt
2
96%
(CO)
5
Cr
N
Ph
OH
Wulff, JACS, 1985, 503.
Wulff, JACS, 1989, 5485.
Wulff, JOC, 1994, 6882.
oxazolidinone complexes were unstable:
Hegedus, JACS, 1990, 6255.
NCH
3
N
O
CH
3
Ph
H
3
C
(CO)
4
Cr
a)n-BuLi
b) Bu
3
B
c) i-PrCHO
then CAN
NCH
3
N
O
CH
3
Ph
O
CH
3
H
3
C
OH
74%
ds: 98.6: 1.4
in absense of Bu
3
B, ds: 91:9
Ketones work as well.
51/52 12/20/99 4:13 PM
B. Connell Fischer Carbenes Chem 206
Ene Reaction
CH
3
W(CO)
5
H
3
CO
OR
+
25 °C, 4 h
R = CH
3
90%
R = TBS 96%
RO
CH
3
(CO)
5
W
OCH
3
RO
CH
3(CO)
5
W
OCH
3
R = CH
3
23: 77
R = TBS 90:10
+
Wulff, JACS, 1990, 6419.
Reaction of Ketene Acetals
Wulff, JACS, 1992, 10665.
(CO)
5
Cr
O
CH
3
CH
3
H
3
C
1)
OCH
3
OCH
3
2) aq. HCl
O
O
H
3
C
CH
3
H
3
C
(±)-eldanolide
sex pheromone
50%
24:1
trans:cis
80 °C, 3 d
(CO)
5
Cr
O
CH
3
CH
3
H
3
C
OCH
3
OCH
3 (CO)
5
Cr
CH
3
CH
3
H
3
C
OCH
3
OCH
3
O
H
O
OCH
3
OCH
3
H
3
C
CH
3
H
3
C
53/54 12/20/99 4:14 PM
B. Connell Fischer Carbenes Chem 206
Vinylsilane Synthesis
Iwasawa, Chem. Lett., 1994, 231.
(CO)
5
Mo
OCH
3
SiPh
2
CH
3
RCH
2
Li or RCH
2
MgX
CeCl
3
H
3
CPh
2
Si
R
R = i-Pr, 94%, 96:4 E:Z
R = Bu, 86%, 96:4 E:Z
R = i-Bu, 85%, 97:3 E:Z
-78 °C, cold quench
H
3
CPh
2
Si
R
RCH
2
Li or RCH
2
MgX
CeCl
3
, HMPA
-78 °C to rt
R = i-Pr, 76%, 92:8 Z:E
R = Bu, 79%, 97:3 Z:E
R = i-Bu, 61%, 97:3 Z:E
(CO)
5
Mo
OCH
3
SiPh
2
CH
3
Vinylsilane Synthesis
Proposed Mechanism
n-BuLi
(CO)
5
Mo
OCH
3
SiPh
2
CH
3
n-Bu
Li
warm
(CO)
5
Mo
n-Bu
SiPh
2
CH
3
CH
3
OLi
(CO)
5
Mo
SiPh
2
CH
3
Li
SiPh
2
CH
3
H
2
O
-78 °C
(CO)
5
Mo
OCH
3
SiPh
2
CH
3
n-Bu
H
– LiOCH
3
– HOCH
3
(CO)
5
Mo
n-Bu
SiPh
2
CH
3
hydrogen
migration
(CO)
5
Mo
SiPh
2
CH
3
H
SiPh
2
CH
3
55/56 12/20/99 4:14 PM
B. Connell Fischer Carbenes Chem 206
Allyl Stannane Synthesis
Merlic, TL, 1995, 1007.
W(CO)
5
OCH
3
H
3
C
Bu
3
SnH, pyr
SnBu
3
OCH
3
H
3
C
73%
Cr(CO)
5
OCH
3
H
3
CO
Ph
Bu
3
SnH, pyr
69%
SnBu
3
OCH
3
H
3
CO
Ph
W(CO)
5
OCH
3
1,1 addition is usually observed, however 1,3 addition is possible:
TMS
Bu
3
SnH, pyr
88%
OCH
3
TMS
Bu
3
Sn
E:Z
1:1
W(CO)
5
MOM
Me
OMOM
Me
Bu
3
Sn
Bu
3
SnH, pyr
66%
Wulff
JACS, 1990, 1645.
JACS, 1991, 5459.
Halban-White Cyclizations
Ph
O
O
Ph
COPhPhCO
hν Ph
OPh O
COPhPhCO
Ph
OPh
O
O
Ph
Ph
O
O
O
Ph
PhO
Ph
OPh
Andres, A. Dissertation, Strasbourg, 1911.
van Halban, Helv. Chim. Acta, 1948, 1899.
(CO)
5
M
OCH
3
R
5
R
6
R
4
R
1
R
2
O
yields 30-70%
Dotz byproduct
R
4
O
R
1
OR
2
H
3
CO
R
6
R
5
O
O
R
2
R
6
R
5
R
3
R
4
R
1
57/58 12/20/99 4:15 PM